A BANGELLA # Water Resources Data Colorado Water Year 1992 Very LUDGAN Volume 1. Missouri River Basin, Arkansas River Basin and Rio Grande Basin U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-92-1 Prepared in cooperation with the State of Colorado and with other agencies # | OCTOBER | | | | | | NOVEMBER | | | | | | | DECEMBER | | | | | | | | | |---------|----|----|----|----|----|----------|----|----|----|----|----|----|----------|--|----|----|----|----|----|----|----| | S | M | Т | W | T | F | S | S | M | T | W | Т | F | S | | S | М | T | W | Т | F | 5 | | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | | | | | | | | | | 5 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 3 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |) | 21 | 22 | 23 | 24 | 25 | 26 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 7 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | | | | | | | | | | | | | | | | 29 | 30 | 31 | | | | | # | | | J | ANU | ARY | | | FEBRUARY | | | | | | MARCH | | | | | | | | | |----|----|----|------|-----|----|----|----------|----|----|-----|----|----|-------|--|----|----|----|-----|-----|----|----| | S | M | Т | W | Т | F | S | S | M | Т | W | Т | F | S | | S | M | T | W | Т | F | S | | | | | 1 | 2 | 3 | 4 | | | | | | | 1 | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 2 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 15 | 16 | 17 | 18 | 19 | 20 | 21 | | 9 | 20 | 21 | 22 | 23 | 24 | 25 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 22 | 23 | 24 | 25 | 26 | 27 | 28 | | 26 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 29 | 30 | 31 | | | | | | | | Ī | APR: | IL | | | | | | MA! | Y | | | | | | | JUN | Ε | | | | S | M | T | W | T | F | S | S | M | Т | W | Т | F | S | | S | M | Т | W | T | F | S | | | | | 1 | 2 | 3 | 4 | | | | 1 | | 1 | 2 | | | 1 | 2 | 3 | 4 | 5 | 6 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 2 | 13 | 14 | 15 | 16 | 17 | 18 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | | | | 22 | | 24 | 25 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 6 | 27 | 28 | 29 | 30 | | | 24
31 | 25 | 26 | 27 | 28 | 29 | 30 | | 28 | 29 | 30 | | | | | | | | Ċ | JUL | (| | | | | A | JGU | ST | | | | | | SE | PTE | MBE | R | | | S | М | T | W | T | F | S | S | М | T | W | Т | F | S | | S | M | T | W | T | F | S | | | | | 1 | 2 | 3 | 4 | | | | | | | 1 | | | | 1 | 2 | 3 | 4 | 5 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 2 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 9 | 20 | 21 | 22 | 23 | 24 | 25 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 6 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 27 | 28 | 29 | 30 | | | | | | | | | | | | 30 | 31 | | | | | | | | | | | | | | # Water Resources Data Colorado Water Year 1992 Volume 1. Missouri River Basin, Arkansas River Bas and Rio Grande Basin by R.C. Ugland, B.J. Cochran, M.M. Hiner, and R.D. Steger U.S. GEOLOGICAL SURVEY WATER-DATA REPORT CO-92-1 Prepared in cooperation with the State of Colorado and with other agencies # UNITED STATES DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U. S. GEOLOGICAL SURVEY Dallas L. Peck, Director For information on the water program in Colorado write to: District Chief, Water Resources Division U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 # PREFACE This volume of the annual hydrologic data report of Colorado is one of a series of annual reports that document hydrologic data gathered from the U. S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Colorado are contained in two volumes: Volume 1. Missouri River, Arkansas River, and Rio Grande basins in Colorado. basins in Colorado Volume 2. Colorado River basin. This report is the culmination of a concerted effort by dedicated personnel of the U. S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data: | W. D. Bemis | M. J. Haley | R. S. Ortiz | M. R. Stevens | |---------------|-----------------|-------------------|----------------| | R. J. Brandle | M. D. Klock | R. S. Parker | A. M. Tafoya | | J. A. Collins | J. M. Kuzmiak | W. F. Payne | M. M. Trujillo | | M. D. Corse | M. S. Lauffe | M. A. Penrod | L. A. Walsh | | P. L. Cox | J. D. Martinez | K. G. Petty | M. A. Wells | | A. C. Duncan | G. D. McElhaney | R. L. Reed | J. B. West | | P. Edelman | R. H. Munson | M. A. Salay | K. R. Wilke | | M. L. Gerken | S. V. Muro | D. G. Shubert | N. O. Young | | J. W. Gibbs | R. M. Neam | D. E. Smits | | | S. T. Green | G. B. O'Neill | J. T. Steinheimer | | This report was prepared in cooperation with the State of Colorado and with other agencies under the general supervision of D. J. Lystrom, District Chief, Colorado. | | - |
• | |----|-----|-------| | 30 | 272 | U | | | | | | REPORT DOCUMENTATION 1. REPORT NO. USGS/WRD/HD-93/260 | 2. 3. Recipient's Accession | on No. | |--|---|-----------| | 4. Title and Subtitle Water Resources Data for Colorado, Water Y | | | | Volume 1. Missouri River basin, Arkansas :
Rio Grande basin. | tiver basin, and | | | 7. Author(s)
R.C. Ugland, B.J. Cochran, M.M. Hiner, and | R.D. Steger 8. Performing Organiza USGS-WDR-CO- | | | 9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Di | 10. Project/Task/Work | Unit No. | | Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 | 11. Contract(C) or Grad (C) (G) | nt(G) No. | | 12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Di Box 25046, Mail Stop 415 | vision 13. Type of Report & F Annual Oct. to Sept. 30, | 1, 1991 | | Denver Federal Center Lakewood, CO 80225 | 14. | | # 15. Supplementary Notas Prepared in cooperation with the State of Colorado and other agencies. ### 16. Abstract (Limit: 200 words) Water-resources data for Colorado for the 1992 water year consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of wells and springs. This report (Volumes 1 and 2) contains discharge records for 304 gaging stations, stage and contents of 26 lakes and reservoirs, 1 partial-record low-flow station, peak flow information for 47 crest-stage partial record stations, and 1 miscellaneous site; water quality for 89 gaging stations, 169 miscellaneous sites, and for 14 observation wells. pertinent stations operated by bordering states also are included in this report. records were collected and computed by the Water Resources Division of the U.S. Geological Survey under the direction of D.J. Lystrom, District Chief. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies. # 17. Document Analysis a. Descriptors *Colorado, *Hydrologic data, *Surface water, *Ground water, *Water quality; Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water analyses. ## b. Identifiers/Open-Ended Terms ## c. COSATI Field/Group | 18. Availability Statemen: No restriction on distribution. This report may | Unclassified | 21. No. of Pages 331 | |--|--------------------------------|----------------------| | be purchased from: National Technical Information | 20. Security Class (This Page) | 22. Price | | Service, Springfield, VA 22161 | Unclassified | | # CONTENTS | | | Page | |--|-------|------| | Preface | | | | List of surface-water stations, in downstream order, for which records are published in this vo | | | | Introduction | | | | Overview of Hydrologic Conditions | | | | Precipitation | | | | Streamflow | | | | Peak discharges | | | | Special networks and programs | | | | Explanation of the records | | 13 | | Station identification numbers | | 13 | | Downstream order system | | | | Latitude-longitude system | | | | Records of stage and water discharge | | | | Data collection and computation | | 15 | | Data presentation | | | | Station manuscript | | | | Statistics of monthly mean data | | - | | Summary statistics | | 17 | | Identifying estimated daily discharge | | | | Accuracy of the records | | | | Other records available | | | | Accuracy of the records | | | | Classification of records | | 19 | | Arrangement of records | | | | Onsite measurements and sample collection | | 19 | | Water temperature | | | | Laboratory measurements | | | | Data presentation | | 21 | | Remark codes | | | | Records of
ground-water quality | | | | Data collection and computation | | | | Access to WATSTORE DATA | | | | Definition of terms | | 23 | | Selected references | | | | List of discontinued surface-water discharge or stage-only stations | | | | Publications on techniques of water-resources investigations | | | | Surface-water records | | | | Transmountain diversions | | | | Transmountain diversions from Colorado River basin in Colorado | | | | Discharge at partial-record stations and miscellaneous sites | | | | Supplemental water-quality data for gaging stations | | | | Quality of ground-water | | 323 | | Index | | 329 | | ILLUSTRATIONS | | | | | | | | | | Page | | Figures 1-2. Map showing: | | | | Locations of lakes and surface-water stations and surface-water-quality stat | | | | Colorado | | | | Locations of crest-stage partial-record stations in Colorado Comparison of monthly precipitation for water year 1992 to normal monthly precipit | | | | for the reference period 1951-80 | | | | Comparison of monthly discharges for water year 1992 to mean monthly discharges for | r the | | | reference periods indicated on the individual graphs | | 8 | | 5. Comparison of range and distribution of specific conductance measured during water | | 10 | | 1992 to long-term values | | 12 | | TABLES | | | | | | D | | | | Page | | Table 1. Precipitation during water year 1992 and departures from normal precipitation (1951-8 | | | | in inches | | 5 | | Peak discharges for water year 1992 and for the period of record at selected surface-
stations | | 10 | | stations | | | | discharge for water year 1992 with mean for the period of record at selected | | | | gaging stations | | 11 | NOTE.--Data for partial-record stations and miscellaneous sites for both surface-water discharge and quality are published in separate sections of the data report. (Letter after station name designates type and frequency of published data: Daily tables: (D) discharge, (C) specific conductance (S) sediment, (T) temperature, (e) elevation or contents, (O) dissolved oxygen, (P) pH. Partial tables: (c) chemical, (b) biological, (m) microbiological, (s) sediment, (t) temperature) | Station number | Page | |---|------------| | Missouri River: | | | PLATTE RIVER BASIN | | | North Platte River: | 41 | | Michigan River near Cameron Pass (D) | 41
42 | | South Platte River: | 72 | | South Platte River above Elevenmile Canyon Reservoir, near Hartsel (D) | 43 | | South Platte River near Lake George (D) | 44 | | Tarryall Creek below Rock Creek, near Jefferson (D) | 45
46 | | Reservoirs in South Platte River basin (e) | 47 | | North Fork South Platte River below Geneva Creek, at Grant (D) | 48 | | Plum Creek near Sedalia (D) | 49 | | Plum Creek at Titan Road, near Louviers (D) | 50
51 | | Chatfield Lake near Littleton (e) | 52 | | Bear Creek above Evergreen (D) | 53 | | Bear Creek at Morrison (D) | 54 | | Bear Creek above Bear Creek Lake, near Morrison (D) | 55 | | Bear Creek at mouth, at Sheridan (D) | 56
57 | | Cherry Creek near Franktown (D) | 62 | | Cherry Creek near Parker (D) | 63 | | Cherry Creek Lake near Denver (e) | 64 | | Cherry Creek below Cherry Creek Lake (D) | 65 | | Cherry Creek at Glendale (D) | 66
67 | | Cherry Creek at Denver (D) | 68 | | South Platte River at 64th Avenue at Commerce City (D) | 69 | | Senac Creek at North Border Sludge Area near Aurora (D) | 70 | | Clear Creek at Golden (DTC) | 71 | | South Platte River at Henderson (Dcst) | 74
77 | | Big Dry Creek at Mouth near Fort Lupton (D) | 78 | | North St. Vrain Creek near Allens Park (D) | 79 | | St. Vrain Creek at Lyons (D) | 80 | | St. Vrain Creek below Longmont (D) | 81 | | Boulder Creek: Middle Boulder Creek (head of Boulder Creek) at Nederland (D)06725500 | 82 | | Bummers Gulch near El Vado (D) | 83 | | Boulder Creek near Orodell (D) | 84 | | Fourmile Creek at Orodell (D) | 85
86 | | South Boulder Creek near Eldorado Springs (D) | 86
87 | | Boulder Creek at Mouth near Longmont (D) | 88 | | St Vrain Creek at mouth, near Platteville (D) | 89 | | Big Thompson River: | 00 | | Big Thompson River at Estes Park (D) | 90
91 | | Big Thompson River near Estes Park (D) | 92 | | Horsetooth Reservoir near Fort Collins (etcmb) | 93 | | Horsetooth Reservoir near Fort Collins (etcb) 403147105083800 | 96 | | Big Thompson River at mouth of Canyon, near Drake (D) | 98 | | Big Thompson River above Buckhorn Creek, near Loveland (ct) | 99
101 | | Big Thompson River at Loveland (Dtc) | 103 | | Big Thompson River below Loveland (ct) | 106 | | Big Thompson River at I-25, near Loveland (ct) | 108 | | Carter Lake near Berthoud (etcmb) | 110 | | Cache la Poudre River: Joe Wright Creek above Joe Wright Reservoir (D) | 113 | | Joe Wright Creek below Joe Wright Reservoir (D) | 114 | | North Fork Cache la Poudre River at Livermore (Dcts) | 115 | | Cache la Poudre River at mouth of Canyon, near Fort Collins (D) | 119 | | Cache la Poudre River at Shields Street at Fort Collins (ct) | 120
122 | | Cache la Poudre River below Fort Collins (ct) | 127 | | Cache la Poudre River above Box Elder Creek near Timnath (Dct) | 129 | | Cache la Poudre River near Greeley (D) | 132 | | | Station
number | Page | |--|---|--| | Missouri RiverContinued | | , | | PLATTE RIVER BASIN-Continued South Platte RiverContinued | | | | South Platte River near Kersey (D) | .06758500 | 133
134
136 | | KANSAS RIVER BASIN | | | | Arikaree River (head of Kansas River): North Fork Republican River at Colorado-Nebraska State line (D) Republican River (continuation of Arikaree River): South Fork Republican River: | | 139 | | Bonny Reservoir near Hale (e) | .06826000 | 140 | | LOWER MISSISSIPPI RIVER BASIN Mississippi River: | | | | ARKANSAS RIVER BASIN | | | | Arkansas River: Leadville Mine Drainage Tunnel at Leadville (D) | .07079300 | 141
143
147 | | California Gulch at Malta (D) | .07081800 | 149 | | Turquoise Lake near Leadville (e) | .07083000
.07083710
.07084500
.07086000 | 152
153
157
159
160 | | Clear Creek above Clear Creek Reservoir (D) | .07087200
.07091200
.07093700 | 161
162
164
165
166 | | Badger Creek, Lower Station, near Howard. Arkansas River at Parkdale (DCT) Grape Creek near Westcliffe (D) Arkansas River at Canon City (D) Fourmile Creek near Canon City. | .07093775
.07094500
.07095000
.07096000 | 168
169
172
173
174 | | Arkansas River at Portland (DCT) | .07097000
.07099050
.07099060
.07099230
.07099233 | 175
178
180
181
182 | | Turkey Creek near Stone City | .07099350
.07099400
.07099969 | 183
184
205
208
209 | | Fountain Creek: Fountain Creek near Colorado Springs | .07103700
.07103703 | 212
213 | | Monument Creek: Monument Creek at Palmer Lake (ctm) | .07103780
.07103800 | 214
216
218 | | Cottonwood Creek at Woodmen Road near Colorado Springs (D) Cottonwood Creek at mouth at Pikeview Monument Creek at Pikeview Monument Creek at Bijou Street, at Colorado Springs Bear Creek near Colorado Springs (D) Cheyenne Creek at Evans Avenue at Colorado Springs | .07103990
.07104000
.07104905
.07105000 | 219
220
221
222
223
224 | | Fountain Creek at Colorado Springs (D) | .07105500
.07105530
.07105533
.07105800 | 225
227
229
230 | | Clover Ditch Drain near Widefield | .07105900
.07105905
.07105945 | 235
236
237
238
239 | | Fountain Creek near Force (D) | .07106000
.07106300
.07106500 | 240
242
245
248 | | Arkansas River near Avondale (D) Huerfano River near Boone (D) Arkansas River near Nepesta (D) Apishapa River near Fowler (D) | .07109500
.07116500
.07117000
.07119500 | 249
251
252
253 | | Arkansas River at Catlin Dam, near Fowler (D) | .07119700 | 254 | # VIII SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | Station
number | Page | |---|------| | Mississippi RiverContinued | | | Arkansas River—Continued | | | Timpas Creek: | | | Timpas Creek at mouth, near Swink (D) | 256 | | Crooked Arroyo near Swink (D) | 257 | | Arkansas River at La Junta (D) | 258 | | Horse Creek near Las Animas (D) | 259 | | Arkansas River at Las Animas (D) | 261 | | Purgatoire River at Madrid (D) | 263 | | Trinidad Lake near Trinidad (e) | 264 | | Purgatoire River below Trinidad Lake (D) | 265 | | Van Bremer Arroyo near Tyrone (D) | 266 | | Van Bremer Arroyo near Model | 268 | | Purgatoire River near Thatcher (D) | 269 | | Taylor Arroyo: | | | Taylor Arroyo below Rock Crossing near Thatcher (D) | 271 | | Lockwood Canyon Creek near Thatcher (D) | 273 | | Chacuaco Creek at Mouth, near Timpas (DCT) | 275 | | Purgatoire River at Rock Crossing, near Timpas | 279 | | Purgatoire River at Ninemile Dam, near Higbee (D) | 280 | | Purgatoire River near Las Animas (D) | 281 | | John Martin Reservoir at Caddoa (e) | 283 | | Arkansas River below John Martin Reservoir | 284 | | Arkansas River at Lamar (D) | 285 | | Arkansas River near Granada (D) | 286 | | Frontier ditch near Coolidge, KS (D) | 287 | | Arkansas River near Coolidge, KS (Dcmt) | 288 | | WESTERN GULF OF MEXICO BASINS RIO GRANDE BASIN | | | Rio Grande at Thirtymile Bridge, near Creede (D) | 291 | | North Clear Creek below Continental Reservoir (D | 292 | | Rio Grande at Wagon Wheel Gap (D) | 293 | | South Fork Rio Grande at South Fork (D | 294
 | Rio Grande near Del Norte (D) | 295 | | Rio Grande at Alamosa (D) | 296 | | Saguache Creek near Saguache (D) | 297 | | Rio Grande above mouth of Trinchera Creek, near Lasauses (D | 298 | | Platoro Reservoir at Platoro (e) | 299 | | Conejos River below Platoro Reservoir (D) | 300 | | Conejos River near Mogote (D) | 301 | | San Antonio River at Ortiz (D) | 202 | | Los Pinos River near Ortiz (D) | 303 | | Conejos River near Lasauses (D) | 304 | | Rio Grande near Lobatos (D) | 305 | # WATER RESOURCES DATA - COLORADO, 1992 # **VOLUME 1: MISSOURI RIVER, ARKANSAS RIVER, AND RIO GRANDE BASINS** By R. C. Ugland, B. J. Cochran, R. D. Steger, and M. M. Hiner # INTRODUCTION The Water-Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Colorado each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in the report series entitled "Water Resources Data - Colorado". This report (Volume 1 of two volumes) includes records on both surface and ground water in the State, east of the Continental Divide. Specifically, it contains: (1) discharge records for 122 surface-water stations, and peak discharges for 41 partial-record surface-water stations; (2) stage and contents for 13 lakes and reservoirs; (3) surface-water-quality data for 30 surface-water stations, for 3 reservoirs, for 14 wells, and miscellaneous surface-water-quality data for 45 gaged sites. Locations of lake and surface-water stations and surface-water-quality stations are shown in figure 1, locations of crest-stage partial-record stations are shown in figure 2. Four pertinent stations operated by bordering States also are included in this report. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Colorado. Prior to introduction of this series and for several water years concurrent with it, water-resources data for Colorado were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-water Supply of the United States," Parts 6B, 7, and 8. For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." Data on ground-water levels for the 1935 through 1955 water years were published annually under the title "Water Levels and Artesian Pressures in Observation Wells in the United States." For the 1956 through 1974 water years the data were published in four 5-year reports under the title "Ground-Water Levels in the United States." Water-supply papers may be purchased from the, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 810, Box 25425, Denver, CO 80225. For water years 1961 through 1970, surface-water data were released by the Survey in annual reports on a State-boundary basis. surface-water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with surface-water records. Beginning with the 1971 water year, water data on surface-water, water quality, and ground-water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CO-92-1." These water-data reports are for sale, in paper copy or in micro-fiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (303) 236-4882. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Building 810, Box 25425, Denver, CO 80225. Figure 1.--Map showing locations of lakes and surface-water stations and surface-water-quality stations in Colorado Figure 2.--Map showing locations of crest-stage partial record stations in Colorado. # COOPERATION The U.S. Geological Survey and organizations of the State of Colorado have had cooperative agreements for the systematic collection of surface-water records since 1895 and for water-quality records since 1941. Organizations that assisted in collecting data for this report through cooperative agreement with the Survey are: ``` Arapahoe County, Water and Wastewater Authority. Arkansas River Compact Administration. Bent County Commissioners. Boulder County. Centennial Water and Sanitation District. Central Colorado Water Conservancy District. Cherokee Metropolitan District. City and County of Denver, Board of Water Commissioners. City of Arvada. City of Aspen. City of Aurora. City of Boulder. City of Colorado Springs, Department of Public Utilities. City of Colorado Springs, Department of Public Works. City of Englewood. City of Fort Collins. City of Glendale. City of Glenwood Springs. City of Golden. City of Lakewood. City of Lamar. City of Las Animas. City of Longmont. City of Loveland. City of Northglenn. City of Pueblo. City of Rocky Ford. City of Steamboat Springs, Public Works Department. City of Thornton. City of Westminster. Colorado Department of Health. Colorado Department of Transportation. Colorado Division of Water Resources. Colorado Division of Wildlife. Colorado River Water Conservation District. Colorado Oil and Gas Conservation Commission. Colorado Water Conservation Board Delta County Board of County Commissioners. Eagle County Board of Commissioners. Eagle County Board of Commissioners. East Grand County Water-Quality Board. Evergreen Metropolitan District. Fountain Valley Authority. Fremont Sanitation District. Garfield County. Jefferson County Board of County Commissioners. La Plata County Lower Fountain Water-Quality Management Association. Metro Wastewater Reclamation District. Moffat County Northern Colorado Water Conservancy District. Pueblo Board of Water Works. Pueblo County Commissioners. Pueblo West Metro Water District. Rio Blanco County Board of County Commissioners. Rio Grande Water Conservancy District. Rio Grande Water Conservation District. Southeastern Colorado Water Conservancy District. Southern Ute Indian Tribe. Southwestern Colorado Water Conservation District. St. Charles Mesa Water District. Town of Breckenridge. Trans Mountain Hydro Corporation, (Federal Energy Regulatory Commission Licensee). Trinchera Water Conservancy District. Uncompanyre Valley Water Users Association. Upper Arkansas Council of Governments. Upper Arkansas River Water Conservancy District. Upper Eagle Regional Water Authority. Upper Yampa Water Conservancy District. Urban Drainage and Flood Control District. Ute Mountain Ute Indian Tribe. Vail Valley Consolidated Water District. Yellowjacket Water Conservancy District. ``` Financial assistance was also provided by the U.S. Army, Corps of Engineers; U.S. Army; U.S. Air Force; Bureau of Land Management, Bureau of Reclamation, National Park Service, and U.S. Environmental Protection Agency. Organizations that supplied data are acknowledged in station descriptions. # OVERVIEW OF HYDROLOGIC CONDITIONS [East of the Continental Divide] # Prepared by K.R. Wilke # Precipitation Precipitation data for water year 1992 were obtained from published reports of the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Climate Data Center, for the four National Weather Service divisions in Colorado that are east of the Continental Divide. These data are listed in table 1. Precipitation and departures-from-normal precipitation (1951-80) are listed for the first 6 months of the water year when precipitation is predominately snow and for the remaining 6 months when precipitation is predominately rain. Also listed are the precipitation and departures-from-normal precipitation for the entire water year. Precipitation was greater than normal for October-March in the Arkansas Drainage Basin, the Kansas Drainage Basin, the Platte Drainage Basin, and the Rio Grande Drainage Basin. Precipitation was greater than normal for April-September in the Arkansas Drainage Basin, the Kansas Drainage Basin, and The Rio Grande Drainage Basin, and less than normal for April-September in the Platte Drainage Basin. For the year, precipitation in the Arkansas Drainage Basin was 14 percent greater than normal, the Kansas Drainage Basin was 26 percent greater than normal, the Platte Drainage Basin was 12 percent greater than normal, and the Rio Grande Drainage Basin was 36 percent greater than normal. Graphs of monthly precipitation for the water year and for normal monthly precipitation, at selected weather stations, are shown in figure 3. Monthly precipitation data for water year 1992 were supplemented by data obtained from the Colorado State University, Department of Atmospheric Science, Colorado Climate Center, in Fort Collins. October-March Water year 1992
April-September **National Weather** Departure Departure Departure Service division Precipifrom Precipifrom Precipifrom tation normal tation normal tation normal Arkansas Drainage Basin 5.15 1.16 11.14 0.87 16.29 2.03 Kansas Drainage Basin 6.47 13.87 1.08 20.34 4.24 3.16 1.76 Platte Drainage Basin 6.54 2.36 10.23 -.60 16.77 Rio Grande Drainage Basin 6.55 1.85 9.41 2.41 15.96 4.26 Table 1.--Precipitation during water year 1992 and departures-fromnormal precipitation (1951-80), in inches # Streamflow Monthly mean discharges during water year 1992 at selected streamflow-gaging stations are compared to long-term mean monthly discharges in figure 4. Individual graphs show the varied streamflow east of the Continental Divide during the water year. The long-term mean monthly discharges used for gaging station 06706000, North Fork South Platte River below Geneva Creek, at Grant (fig. 4, site B), do not include records prior to water year 1964 (the year that imported water from the Colorado River basin began flowing past the gaging station). The graphs for gaging stations 06701500, South Platte River below Cheesman Lake (fig. 4, site A); 06706000, North Fork South Platte River below Geneva Creek, at Grant (fig. 4, site B); and 06758500, South Platte River near Weldona (fig. 4, site C), indicate that monthly discharges for water year 1992 were not consistent with long-term mean monthly discharges. Local water-management practices, which consisted mostly of storage, release, or diversion of water as determined by daily and seasonal irrigation and municipal needs, also affected the trends in the three discharge graphs. The water year 1992 mean discharge at gaging station 06701500, South Platte River below Cheesman Lake, was 7 percent less than the long-term average. The water year 1992 mean discharge at gaging station 06706000, North Fork South Platte River below Geneva Creek, at Grant, was 26 percent greater than the long-term average. The water year 1992 mean discharge at gaging station 06758500, South Platte River near Weldona, was 34 percent less than the long-term average. The graph for gaging station 07094500, Arkansas River at Parkdale (fig. 4, site D), indicates that monthly discharges for water year 1992 were generally consistent with the long-term mean monthly discharges. The graphs for gaging station 07126300, Purgatoire River near Thatcher (fig. 4, site E), and 07133000, Arkansas River at Lamar (fig. 4, site F), indicate that monthly discharges for water year 1992 were not consistent with the long-term mean monthly discharges. The trends in the three discharge graphs were affected by local water-management practices, which consisted mostly of storage and release of water as determined by daily and seasonal irrigation and municipal needs. The water year 1992 mean discharge at gaging station 07094500, Arkansas River at Parkdale, was 15 percent less than the long-term average. The water year 1992 mean discharge at gaging station 07126300, Purgatoire River near Thatcher, was 42 percent less than the long-term average. The water year 1992 mean discharge at gaging station 07133000, Arkansas River at Lamar, was 56 percent less than the long-term average. The graph for gaging station 08217500, Rio Grande at Wagonwheel Gap (fig. 4, site G), indicates that monthly discharges for water year 1992 were generally consistent with long-term mean monthly discharges. The graph for gaging station 08251500, Rio Grande near Lobatos (fig. 4, site H), indicates that monthly discharges for water year 1992 were not consistent with the long-term mean monthly discharges. The trends in the two discharge graphs were affected by local water-management practices, which consisted mostly of storage, release, and diversion of water as determined by daily and seasonal irrigation needs. The water year 1992 mean discharge at gaging station 08217500, Rio Grande at Wagonwheel Gap, was 7 percent greater than the long-term average. The water year 1992 mean discharge at gaging station 08251500, Rio Grande near Lobatos, was 23 percent less than the long-term average. # EXPLANATION Monthly precipitation for water year 1992 Normal monthly precipitation for reference period B WEATHER STATION— Letter refers to accompanying graph and map Figure 3.--Comparison of monthly precipitation for water year 1992 to normal monthly precipitation for the reference period 1951-80. Figure 3.--(continued) # EXPLANATION Figure 4.--Comparison of monthly discharges for water year 1992 to mean monthly discharges for the reference periods indicated on the individual graphs. Figure 4.--(continued) Peak discharges during water year 1992 and for the period of record for selected gaging stations are listed in table 2. Peak discharges at gaging stations 06758500, South Platte River near Weldona, was greater than the long-term median value, but was substantially less than the record high for the station. Peak discharge at gaging station 06706000, North Fork South Platte River below Geneva Creek, at Grant, was equal to the long-term median value. The peak discharge at each of the remaining selected gaging stations was less than the long-term median value. At nine of the selected gaging stations, peak discharges were less than the 25th-percentile values. At five of the nine gaging stations, peak discharges were substantially greater than the record low peak discharges for the stations. However, at gaging station 06696000, South Platte River near Lake George, the peak discharge was the fifth lowest for the period of record; at gaging station 07124000, Arkansas River at Las Animas, the peak discharge was the fourth lowest for the period of record; and at gaging station 07094500, Arkansas River at Parkdale, the peak discharge was the second lowest for the period of record. Table 2.--Peak discharges for water year 1992 and for the period of record at selected gaging stations [mi², square miles; ft³/s, cubic feet per second] | | | | | Water y | ear 1992 | Period of | record | | |----------|---|------------------|--|---------|-------------------|-----------|----------------------|--| | _ | g station | Drainage
area | Period of record | | Peak
discharge | | Peak
discharge | Remarks on
1992 peak | | identif | ication | (mi²) | (water years) | Date | (ft³/s) | Date | (ft ³ /s) | discharge | | 06620000 | North Platte River near Northgate | 1,431 | 1904, 1915-91 | 6/1 | 1,400 | 6/11/23 | 6,720 | Less than 25th percentile | | 06696000 | South Platte River
near Lake
George | 963 | 1930-91 | 8/26 | 206 | 4/28/70 | 3,000 | Less than 25th
percentile (5th
lowest) | | 06701500 | South Platte River
below Cheesman
Lake | 1,752 | 1926-91 | 9/3 | 605 | 4/29/70 | 4,640 | Less than 25th percentile | | 06706000 | North Fork South
Platte River
below Geneva
Creek, at Grant | 127 | ¹ 1964-91 | 6/24 | 538 | 7/8/90 | 835 | Median | | 06752500 | Cache la Poudre
River near
Greeley | 1,877 | 1903, 1916-17,
1919, 1924-91 | 6/26 | 967 | 6/14/83 | 6,360 | Less than media | | 06758500 | South Platte River | 13,245 | 1953-91 | 8/26 | 4,010 | 5/8/73 | 26,800 | Greater than median | | 07094500 | near Weldona
Arkansas River at
Parkdale | 2,548 | 1946-55, 1965-91 | 6/27 | 1,840 | 6/26/83 | 6,310 | Less than 25th percentile (2d lowest) | | 07106500 | Fountain Creek at
Pueblo | 926 | 1921-22, 1924-25,
1935, 1941-65,
1971-91 | 8/24 | 2,440 | 6/17/65 | 47,000 | Less than 25th
percentile | | 07109500 | Arkansas River
near Avondale | 6,327 | 1939-51, 1965-91 | 7/14 | 3,160 | 6/18/65 | 50,000 | Less than 25th percentile (3d lowest) | | 07124000 | Arkansas River at
Las Animas | 14,417 | 1939-91 | 6/9 | 930 | 5/20/55 | 44,000 | Less than 25th
percentile (4th
lowest) | | 07126300 | Purgatoire River
near Thatcher | 1,791 | 1965-91 | 8/26 | 4,090 | 6/18/65 | 47,700 | Less than media | | 07128500 | Purgatoire River
near Las Animas | 3,318 | 1922-31, 1949-91 | 7/9 | 2,560 | 5/20/55 | 70,000 | Less than 25th percentile | | 07133000 | Arkansas River
at Lamar | 19,780 | 1913, 1915,
1919-55, 1960-91 | 7/21 | 1,790 | 6/5/21 | 130,000 | Less than media | | 08220000 | Rio Grande
near Del Norte | 1,320 | 1890-1991 | 5/21 | 3,140 | 10/5/11 | 18,000 | Less than 25th percentile | | 08240000 | Rio Grande above
mouth of Trinchera
Creek, near
Lasauses | 5,740 | 1936-62, 1964-80,
1982-91 | 4/15 | 945 | 6/21/49 | 5,470 | Less than media | | 08246500 | Conejos River near
Mogote | 282 | 1903-5, 1912-91 | 8/24 | 2,210 | 10/5/11 | 9,000 | Less than media | | 08251500 | Rio Grande near
Lobatos | 7,700 | 1900-91 | 4/15 | 1,700 | 6/8/05 | 13,200 | Less than media | ¹Period since imported water began flowing past this gaging station. # **Chemical Quality of Streamflow** To determine if substantial changes occurred during water year 1992 in the chemical quality of streamflow, an analysis was made of specific conductance, which was measured approximately monthly at gaging stations on six representative streams. Each gaging station either is the most downstream gaging station on that stream, is representative of a substantial part of the drainage area of that stream, or is the only gaging station in that drainage that had monthly specific-conductance measurements. A comparison of the range and distribution of the specific conductance for water year 1992 to long-term values for each selected gaging station is shown in figure 5. Specific conductance can be used to estimate the dissolved-solids concentration in water because specific conductance is directly proportional to the concentrations of ions in water. To determine if there were significant differences between values of specific conductance for water year 1992 and values for the period of record used for comparison, a statistical technique called
the Wilcoxon-Mann-Whitney rank sum test was used. This test is a non-parametric counterpart to the common t-test and does not require the data to have a normal distribution. The Wilcoxon-Mann-Whitney rank sum test was applied to the hypothesis that the mean specific conductance for water year 1992 was equal to the mean for the period of record. The procedure for testing the hypothesis involves computing a test statistic from the ranks of the data by using a pooled standard deviation and comparing the test statistics to a value obtained from a table of "Student's" t values (Box and others, 1978). The table value is (1 - alpha/2), where alpha (the level of significance) equals 0.05, at the appropriate degrees of freedom for the number of samples. If the absolute value of the computed test statistic (t_R) is greater than the tabular t value (t_{tab}), the hypothesis is rejected. A rejection of the hypothesis is statistical evidence that the two means are different. Results of the Wilcoxon-Mann-Whitney rank sum tests for the six gaging stations are listed in table 3. For each gaging station, the tests indicate that the mean specific conductance for water year 1992 and the mean specific conductance for the period of record are not satistically different. Table 3.--Results of Wilcoxon-Mann-Whitney rank sum tests comparing mean specific conductance of discharge for water year 1992 with mean for the period of record at selected gaging stations [Specific conductance, in microsiemens per centimeter at 25 degrees Celsius; t_R, calculated test statistic; t_{tab}, t-values from standard table; A, accepted; R, rejected] | | | Sı | pecific condu | ctance | | | Wilcoxon-Mann-Whitney rank Sum test | | | | | |--|------------------------|------------|----------------------------|------------------------|-------------|----------------------------|-------------------------------------|-----------------|------------------|-----------------|--| | _ | Wate | er year 19 | 92 | Per | iod of reco | ord | Period | | | | | | Gaging station identification | Number
of
values | Mean | Standard
devia-
tion | Number
of
values | Mean | Standard
devia-
tion | | t R
) | t _{tab} | Hypoth-
esis | | | 06741510 Big Thompson River at Loveland 06752280 Cache la Poudre River above Box Elder | 12 | 957 | 473 | 116 | 865 | 489 | 1982-991 | 0.65 | 1.98 | A | | | Creek, near Timnath 07094500 Arkansas | 6 | 1,687 | 810 | 116 | 1,249 | 729 | 1982-91 | 1.58 | 1.98 | Α | | | River at Parkdale 07128500 Purgatoire River near Las | 9 | 235 | 62 .2 | 104 | 259 | 73.0 | 1982-91 | -1.07 | 1.98 | A | | | Animas 07133000 Arkansas | 8 | 3,329 | 825 | 140 | 2,947 | 1,247 | 1982-91 | .72 | 1.98 | Α | | | River at Lamar 08217500 Rio Grande at | 12 | 3,635 | 840 | 129 | 3,319 | 1,126 | 1982-91 | 1.03 | 1.98 | Α | | | Wagonwheel Gap | 11 | 91.7 | 22.1 | 99 | 92.3 | 27.0 | 1982-91 | 02 | 1.99 | Α | | ۵ 54 Gaging station 07128500, Purgatoire River near Las Animas 4.000 2,000 5 90 8,000 O Gaging station 07094500, Arkansas River at Parkdole 300 200 500 Figure 5.--Comparison of range and distribution of specific conductance measured during water year 1992 to long-term values. # SPECIAL NETWORKS AND PROGRAMS <u>Hydrologic Bench-Mark Network</u> is a network of 57 small sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. # **EXPLANATION OF THE RECORDS** The surface-water and ground-water records published in this report are for the 1992 water year that began on October 1, 1991, and ended September 30, 1992. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for surface and ground water. The locations of the stations where the surface-water data were collected are shown in figures 1 and 2. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. ## Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Colorado, for surface-water stations where only infrequent measurements are made. # Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 06614800, which appears just to the left of the station name, includes the two-digit Part number "06" plus the six-digit downstream-order number "614800." The Part number designates the major river basin; for example, Part "06" is the Missouri River basin. # Latitude-Longitude System The identification numbers for wells, springs, and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and may have no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below. System for numbering wells, springs, and miscellaneous sites. The local well number locates a well within a 10-acre tract using the U. S. Bureau of Land Management system of land subdivision. The components of the local well number proceed from the largest to the smallest land subdivisions. This is in contrast to the legal description, which proceeds from the smallest to the largest land subdivision. The largest subdivision is the survey. Colorado is governed by three surveys: The Sixth Principal Meridian Survey (S), the New Mexico Survey (N), and the Ute Survey (U). Costilla County was not included in any of the above official surveys. This report follows the convention of the Costilla County Assessor in which the northern part of the county is governed by the Sixth Principal Meridian Survey and the southern part of the county is governed by a local system called the Costilla Survey (C). The first letter of the well location designates the survey. A survey is subdivided into four quadrants formed by the intersection of the baseline and the principal meridian. The second letter of the well location
designates the quadrant: A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. A quadrant is subdivided in the north-south direction every 6 mi by townships and is divided in the east-west direction every 6 mi by ranges. The first number of the well location designates the township and the second number designates the range. The 36-mi² area described by the township and range designation is subdivided into 1-mi² areas called sections. The sections are numbered sequentially. The third number of the well location designates the section. The section, which contains 640 acres, is subdivided into quarter sections. The 160-acre area is designated by the first letter following the section: A indicates the northeast quarter, B the northwest, C the southwest, and D the southeast. The quarter section is subdivided into quarter-quarter sections. The 40-acre area is designated in the same manner by the second letter following the section. The 10-acre area is designated in the same manner by the third letter following the section. If more than one well is located within the 10-acre tract, the wells are numbered sequentially in the order in which they were originally inventoried. If this number is necessary, it will follow the three-letter designation. # Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Location of all complete-record stations for which data are given in this report are shown in figure 1. # **Data Collection and Computation** The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals, with electronic recorders that store stage values on computer chips at selected time intervals, or with satellite data collection platforms that transmit near real-time data at selected time intervals to office computers. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stagedischarge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed. For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections. "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." # **Data Presentation** Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1992 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description and the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flow as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. # Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968,
prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.—This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that flow at it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.—Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of take contents. ## Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second during the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. If applicable, data collected at partial-record stations follow the information for continuous-record sites. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. # Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS - , BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record with the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. ## Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or
diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN .-- The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) - INSTANTANEOUS PEAK FLOW.—The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.) - INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ. the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. - INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. - ANNUAL RUNOFF.—Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area. - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS,--The discharge that is exceeded by 10 percent of the flow for the designated period. - 50 PERCENT EXCEEDS.--The discharge that is exceeded by 50 percent of the flow for the designated period. - 90 PERCENT EXCEEDS.--The discharge that is exceeded by 90 percent of the flow for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. # Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of estimated record in the REMARKS paragraph of the station description. # Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for daily values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. # Other Records Available The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that office upon request. Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Colorado District office. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. # Records of Surface-Water Quality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. "In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias." # Accuracy of the Records Accuracy of water-quality monitor records are based on: (1) The completeness of the record, (2) frequency of calibration checks, (3) the length of time and frequency that data exceed allowable error limits, (4) the magnitude of errors, and (5) confidence in the resultant shifts applied. Listed below are the limits of allowable error. * Temperature: +/- 0.3 degree C. * Specific Conductance: +/- 5 uS/cm or + 5% whichever is greater * pH: +/- 0.2 pH units Dissolved Oxygen: +/- 0.3 mg/L or + 5% whichever is greater. A record is rated excellent if the allowable error limits are never exceeded, good if limits are occasionally exceeded and shifts are no greater than two times the limit, fair if limits are regularly exceeded and shifts are no greater than three times the limit, and poor for all others. ## Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values puriched or recorded at short intervals on a paper tape, magnetic tape, computer chip, or some other medium. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1. # Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. # Onsite Measurements and Sample Collection In obtaining water-quality
data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on pages 30 and 31 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District Office whose address is given on the back of the title page of this report. # Water temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are recorded to the nearest 0.1 degree Celsius. Water temperatures measured at the time of water-discharge measurements are published in this report as supplemental water-quality for gaging stations. # Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. # Laboratory Measurements Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally, all other samples are analyzed in the Geological Survey laboratories in Arvada, CO, or Doraville, GA. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Historical and current (1992) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure. ### **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.-See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.—Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. # Remark Codes The
following remarks codes may appear with the water-quality data in this report: # PRINTED OUTPUT REMARK - E Estimated value - > Actual value is known to be greater than the value shown - < Actual value is known to be less than the value shown - K Based on non-ideal colony count - M Presence of material verified but not quantified # Records of Ground-Water Quality Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. # **Data Collection and Computation** The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years. Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings. #### **Data Presentation** The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. # ACCESS TO WATSTORE DATA The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water-data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases. - * Station Header File Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data. - * Daily Values File Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels. - * Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage- height values at surface-water - * Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water. - * Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature. In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting: U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, VA 22092 In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (see address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225. # **DEFINITION OF TERMS** Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample. Algae are mostly aquatic single-celled, colonial, or multicelled plants, containing chlorophyll and lacking roots, stems, and leaves. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface. <u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C ± 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. <u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}\text{C}$ on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria found also in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all
the organism which produce red or pink colonies with 48 hours at 35° C $\pm 1.0^{\circ}$ C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. <u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria. Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat. Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). <u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash and dry mass. Wet mass is the mass of living matter plus contained water. Bottom material: See Bed material. <u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L). <u>Cfs-day</u> is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters. <u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes. Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants. <u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. <u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. <u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at a gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. <u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water. <u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second. <u>Cubic feet per second per square mile (ft³/s)/mi²</u> is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. <u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time. Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific time. Instantaneous discharge is the discharge at a particular instant of time. Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) <u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. <u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change. <u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. <u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or body of impounded surface water together with all tributary surface streams and bodies of impounded surface water. Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage" although gage height is more appropriate when used with a reading on a gage. <u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained. <u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). <u>Hydrologic Bench-Mark Network</u> is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. <u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number. Land-surface datum (Isd) is a datum plane that is approximately at land surface at each groundwater observation well. Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult. Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. Micrograms per gram (ug/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the
downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which incudes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). Organism is any living entity. Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per unit area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. <u>Organism count/volume</u> refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. Total organism count is the total number of organisms collected and enumerated in any particular sample. <u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes. <u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses. <u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter or particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). <u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Unit Subcommittee on Sediment Terminology. The classification is as follows: | Classification | <u>Size (mm)</u> | | Method of analysis | |----------------|------------------|-------|------------------------| | Clay | 0.00024 - | 0.004 | Sedimentation | | Silt | .004 - | .062 | Sedimentation | | Sand | .062 - | 2.0 | Sedimentation or sieve | | Gravel | 2.0 - | 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis. <u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population in terms of types, numbers, mass, or volume. <u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. <u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. <u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10¹⁰ radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). <u>Plankton</u> is a community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. <u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae. <u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. <u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton is dominated by small crustaceans and rotifers. <u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method). Milligrams of carbon per area or volume per unit time mg C/(m².time) for periphyton and macrophytes and mg C/(m³.time) for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. Milligrams of oxygen per area or volume per unit time mgO/(m² time) for periphyton and macrophytes and mgO/(m³ time) for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. <u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. <u>Recoverable from bottom material</u> is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. <u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval. <u>Runoff in inches</u> (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. <u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. <u>Bed load</u> is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed. <u>Bed load discharge</u> (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time. <u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a
colloid. <u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. <u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) \times discharge (ft³/s) \times 0.0027. <u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration. <u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time. <u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge. $\frac{7\text{-day }10\text{-year low flow}}{10\text{-year low flow}}$ (7 Ω_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow). <u>Sodium-adsorption-ratio</u> (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which generally unsatisfactory for irrigation. Solute is any substance that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. <u>Stage-discharge relation</u> is the relation between gage height (stage) and the volume of water, per unit of time, flowing in a channel. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is they physical surface upon which an organism lives. <u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives. Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglas strips for periphyton. <u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers. <u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. <u>Suspended. recoverable</u> is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituents. <u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent. <u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following: Kingdom Animal Phylum Arthropoda Class Insecta Order Ephemeroptera Family Ephemeridae Genus Hexagenia Species Hexagenia limbata <u>Thermograph</u> is an instrument that continuously records variation of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. <u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year. <u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. <u>Tons per day</u> (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period. <u>Total</u> is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.) <u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. <u>Total. recoverable</u> is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses, because different digestion procedures are likely to produce different analytical results. <u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The
purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1980, is called the "1980 water year." <u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976). Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports. #### SELECTED REFERENCES The following publications are available for background information on the methods for collecting, analyzing, and evaluating the chemical and physical properties of surface waters: - American Public Health Association, and others, 1980, Standard methods for the examination of water and waste water, 13th ed: American Public Health Assoc., New York, 1134 p. - Box, George E. P., Hunter, William G., and Hunter, J. Stuart, 1978, Statistics for Experimenters: New York, John Wiley, and Sons, 653 p. - Cain, D. L., 1984, Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley of Colorado: Water-Resources Investigation Report 84-4273, 91 p. - Carter, R. W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6, 13 p. - Clarke, F. W., 1924, The composition of the river and lake waters of the United States: U.S. Geological Survey Professional Paper 135, 199 p. - Colby, B. R., 1963, Fluvial sediments—a summary of source, transportation, deposition, and measurements of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p. - Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geological Survey Water-Supply Paper 1357, 187 p. - Colby, B. R., and Hubbell, D. W., 1961, Simplified methods for computing total sediment discharge with the modified Einstein procedure: U.S. Geological Survey Water-Supply Paper 1593, 17 p. - Collins, W. D., and Howard, C. S., 1928, Quality of water of Colorado River in 1925-26: U.S. Geological Survey Water-Supply Paper 596-B, p. 33-43. - Corbett, D. M., and others, 1942, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p. - Crouch, T. M., and others, 1984, Water-Resources Appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado: Water-Resources Investigation Report 82-4114, 123p. - Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A1, open-file report 82-272, 136 p. - Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p. - Gregg, D. O., and others, 1961, Public water supplies of Colorado (1959-60): Fort Collins, Colorado State University Agricultural Experiment Station, General Service 757, 128 p. - Guy, H. P., 1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigation, Book 3, Chapter C1, 55 p. - _____1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 57 p. - Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p. - Hawley, Gessner G., 1981, The condensed chemical dictionary; Van Nostrand-Reinhold Publication Corporation, New York, 10th edition, 1135 p. - Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p. - Howard, C. W., 1955, Quality of water of the Colorado River, 1925-40: U.S. Geological Survey open-file report, 103 p. - lorns, W. V., and others, 1964, Water Resources of the Upper Colorado River basin-basic data: U.S. Geological Survey Professional Paper 442, 1,036 ρ. - 1965, Water Resources of the Upper Colorado River basin-technical report: U.S. Geological Survey Professional Paper 441, 370 p. - Lane, E. W., and others, 1947, Reports of Subcommittee on terminology: American Geophysical Union Transaction, v. 28, p. 937. - Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 ρ. - Lohman, S. W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, p. 2. - McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, 1121 p. - Meinzer, O. E., 1923, The occurrence of ground water in the United States: U.S. Geological Survey Water-Supply Paper 489, 321 p. - _____1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p. - Moran, R. E., and Wentz, D. A., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 2 of 3, 1972-73: Colorado Water Conservation Board Circular 25, 250 p. - Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p. - Ritter, J. R., and Helley, E. J., 1969, Optical method for determining particle sizes of coarse sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C3, 33 p. - Slack, K. V., and others, 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 165 p. - Spahr, N. E., Blakely, S. R., and Hammond, S. E., 1985, Selected Hydrologic Data for the South Platte River through Denver, Colorado: U. S. Geological Survey open file report 84-703, 225 p. - Stabler, Herman, 1911, Some stream waters of the Western United States: U.S. Geological Survey Water-Supply Paper 274, 188 p. - U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurements and analysis of sediment loads in streams: - Report 11, 1957, The development and calibration of visual accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., 109 p. - Report 12, 1957, Some fundamentals of particle-size analysis: Washington, D. C., U.S. Government Printing Office, 55 p. - Report AA, 1959, Federal Inter-Agency sedimentation instruments and reports: St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn., 41 p. - Report 13, 1961, The single-stage sampler for suspended sediment: Washington, D. C., U.S. Government Printing Office, 105 p. - Report 14, 1963, Determinations of fluvial sediment discharge: Washington, D. C., U.S. Government Printing Office 151 p. The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Colorado have been discontinued or converted to partial-record stations. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. ## Discontinued surface-water discharge or stage-only stations | Station name | Station | Drainage
area | Period of record | |---|----------------------|------------------|----------------------| | States Hamb | number | (sq mi) | (calendaryears) | | Colorado Creek near Spicer, CO | 06611000 | 25.8 | 1950-55 | | Grizzly Creek near Spicer, CO | 06611100 | 118 | 1976-80 | | Buffalo Creek near Hebron, CO | 06611200 | 56.3 | 1976-80 | | Grizzly Creek near Hebron, CO | 06611300 | 223 | 1976-80 | | Grizzly Creek near Walden, CO | 06611500 | 258 | 1904-05, | | | | | 1923,
1926-47 | | Little Grizzly Creek near Coalmont, CO | 06611700 | 10.1 | 1967-73 | | Little Grizzly Creek above Coalmont, CO | 06611800 | 35.4 | 1976-80 | | Little Grizzly Creek above Hebron, CO | 06611900 | 52.2 | 1976-80 | | Little Grizzly Creek near Hebron, CO | 06612000 | 98.6 | 1904-05, | | Paging Early near Wolden CO | 06642500 | 79.1 | 1931-45
1904-05, | | Roaring Fork near Walden, CO | 06612500 | 75.1 | 1923-47 | | North Platte River near Walden, CO | 06613000 | 469 | 1904-05, | | | | | 1923-47 | | North Fork North Platte River near Walden, CO | 06614000 | 160 | 1923-28, | | Courte Fords Michigan Disservance Could CO | 00015000 | 44.4 | 1936-45 | | South Fork Michigan River near Gould, CO
Michigan River near Lindland, CO | 06615000
06615500 | 11.4
60.9 | 1950-58
1931-41 | | North Fork Michigan River near Gould, CO | 06616000 | 20.5 | 1950-82 | | Michigan River at Walden, CO | 06617100 | 182 | 1904-05, | | | | | 1923-47 | | Illinois Creek near Rand, CO | 06617500 | 70.6 | 1931-40 | | Willow Creek near Rand, CO | 06618000 | 55.9 |
1931-40 | | Illinois Creek at Walden, CO
Michigan River near Cowdrey, CO | 06618500
06619000 | 259
478 | 1923-47
1904-05, | | wildingan river near cowdrey, co | 00019000 | 470 | 1937-47 | | Canadian River near Lindland, CO | 06619400 | 44.0 | 1978-83 | | Bush Draw near Walden, CO | 06619415 | 4.10 | 1980-83 | | Williams Draw near Walden, CO | 06619420 | 3.95 | 1979-83 | | Canadian River near Brownlee, CO | 06619450 | 158 | 1978-83 | | Canadian River at Cowdrey, CO | 06619500 | 181 | 1904-05,
1929-31, | | | | | 1937-47 | | Laramie River near Glendevey, CO | 06657500 | 101 | 1904-05, | | • | _ | | 1910-82 | | Middle Fork South Platte River above Fairplay, CO | 06693980 | 62.2 | 1978-80 | | Middle Fork South Platte River near Hartsel, CO | 06694100
06694400 | 250
50.3 | 1978-80
1978-80 | | South Fork South Platte River above Fairplay, CO Fourmile Creek near Fairplay, CO | 06694700 | 12.0 | 1978-80 | | South Platte River at Lake George, CO | 06696200 | 1,084 | 1910-11, | | | | • | 1929 | | Tarryall Creek at Upper Station near Como, CO | 06696980 | 23.7 | 1978-86 | | French Creek near Jefferson, CO | 06697200 | 4.63 | 1986-90 | | Michigan Creek above Jefferson, CO | 06697450
06698000 | 23.1
11.8 | 1978-86
1910-12, | | Jefferson Creek near Jefferson, CO | 06696000 | 11.0 | 1978-86 | | Tarryall Creek near Jefferson, CO | 06698500 | 183 | 1910-11, | | Tanyan orden nodi donorodn, od | , | | 1912-17 | | - . • | | 4 | 1977-81 | | Rock Creek near Jefferson, CO | 06699000 | 45.5 | 1986-90
1910-12, | | Tarryall Creek near Lake George, CO | 06699500 | 236 | 1916, | | | | | 1925-55 | | South Platte River above Cheesman Lake, CO | 06700000 | 1,628 | 1899-1901, | | | | · | 1924-43 | | Goose Creek above Cheesman Lake, CO | 06700500 | 86.6 | 1899,
1924-82 | | South Platte River above North Fork at South Platte, CO | 06702000 | 2,098 | 1905-12 | | North Fork South Platte River at Grant, CO | 06702500 | 49.0 | 1910-17 | | Geneva Creek at Grant, CO | 06705500 | 77.5 | 1908-18 | | North Fork South Platte River at Pine, CO | 06706500 | 374 | 1942-46 | | North Fork South Platte River at South Platte, CO | 06707000 | 479 | 1909-10, | | Operate Diama Discourse Operate Diama CO | 00707500 | 0.570 | 1913-82 | | South Platte River at South Platte, CO | 06707500 | 2,579 | 1887-92,
1895-97, | | | | | 1898-1982 | | South Platte River at Waterton, CO | 06708000 | 2,621 | 1926-80 | | East Plum Creek at Castle Rock, CO | 06708750 | 102 | 1985-89 | | Plum Creek near Louviers, CO | 06709500 | 302 | 1947-90 | ## WATER RESOURCES DATA - COLORADO, 1992 ## DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station name | Station
number | Drainage
area
(sq mi) | Period of record (calendar years) | |--|----------------------|-----------------------------|-----------------------------------| | South Platte River at Littleton, CO | 06710000 | 3,069 | 1941-86 | | Turkey Creek above Bear Creek Lake, near Morrison, CO | 06710000 | 50.6 | 1986-89 | | South Platte River at Florida Avenue, at Denver, CO | 06711590 | 30.0
 | 1981-82 | | Cherry Creek near Melvin, CO | 06712500 | 360 | 1939-69 | | South Platte River at 50th Avenue at Denver, CO | 06714130 | 3,810 | 1980-81 | | West Fork Clear Creek above Empire, CO | 06715500 | 40.5 | 1942-46 | | West Fork Clear Creek near Empire, CO
Clear Creek near Lawson, CO | 06716000
06716500 | 58.2
147 | 1929-31
1946-86 | | Clear Creek below Idaho Springs, CO | 06718000 | 259 | 1951-55 | | North Clear Creek near Blackhawk, CO | 06718500 | 52.2 | 1951-55 | | Clear Creek at Forks Creek, CO | 06719000 | 339 | 1899-1912 | | Clear Creek near Golden, CO | 06719500 | 399 | 1908-09,
1911-74 | | Clear Creek at Tabor Street, at Lakewood, CO | 06719526 | 427 | 1981-83 | | Ralston Creek near Plainview, CO | 06719725 | 36.9 | 1983-84
1983-84 | | Schwartzwalder Mine Effluent near Plainview, CO Ralston Creek below Schwartzwalder Mine near Plainview, CO | 06719730
06719735 | 38.9 | 1983-84 | | Raiston Creek above Raiston Reservoir near Golden, CO | 06719740 | 42.7 | 1983-84 | | Clear Creek at Mouth Near Derby, CO | 06720000 | 575 | 1914, | | Grange Hall Creek at Grant Park at Northglenn, CO | 06720330 | | 1927-82
1978-79 | | Grange Hall Creek at Northglenn, CO | 06720415 | 3.08 | 1978-81 | | Grange Hall Creek below Northglenn, CO | 06720417 | | 1981-82 | | Woman Creek near Plainview, ČO | 06720690 | | 1973-74 | | South Platte River at Fort Lupton, CO | 06721000 | 5,010 | 1906,
1929-57 | | North Saint Vrain Creek at Longmont Dam near Lyons, CO | 06722000 | 106 | 1925-53 | | South Saint Vrain Creek near Ward, CO | 06722500 | 14.4 | 1925-27, | | | | | 1928-31
1954-73 | | Middle Saint Vrain Creek near Raymond, CO | 06722900 | 16.8 | 1956-58 | | Middle Saint Vrain Creek near Allens Park, CO | 06723000 | 28.0 | 1925-30, a | | South Saint Vrain Creek above Lyons, CO | 06723400 | 81.4 | 1971-80 | | Lefthand Creek near Boulder, CO | 06724500 | 52.0 | 1929-31, | | | | | 1947-53,
1976-80 | | Lefthand Creek at Mouth at Longmont, CO | 06725000 | 72.0 | 1927-42, | | g , | | | 1953-55, | | Saint Varia Carabaran Lagranat CO | 00705100 | 270 | 1976-79 | | Saint Vrain Creek near Longmont, CO
North Boulder Creek at Silver Lake, CO | 06725100
06726000 | 370
8.70 | 1964-68
1913-32 | | North Boulder Creek near Nederland, CO | 06726500 | 30.4 | 1929-31 | | South Boulder Creek near Rollinsville, CO | 06729000 | 42.7 | 1910-18, | | 0 4 5 4 4 0 4 4 5 1 7 1 7 00 | 2272222 | 70.7 | 1945-49 | | South Boulder Creek at Pinecliff, CO
Coal Creek near Plainview, CO | 06729300
06730300 | 72.7
15.1 | 1979-80
1959-82 | | Boulder Creek at Mouth near Longmont, CO | 06730500 | 439 | 1927-49, | | boulder order at Model floar Longinorit, 00 | 00700000 | 400 | 1951-55 | | | | | 1978-90 | | Boulder Brook near Estes Park, CO | 06731800 | 3.83 | 1968-70 | | Glacier Creek near Estes Park, CO | 06732000 | 20.8 | 1941-57, | | Beaver Brook near Estes Park, CO | 06732300 | 1.49 | 1968-70
1968-70 | | Fall River at Estes Park, CO | 06732500 | 39.8 | 1945-53, a | | Big Thompson River at Estes Park, CO | 06733000 | 137 | 1946-86 | | Fish Creek near Estes Park, CO | 06734500 | 15.8 | 1947-55 | | North Fork Big Thompson River at Drake, CO | 06736000 | 85.1 | 1947-55 | | Big Thompson River below Power House near Drake, CO | 06736500 | 278 | 1917-55
1950-52 | | Dry Creek near Pinewood, CO
Cottonwood Creek near Pinewood, CO | 06740000
06741000 | 7.11
14.7 | 1947-53 | | Big Thompson River near Loveland, CO | 06741500 | 505 | 1947-55 | | Little Thompson River near Berthoud, CO | 06742000 | 100 | 1929-30, | | Little Thompson River at Milliken, CO | 06743500 | 199 | 1947-61
1951-55 | | Big Thompson River at Mouth near La Salle, CO | 06744000 | 830 | 1914-15, | | | 06745000 | 89.7 | 1927-82
1929-31 | | Cache La Poudre River above Chambers Lake Outlet, CO
Joe Wright Creek near Cameron Pass, CO | 06745000
06746100 | 89.7
5.05 | 1929-31
1974-78 | | Cache La Poudre River near Rustic, CO | 06747500 | 198 | 1956-68 | | Cache La Poudre River near Log Cabin, CO | 06748000 | 234 | 1909-11, | | | | | 1929-31 | | Fell Occupio de Dordio DO | 00740000 | 0.50 | | | Fall Creek near Rustic, CO
South Fork Cache La Poudre near Eggers, CO | 06748200
06748500 | 3.59
70.6 | 1960-73
1929-31 | ## WATER RESOURCES DATA - COLORADO, 1992 ## DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station name | Station
number | Drainage
area
(sq mi) | Period of record (calendaryears) | |--|---|-----------------------------|----------------------------------| | Little Beaver Creek near Rustic. CO | 06748530 | 12.3 | 1960-73 | | South Fork Cache La Poudre River near Rustic, CO | 06748600 | 92.4 | 1956-79 | | Cache La Poudre River below Elkhorn, CO | 06749000 | 409 | 1946-59 | | North Fork Cache La Poudre River near Livermore, CO | 06751500 | 567 | 1947-65 | | Lonetree Creek near Nunn, CO
Crow Creek near Barnsville, CO | 06753500 | 199 | 1951-57
1951-57 | | South Platte River at Masters, CO | 06756500
06756995 | 1,324
12,175 | 1976-88 | | South Platte River at Sublette, CO | 06757000 | 12,170 | 1926-42, | | | | · | 1943-55 | | Kiowa Creek at K-79 Reservoir near Eastonville, CO | 06757600 | 3.20 | 1955-6 5 | | Kiowa Creek at Elbert, CO
West Kiowa Creek at Elbert, CO | 06758000
06758100 | 28.6
35.9 | 1955-65
1962-65 | | Kiowa Creek at Kiowa, CO | 06758200 | 111 | 1955-65 | | Kiowa Creek at Bennett, CO | 06758300 | 236 | 1960-65 | | Bijou Creek near Wiggins, CO | 06759000 | 1,314 | 1950-56 | | Bijou Creek near Fort Morgan, CO | 06759100 | 1,500 | 1976-87 | | South Platte River at Fort Morgan, CO | 06759500 | 14,810
16,852 | 1943-58
1916-80 | | South Platte River at Balzac, CO
South Platte River near Crook, CO | 06760000
06760500 | 19,238 | 1953-58 | | North Fork Republican River near Wray, CO | 06822000 | 1,019 | 1937-46, | | | *************************************** | ., | 1951-57, | | | | | 1962-64 | | South Fork Republican River near Idalia, CO | 06825000 | 1,300 | 1950-71,
1972-81 | | andsman Creek near Hale, CO | 06825500 | 268 | 1950-76. | | | | | 1977-81 | | South Fork Republican River near Hale, CO | 06826500 | 1,825 | 1946-48, | | East Fork Arkansas River near Leadville, CO | 07079500 | 50.0 | 1951-86
1890-1903, | | Last Fort Finalities Filter Hour Loudvino, 50 | 07070000 | 00.0 | 1910-24 | | ennessee Creek near Leadville, CO | 07081000 | 48.0 | 1890-1903, | | urkanasa Biyas anan Londvilla, CO | 07001000 | 07.2 | 1910-1924 | | Arkansas River near Leadville, CO
.ake Fork above Sugar Loaf Reservoir, CO | 07081200
07082000 | 97.2
23.9 |
1967-83
1946-67 | | Halfmoon Creek near Leadville, CO | 07083500 | 25.2 | 1911-14 | | Arkansas River near Malta, CO | 07083700 | 228 | 1964-67, | | Same word Organishalaw Hat Organia are as Duran Vieta CO | 0700000 | 65.0 | 1976-84 | | Cottonwood Creek below Hot Springs near Buena Vista, CO | 07089000 | 65.0 | 1910-23,
1949-86 | | Chalk Creek Upper Station near Saint Elmo, CO | 07090000 | 48.0 | 1913-19 | | Chalk Creek near Saint Elmo, CO | 07090500 | 83.0 | 1910-16 | | Chalk Creek near Nathrop, CO | 07091000 | 97.0 | 1910, | | Arkansas River at Salida. CO | 07001500 | 1 210 | 1949-56, a
1895-97, | | river at Saliua, CO | 07091500 | 1,218 | 1901-03. | | | | | 1909-80 | | South Arkansas River at Poncha, CO | 07092000 | 140 | 1910-18 | | Poncha Creek at Poncha, CO | 07093000 | 56.0 | 1910-18 | | South Arkansas River near Salida, CO | 07093500 | 208 | 1922-23, | | South Colony Creek nr Westcliffe, CO | 07094600 | 6.03 | 1929-40
1974-78 | | Middle Taylor Creek near Westcliffe, CO | 07094900 | 3.19 | 1974-78, | | • | | | 1984-85 | | Beaver Creek near Portland, CO | 07099100 | 214 | 1971-81 | | Arkansas River near Portland, CO | 07099200 | 4,280 | 1964-79
1978-89 | | urkey Creek near Fountain, CO
ittle Turkey Creek near Fountain, CO | 07099215
07099220 | 13.0
9.59 | 1978-88 | | urkey Creek above Teller Reservoir near Stone City, CO | 07099230 | 62.3 | 1978-88 | | Turkey Creek near Stone City, CO | 07099235 | 71.5 | 1978- 8 3, | | Advences Diversion Buchle CO | 07000500 | 4 606 | 1987 | | Arkansas River near Pueblo, CO | 07099500 | 4,686 | 1885-87,
1889, | | | | | 1894-1975 | | Monument Creek at Palmer Lake, CO | 07103747 | 25.9 | 1977-90 | | Monument Creek at Monument, CO | 07103750 | 28.5 | 1976-77 | | Vest Monument Creek near Pikeview, CO | 07103900 | 15.4 | 1957-70 | | Kettle Creek near Black Forest, CO | 07103950 | 9.01
8.73 | 1976-86
1951-81 | | empleton Gap Floodway at Colorado Springs, CO
B Ditch Drain near Security, CO | 07104500
07105780 | 8.73 | 1981-88 | | Clover Ditch near Widefield, CO | 07105820 | | 1981-88 | | ittle Fountain Creek above Keaton Reservoir near | 07105920 | 11.0 | 1978-88 | | Fort Carson, CO | 07405000 | 44.0 | 4070.00 | | ittle Fountain Creek near Fort Carson, CO | 07105928 | 11.8
26. 9 | 1978-89
1978-88 | | ittle Fountain Creek near Fountain, CO | 07105940 | 20.3 | 19/0-00 | | | | | | ## DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station name | Station
number | Drainage
area
(sq mi) | Period of record (calendar years) | |--|---|-----------------------------|-----------------------------------| | Rock Creek above Fort Carson Reservation, CO
Rock Creek near Fountain, CO | 07105945
07105960 | 6. 79
16.9 | 1978-84
1978-88 | | Saint Charles River at San Isabel, CO | 07107000 | 16.0 | 1936-41 | | Greenhorn Creek near Rye, CO
Greenhorn Creek near Colorado City, CO | 07107900
07108050 | 9.56
29.6 | 1974-79
1974-79 | | Saint Charles River near Pueblo, CO | 07108500 | 467 | 1941-53, | | Saint Charles River near Vineland, CO | 07108800 | 473 | 1955
1968-74 | | Saint Charles River at Mouth near Pueblo, CO | 07109000 | 475 | 1922-25 | | Sixmile Creek near Avondale, CO | 07110000 | 45.0 | 1922-24,
1941-46 | | Chico Creek near North Avondale, CO | 07110500 | 864 | 1941-46 | | Huerfano River at Manzanares Crossing near Redwing, CO | 07111000 | 73.0 | 1923-82 | | Huerfano River at Malachite, CO | 07111500
07112000 | 107
499 | 1923-25
1941-46 | | Huerfano River near Badito, CO
Huerfano River at Badito, CO | 07112500 | 532 | 1912, | | | *************************************** | | 1923-25, | | | | | 1938-41, | | Huerfano River at Huerfano, CO | 07113000 | 717 | 1946-54
1923-28 | | Huerfano River near Mustang, CO | 07113500 | 803 | 1942-47 | | Cucharas River at Boyd Ranch near La Veta, CO | 07114000 | 56.0 | 1934-82 | | Cucharas River near La Veta, CO
Huerfano River below Huerfano Valley Dam nr Undercliffe, CO | 07114500
07116000 | 75.0
1,673 | 1923-34
1939-67 | | Arkansas River at Nepesta, CO | 07117500 | 9,460 | 1898-1902, | | • | | | 1904-06, | | Chicosa Creek near Fowler, CO | 07117600 | 109 | 1936
1968-74 | | Apishapa River near Aguilar, CO | 07118000 | 126 | 1939-50 | | Apishapa River at Aguilar, CO | 07118500 | 149 | 1938-39, | | Apishapa River near White Rock, CO | 07119000 | 737 | 1978-81
1942-47 | | Big Arroyo near Thatcher, CO | 07120620 | 15.5 | 1983-90 a | | Timpas Creek near Rocky Ford, CO | 07121000 | 451 | 1922-27, | | Fort Lyon Canal near Hasty, CO | 07122200 | | 1940-50
1968-75 | | Crooked Arroyo near La Junta, CO | 07122500 | | 1922-25 | | Horse Creek near Sugar City, CO | 07123500 | 1,080 | 1940-47 | | Middle Fork Purgatoire River at Stonewall, CO Molino Canyon near Weston, CO | 07124050
07124100 | 57.1
4.23 | 1978-81
1978-81 | | Sarcillo Canyon near Segundo, CO | 07124120 | 35.3 | 1978-81 | | Mulligan Canyon near Boncarbo, CO | 07124210 | 4.53 | 1978-81 | | Reilly Canyon at Cokedale, CO Long Canyon Creek near Madrid, CO | 07124220
07124300 | 35.1
100 | 1978-81
1972-89 | | Carpios Canyon near Jansen, CO | 07124350 | 4.57 | 1978-81 | | Purgatoire River at Trinidad, CO | 07124500 | 795 | 1895-99,
1905-12, | | | | | 1915-60, | | | | | 1961-82 | | Purgatoire River near Hoehne, CO | 07125000 | 857
80.0 | 1954-68
1957-68 | | Frijole Creek near Alfalfa, CO
San Francisco Creek near Alfalfa, CO | 07125100
07125500 | 160 | 1954-68 | | Purgatoire River near Alfalfa, CO | 07126000 | 1,320 | 1905-07, | | | | | 1924-28,
1951-68 | | Van Bremer Arroyo near Thatcher, CO | 07126130 | 80.6 | 1983-85 | | Burke Arroyo Tributary near Thatcher, CO | 07126320 | 4.66 | 1983-87 | | Red Rock Canyon Creek at Mouth, near Thatcher, CO Bent Canyon Creek at Mouth near Timpas, CO | 07126415
07126480 | 48.8
56.2 | 1983-90 a
1983-90 a | | Purgatoire River at Highland Dam near Las Animas, CO | 07128000 | 3,376 | 1898, | | Pula Occali a ser Ocalda a OO | 07400500 | 405 | 1931-55 | | Rule Creek near Caddoa, CO
Caddoa Creek at Caddoa, CO | 07129500
07131000 | 435
131 | 1941-46
1941-46 | | Willow Creek near Lamar, CO | 07133050 | 42.0 | 1974-77 | | Big Sandy Creek above Amity Canal near Korman, CO | 07134000 | 3,396
3,307 | 1941-46 | | Big Sandy Creek near Lamar, CO
Two Butte Creek near Holly, CO | 07134100
07135000 | 3,307
817 | 1968-82
1942-46 | | Arkansas River at Holly, CO | 07135500 | 25,073 | 1894, | | • | | | 1901-02, | | Wild Horse Creek at Holly, CO | 07136000 | 270 | 1907-53
1922-35, | | • | | -, - | 1938-50 | | Holly Drain near Holly, CO | 07136500 |
7 | 1924-50 | | Willow Creek at Creede, CO | 08216500 | 51.7 | 1951-82 | # WATER RESOURCES DATA - COLORADO, 1992 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station name | Station
number | Drainage
area
(sq mi) | Period of record (calendaryears) | |---|----------------------|-----------------------------|----------------------------------| | Rio Grande at Wason below Creede, CO | 08217000 | 705 | 1907-54 | | Goose Creek near Wagonwheel Gap, CO | 08218000 | 53.6 | 1924-26,
1939-52 | | Pinos Creek near Del Norte, CO | 08220500 | 53.0 | 1919-24,
1936-82 | | San Francisco Creek at upper station near Del Norte, CO | 08220900 | 11.8 | 1967-69 | | Rio Grande near Monte Vista, CO
Rio Grande at Alamosa. CO | 08221500
08223000 | 1,590
1.710 | 1926-80
1912-80 | | Rock Creek near Monte Vista, CO | 08223500 | 32.9 | 1935-55. | | Trook order man works vista, oo | 00020000 | 02.0 | 1966-70 | | San Luis Creek near Poncha Pass, CO | 08224110 | 6.57 | 1979-85 | | San Luis Creek above Villa Grove, CO | 08224113 | 11.2 | 1979-85 | | Raspberry Creek near Villa Grove, CO | 08224200 | 1.78 | 1967-70 | | Kerber Creek at Ashley Ranch near Villa Grove, CO | 08224500 | 38.0 | 1923-26,
1936-82 | | Noland Gulch Tributary Reservoir Inflow, near Villa Grove, CO | 08226600 | 0.08 | 1979-89 | | Cotton Creek near Mineral Hot Springs, CO | 08226700 | 13.6 | 1967-70 | | Saguache Creek near Saguache, CO | 08227000 | 595 | 1910-12, | | | | 0.47 | 1914-82 | | Anaconda Reservoir near Villa Grove, CO | 08227300 | 0.17
0.05 | 1979-85
1979-89 | | Tracy Pit Reservoir Inflow near Saguache, CO
North Crestone Creek near Crestone, CO | 08227400
08227500 | 10.7 | 1936-82 | | Cottonwood Creek near Crestone, CO | 08229500 | 6.77 | 1936. | | | | | 1967-70 | | Carnero Creek near La Garita, CO | 08230500 | 117 | 1919-82 | | La Garita Creek near La Garita, CO | 08231000 | 61.0 | 1919-82 | | Mosca Creek near Mosca, CO
Alamosa Creek above Terrace Reservoir, CO | 08234200
08236000 | 3.67
107 | 1967-70
1911-12. | | Alditiosa Creek above Terrace neservoir, CO | 00236000 | 107 | 1914-27 | | | | | 1934-82 | | Alamosa Creek below Terrace Reservoir, CO | 08236500 | 116 | 1909-55 | | La Jara Creek at Gallegos Ranch near Capulin, CO | 08238000 | 98.0 | 1916-17, | | | | | 1919-23
1936-82 | | Yellow Warbler Reservoir Inflow near Antonito, CO | 08238350 | 0.18 | 1979-89 | | Turkey Reservoir Inflow near Conejos, CO | 08238380 | 0.13 | 1979-89 | | Bobolink Reservoir near Conejos, CO | 08238400 | 0.23 | 1979-89 | | Trinchera Creek above Turners Ranch near Ft Garland, CO | 08240500 | 45.0 | 1923-82 | | Trinchera Creek above Mountain Home Reservoir nr Ft Garland,CO | 08241000 | 61.0 | 1923-55 | | Sangre De Cristo Creek near Ft Garland, CO | 08241500 | 190 | 1916,
1923-30. | | | | | 1931-82 | | Ute Creek near Ft Garland, CO | 08242500 | 32.0 | 1916, | | | | | 1923-82 | | Trinchera Creek below Smith Reservoir near Blanca, CO | 08243500 | 396 | 1928-82 | | Conejos River at Platoro, CO |
08245500
08246000 | 44.4
211 | 1936-53
1943-47 | | Conejos River at Counsellors Cabin near Mogote, CO
San Antonio River at mouth near Manassa, CO | 08246000 | 348 | 1943-47 | | Culebra Creek near Chama, CO | 08249400 | 72.4 | 1967-70 | | Culebra Creek at San Luis, CO | 08250000 | 220 | 1927-82 | | Culebra Creek below San Luis, CO | 08250500 | 255 | 1938-55 | | Rio Grande at CO-NM State Line | 08252000 | | 1953-82 | a-Converted to a crest-stage partial-record station. ## **DISCONTINUED SURFACE-WATER-QUALITY STATIONS** The following stations were discontinued as continuous-record surface-water-quality stations prior to the 1989 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station. ## Discontinued continuous-record surface-water-quality stations | Station name | Station | Drainage
area | Type of | Period of record | |--|----------------------|------------------|---------------------------------|--------------------| | Station name | number | (sq mi) | record | (water years) | | Canadian River near Lindland, CO | 06619400 | 44.0 | Temp., S.C., Sed. | 1978-83 | | Canadian River near Brownlee, CO | 06619450 | 158 | Temp., S.C., Sed. | 1978-83 | | South Platte River at Littleton, CO | 06710000 | 3,069 | Temp. | 1970-86 | | · | | • | S.C. | 1984-86 | | South Platte River at 64th Ave.
at Commerce City, CO | 06714215 | 3,884 | Temp., pH., D.O. | 1987 | | Ralston Creek near Plainview, CO | 06719725 | 36.9 | Temp., S.C., pH., D.O. | 1983-84 | | Schwartzwalder Mine Effluent near
Plainview, CO | 06719730 | | Temp., S.C., pH., D.O. | 1983-84 | | Raiston Creek below Schwartzwalder Mine, CO | 06719735 | 38.9 | Temp., S.C., pH., D.O. | 1983-84 | | Ralston Creek above Ralston Res. nr | 06719740 | 42.7 | Temp., S.C., pH., D.O. | 1983-84 | | Plainview, CO | 06752500 | 1 077 | Tomo SC all DO | 1075 | | Cache La Poudre River near Greeley, CO
South Platte River near Kersey, CO | 06752500
06754000 | 1,877
8,598 | Temp., S.C., pH., D.O.
Temp. | 1975
1950-53 | | Kiowa Creek at Elbert, CO | 06758000 | 28.6 | Sed. | 1957-68, | | Nowa Oreek at Libert, OO | 00738000 | 20.0 | Seu. | 1960-62, | | | | | | 1964-65 | | West Kiowa Creek at Elbert, CO | 06758100 | 35.9 | Sed. | 1962-65 | | Kiowa Creek at Kiowa, CO | 06758200 | 111 | Sed. | 1956-65 | | South Platte River at Julesburg, CO) | 06763990 | 111 | Temp. | 1967-73 | | (Chan. 2) | 00703990 | | S.C. | 1971-73 | | North Fork Républican River near | 06822000 | 1,019 | Temp., Sed. | 1962-63 | | Wray, CO
Halfmoon Creek near Malta, CO | 07083000 | 23.6 | Tomo | 1967-82 | | Fountain Creek near Pinon. CO | | | Temp.
Temp., S.C. | 1976-79 | | Apishapa River at Aguilar, CO | 07106300
07118500 | 849
149 | Sed. | 1979-81 | | Apishapa River near Fowler, CO | 07119500 | 1,125 | Temp., S.C. | 1966-68 | | Big Arroyo near Thatcher, CO | 07120620 | 15.5 | Temp., S.C., Sed. | 1983-90 a | | Arkansas River near La Junta, CO | 07122000 | 13.5 | Temp., S.C. | 1966-68 | | Middle Fork Purgatoire River at | 07124050 | 52.1 | Temp., S.C. | 1978-81 | | Stonewall, CO | 07124030 | 32.1 | Sed. | 1979-81 | | Molino Canyon near Weston, CO | 07124100 | 4.23 | Sed. | 1979-81 | | Sarcillo Canyon near Segundo, CO | 07124120 | 35.3 | Sed. | 1980-81 | | Purgatoire River at Madrid, CO | 07124200 | 550 | Temp., S.C. | 1979-81 | | r digatolie rilver at Madrid, 00 | 07124200 | 330 | Sed. | 1978-81 | | Mulligan Canyon near Boncarbo, CO | 07124210 | 4.53 | Sed. | 1979-81 | | Reilly Canyon at Cokedale, CO | 07124220 | 35.1 | Sed. | 1979-81 | | Carpios Canyon near Jansen, CO | 07124350 | 100 | Sed. | 1979-81 | | Purgatoire River below Trinidad Lake, CO | 07124410 | 672 | Sed. | 1977-82 | | Luning Arroyo Tributary near Model, CO | 07126110 | | Temp., S.C. | 1984 | | Van Bremer Arroyo near Thatcher, CO | 07126130 | 80.6 | Temp., S.C. | 1985 | | Burke Arroyo Tributary near Thatcher, CO | 07126320 | 4.66 | Temp., S.C. | 1983-86 | | being mountain material, oc | 07120020 | 4.00 | Sed. | 1984-86 | | Red Rock Canyon Creek at Mouth, near
Thatcher, CO | 07126415 | 41.4 | Temp., S.C. | 1983-90 a | | Bent Canyon Creek at Mouth near
Timpas, CO | 07126480 | 56.2 | Temp., S.C. | 1983-90 a | | Purgatoire River at Highland Dam near | 07128000 | 3,376 | S.C. | 1967-68 | | Las Animas, CO | 09216500 | 25.2 | Tomp S.C | 1976-77 | | Willow Creek at Creede, CO | 08216500 | 35.3
790 | Temp., S.C. | | | Rio Grande at Wagonwheel Gap, CO | 08217500 | 780
6 5 7 | Temp., S.C. | 1976-77 | | San Luis Creek near Poncha Pass, CO | 08224110 | 6.57 | Sed. | 1981-83 | | San Luis Creek above Villa Grove, CO | 08224113 | 11.2 | Sed. | 1981-83
1964-66 | | Rio Grande above Culebra Creek near Lobatos, CO | 08249200 | | Temp.
S.C. | 1964-66
1946-66 | Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment). a Converted to a crest-stage partial-record station. The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." - 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. - 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS—TWRI Book 2, Chapter D1. 1974. 116 pages. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages. - 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. McCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages. - 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 150 pages. - 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chaptr F1. 1989. 97 pages. - 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS—TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages. - 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages. - 3-A11. *Measurement of discharge by moving-boat method,* by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages. - 3-A12. Flluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages. - 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS-TWRI Book 3, Chapter A13, 1983, 53 pages. - 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages. 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathburn, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages. - 3-A19. Levels of streamflow gaging
stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 27 pages. - 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by Eliezer J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 90 pages. - 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1, 1970, 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield; USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. - 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages. - 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. - 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages. - 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS—TWRI Book 4, Chapter D1. 1970. 17 pages. - 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989, 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages. - 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 pages. - 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages. - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. - 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages. - 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2, 1968, 15 pages. #### 06614800 MICHIGAN RIVER NEAR CAMERON PASS, CO LOCATION.--Lat 40°29'46", long 105°51'52", in S¹/2 sec.12, T.6 N., R.76 W. (unsurveyed), Jackson County, Hydrologic Unit 10180001, on right bank 500 ft upstream from Michigan ditch, 2.2 mi southeast of Cameron Pass, 8 mi east of Gould, and 27 mi southeast of Walden. DRAINAGE AREA. -- 1.53 mi2. PERIOD OF RECORD. -- October 1973 to current year. GAGE.--Water-stage recorder. Elevation of gage is 10,390 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 25 to Nov. 8, Nov. 11 to Apr. 20, and July 25 to Sept. 10. Records fair, except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBIC | FEET PE | | WATER Y | YEAR OCTOBE | R 1991 1 | O SEPTEM | BER 1992 | | | |---|------------------------------------|---|-----------------------------------|--|-----------------------------------|---------------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .68
.63
.57
.57 | .37
.36
.35
.35 | .31
.31
.31
.31 | .25
.25
.25
.25
.25 | .23
.23
.23
.23 | .26
.27
.29
.30 | .33
.33
.33
.33 | 1.8
1.8
1.9
2.1
2.3 | 4.9
5.3
6.7
8.1
8.0 | 9.1
7.9
6.2
5.9
6.0 | 3.0
3.0
2.9
2.9
2.9 | 1.3
1.5
2.0
1.6
1.3 | | 6
7
8
9
10 | .53
.51
.50
.48 | .34
.33
.32
.23
.30 | .30
.30
.30
.30 | . 24
. 24
. 24
. 23
. 23 | .23
.23
.23
.23
.23 | .30
.30
.30
.30 | .33
.33
.35
.36 | 2.7
3.1
3.2
3.2
2.9 | 8.1
8.6
9.3 | 6.3
7.2
7.6
6.3
5.5 | 2.8
2.9
2.8
2.7
2.6 | 1.3
1.2
1.1
1.0
.93 | | 11
12
13
14
15 | .47
.46
.45
.44
.43 | .32
.34
.35
.35 | .29
.29
.29
.29 | .23
.22
.22
.22
.22 | .23
.24
.24
.24 | .30
.30
.30
.30 | .39
.41
.41
.41 | 2.8
3.0
3.1
3.5
4.2 | 11
13
15
16
15 | 5.6
6.6
5.7
4.9
4.6 | 2.5
2.4
2.3
2.2
2.1 | .90
.89
.86
.85 | | 16
17
18
19
20 | .43
.42
.41
.40 | .35
.35
.34
.34 | .28
.28
.28
.28 | . 22
. 22
. 22
. 22
. 22 | .24
.25
.25
.25
.25 | .30
.30
.30
.30 | .44
.45
.45
.45
.46 | 5.8
7.2
8.4
10 | 9.4
9.6
11
14 | 4.2
4.1
3.7
3.6
3.8 | 2.0
1.9
1.9
1.7
1.6 | .84
1.5
1.3
1.3 | | 21
22
23
24
25 | .40
.40
.40
.39 | .34
.34
.34
.33 | .28
.27
.27
.27
.27 | .22
.22
.22
.22
.22 | .25
.25
.25
.25
.25 | .30
.30
.30
.30 | .46
.48
.48
.46 | 12
12
11
12
12 | 15
13
14
14 | 3.7
3.4
3.4
3.4
3.5 | 1.5
1.3
1.3
1.6
1.9 | 1.2
1.2
1.1
.99 | | 26
27
28
29
30
31 | .39
.39
.39
.39
.39 | .32
.32
.32
.32
.31 | .27
.26
.25
.25
.25 | .22
.22
.22
.22
.22
.22 | .25
.25
.25
.25 | .32
.32
.33
.33
.33 | .47
.51
.68
1.0
1.4 | 9.7
8.0
6.8
6.1
5.3 | 13
11
11
10
9.8 | 3.5
3.4
3.3
3.2
3.1
3.0 | 2.3
2.6
2.0
1.6
1.4 | 1.2
1.2
1.1
.98
.93 | | TOTAL
MEAN
MAX
MIN
AC-FT | 14.11
.46
.68
.37
28 | 9.99
.33
.37
.23
20 | 8.79
.28
.31
.25
17 | 7.06
.23
.25
.22
14 | 6.98
.24
.25
.23
14 | 9.40
.30
.33
.26
19 | 14.08
.47
1.4
.33
28 | 189.9
6.13
12
1.8
377 | 326.9
10.9
16
4.9
648 | 151.7
4.89
9.1
3.0
301 | 67.8
2.19
3.0
1.2
134 | 34.92
1.16
2.0
.84
69 | | MEAN
MAX
(WY)
MIN
(WY) | .81
1.94
1983
.32
1980 | .53
1.08
1985
.20
1979 | .42
.67
1978
.25
1979 | .35
.57
1988
.17
1991 | .30
.55
1986
.16
1977 | .31
.86
1986
.17 | .38
.64
1986
.22
1982 | 3.74
9.50
1974
1.12
1982 | 16.3
27.1
1990
10.9
1992 | 8.93
24.6
1983
3.21
1987 | 2.77
6.83
1983
1.20
1988 | 1.30
3.32
1984
.49 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | F | FOR 1992 WAY | TER YEAR | | WATER YEA |
ARS 1974 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 1003.84
2.75
29
.15
.16
1990
9.7
.39
.23 | Jan 15 | | 16
a .22
b 20
3 .23
1670
8 .1
.43
.24 | Jun 13 | | 3.01
4.61
1.97
45
.08
.14
79
3.59
2180
9.8
.58
.24 | Nov :
Jan
Jun : | 1983
1977
23 1990
16 1989
9 1979
22 1990
22 1990 | a-Also occurred Jan 13-30. b-Also occurred Jun 14. #### 06620000 NORTH PLATTE RIVER NEAR NORTHGATE, CO LOCATION.--Lat 40°56'15", long 106°20'16", in NE¹/4SW¹/4SE¹/4 sec.11, T.11 N., R.80 W., Jackson County, Hydrologic Unit 10180001, on right bank 1,000 ft downstream from bridge on State Highway 125, 0.7 mi upstream from Camp Creek, 4.2 mi northwest of Northgate, and 4.4 mi south of Colorado-Wyoming State line. DRAINAGE AREA. -- 1,431 mi2. PERIOD OF RECORD.--May to November 1904 (published as "near Pinkhampton"), May 1915 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1310: 1916-21, 1929(M), 1930-32. WSP 1730: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 7,810.39 ft above National Geodetic Vertical Datum of 1929. See WSP 1730 for history of changes prior to Apr. 8, 1918. Apr. 8, 1918, to Aug. 21, 1961, water-stage recorder at site 0.7 mi downstream at datum 3.36 ft lower. Aug. 22, 1961, to Sept. 18, 1984, at site 650 ft upstream at same datum. REMARKS.—Estimated daily discharges: Oct. 29 to Apr. 9. Records good except those for estimated daily discharges, which are poor. Diversions for irrigation of about 130,000 acres of hay meadows upstream from station. Transbasin diversions upstream from station to Cache la Poudre River basin. National Weather Service satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | DISCHA | RGE, COBI | C FEET E | PER SECOND
DAI | , WATER
LY MEAN | | JREK 1991 | TO SEPTE | EMBER 1992 | | | |----------|-----------|-----------|------------|----------|-------------------|--------------------|-------------------|----------------------|------------|-------------------|------------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 57 | 41 | 56 | 54 | 48 | 112 | 224 | 202 | 1330 | 292 | 213 | 87 | | 2 | 59 | 38 | 62 | 52 | 48 | 118 | 221 | 163 | 1220 | 289 | 198 | 93 | | 3 | 57 | 42 | 67 | 50 | 48 | 125 | 228 | 165 | 953 | 300 | 186 | 97 | | 4 | 53 | 48 | 71 | 50 | 46 | 131 | 242 | 174 | 691 | 292 | 194 | 97 | | 5 | 50 | 55 | 79 | 52 | 45 | 138 | 262 | 167 | 625 | 277 | 194 | 87 | | 6 | 51 | 62 | 84 | 53 | 46 | 142 | 290 | 158 | 611 | 240 | 181 | 85 | | 7 | 53 | 69 | 89 | 54 | 47 | 149 | 318 | 131 | 612 | 200 | 189 | 82 | | 8 | 55 | 78 | 95 | 55 | 50 | 156 | 345 | 123 | 733 | 232 | 195 | 73 | | 9
10 | 56
57 | 89 | 100
106 | 52
50 | 53 | 157 | 367 | 117 | 859 | 272 | 179
157 | 75
64 | | | | 96 | | | 55 | 153 | 376 | 162 | 820 | 276 | | | | 11 | 57 | 104 | 100 | 47 | 58 | 145 | 336 | 185 | 720 | 291 | 150 | 58 | | 12 | 56 | 111 | 95 | 48 | 61 | 143 | 300 | 176 | 785 | 311 | 144 | 51 | | 13 | 56 | 116 | 90 | 47 | 64 | 152 | 281 | 161 | 653 | 413 | 149 | 49 | | 14
15 | 53 | 118 | 84 | 46 | 68 | 160 | 274
282 | 162 | 549
481 | 449
358 | 128
117 | 48
46 | | | 58 | 101 | 81 | 44 | 71 | 172 | | 163 | | | | | | 16 | 58 | 102 | 84 | 44 | 74 | 182 | 308 | 163 | 407 | 319 | 113 | 48 | | 17 | 52 | 97 | 86 | 45 | 76 | 190 | 320 | 169 | 434 | 399 | 125 | 51 | | 18 | 48 | 90 | 89 | 43 | 77 | 198 | 340 | 164 | 461 | 429 | 133 | 52 | | 19 | 48 | 84 | 87 | 41 | 77 | 196 | 339 | 166 | 397 | 373 | 129 | 61 | | 20 | 49 | 79 | 83 | 39 | 79 | 189 | 325 | 169 | 321 | 356 | 113 | 67 | | 21 | 51 | 84 | 78 | 37 | 83 | 184 | 274 | 220 | 274 | 399 | 101 | 71 | | 22 | 52 | 78 | 74 | 37 | 87 | 181 | 244 | 381 | 252 | 411 | 98 | 79 | | 23 | 52 | 71 | 69 | 38 | 90 | 179 | 243 | 467 | 247 | 356 | 92 | 74 | | 24 | 52 | 65 | 65 | 39 | 87 | 178 | 234 | 518 | 235 | 337 | 102 | 65 | | 25 | 56 | 70 | 62 | 40 | 87 | 179 | 222 | 483 | 270 | 333 | 119 | 62 | | 26 | 61 | 77 | 59 | 41 | 87 | 183 | 1 9 5 | 464 | 359 | 353 | 120 | 68 | | 27 | 69 | 84 | 56 | 42 | 92 | 190 | 178 | 836 | 415 | 359 | 120 | 79 | | 28 | 56 | 79 | 57 | 43 | 97 | 202 | 160 | 1240 | 478 | 310 | 117 | 81 | | 29 | 53 | 71 | 58 | 45 | 102 | 218 | 158 | 1340 | 446 | 270 | 105 | 78 | | 30 | 49 | 63 | 59 | 46 | | 223 | 183 | 1210 | 356 | 251 | 88 | 77 | | 31 | 45 | | 57 | 48 | | 237 | | 1150 | | 238 | 87 | | | TOTAL | 1679 | 2362 | 2382 | 1422 | 2003 | 5262 | 8069 | 11549 | 16994 | 9985 | 4336 | 2105 | | MEAN | 54.2 | 78.7 | 76.8 | 45.9 | 69.1 | 170 | 269 | 373 | 566 | 322 | 140 | 70.2 | | MAX | 69 | 118 | 106 | 55 | 102 | 237 | 376 | 1340 | 1330 | 449 | 213 | 97 | | MIN | 45 | 38 | 56 | 37 | 45 | 112 | 15 8 | 117 | 235 | 200 | 87 | 46 | | AC-FT | 3330 | 4690 | 4720 | 2820 | 3970 | 10440 | 16000 | 22910 | 33710 | 19810 | 8600 | 4180 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | R WATER | YEARS 1904 | - 1992, | BY WATER | YEAR (WY) | | | | | | MEAN | 163 | 150 | 101 | 81.3 | 86.0 | 168 | 763 | 1138 | 1480 | 635 | 268 | 146 | | MAX | 538 | 366 | 200 | 177 | 199 | 722 | 2444 | 3649 | 3296 | 2367 | 763 | 502 | | (WY) | 1962 | 1962 | 1928 | 1984 | 1986 | 1986 | 1962 | 1984 | 1983 | 1957 | 1983 | 1929 | | MIN | 31.7 | 54.2 | 33.9 | 27.5 | 35.7 | 47.8 | 131 | 212 | 89.4 | 26.7 | 38.5 | 23.8 | | (WY) | 1935 | 1935 | 1977 | 1977 | 1933 | 1964 | 1981 | 1981 | 1934 | 1934 | 1934 | 1934 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALE | NDAR YEAR | F | OR 1992 W | ATER YEAR | | WATER YE | ARS 1904 | - 1992 | | ANNUAL | TOTAL | | | 99632 | | | 68148 | | | | | | | ANNUAL | MEAN | | | 273 | | | 186 | | | 433 | | | | HIGHEST | ANNUAL M | IEAN | | | | | | | | 878 | | 1917 | | LOWEST . | ANNUAL ME | AN | | | | | | | | 117 | | 1977 | | | DAILY ME | | | 2220 | Jun 4 | | 1340 | May 29 | | 6450 | | 0 1923 | | | DAILY MEA | | | 38 | Nov 2 | | 37 | Jan 21, | 22 | 19 | Jul 17-1 | | | | | MINIMUM | | 45 | Oct 29 | | 39 | Jan 19 | | 20 | | 5 1934 | | | ANEOUS PE | | | | | | 1400 ^a | Jun 1 | | 6720 ^b | Jun 1 | 1 1923 | | | ANEOUS PE | | | | | | 4.8 | 4 ^C Apr 5 | | 9.65` | Apr 2 | 5 1980 | | | RUNOFF (A | | : | 197600 | | | 135200 | | | 313700 | | | | | ENT EXCEE | | | 625 | | | 398 | | | 1220 | | | | | ENT EXCEE | | | 105 | | | 103 | | | 160 | | | | 90 PERC | ENT EXCEE | บร | | 57 | | | 48 | | | 68 | | | a-Gage height, 4.26 ft. b-Gage height, 6.24 ft, site and datum then in use. c-Backwater from ice jam. 06695000 SOUTH PLATTE RIVER ABOVE ELEVENMILE CANYON RESERVOIR, NEAR HARTSEL, CO LOCATION.--Lat 38°58'03", long 105°34'51", in NE¹/4 sec.32, T.12 S., R.73 W., Park County, Hydrologic Unit 10190001, on left bank 200 ft downstream from highway bridge, 2.5 mi upstream from water line of Elevenmile Canyon Reservoir, at elevation 8,561 ft, and 13 mi southeast of Hartsel. DRAINAGE AREA .-- 880 mi2. PERIOD OF RECORD.--June 1933 to current year (no winter records prior to 1940). Monthly discharge only for some periods, published in WSP 1310. Statistics computed for the period 1982 to current year. REVISED RECORDS. -- WSP 1630: 1958. WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Datum of gage is 8,612.83 ft, Denver Board of Water Commissioners Datum. Prior to May 27, 1939, water-stage recorder near present site at different datum. May 27, 1939, to Nov. 4, 1961, at datum 0.46 ft, lower. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Antero Reservoir, capacity, 22,300 acre-ft, prior to Sept. 15, 1981, and by Spinney Mountain Reservoir, 3.6 mi upstream, capacity, 152,900 acre-ft, since Sept. 15, 1981. Many small diversions upstream from station for irrigation of about 24,000 acres. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | DISCHAR | GE, CUBIC | FEET PE | | | VALUES | K 1991 T | O SEPTEME | SEK 1992 | | | |-------------|------------------------|------------------|--------------|-----------------|--------------|--------------|--------------------|-----------------|--------------|-----------------------|-------------|--------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 112 | 78 | 53 | 87 | 55 | 51 | 95 | 124 | 73 | 60 | 158 | 87 | | 2
3 | 107
81 | 78
77 | 54
58 | 88
90 | 54
54 | 51
51 | 103
1 62 | 113
105 | 57
54 | 65
69 | 164
155 | 116
116 | | 4 | 81 | 77 | 64 | 88 | 54 | 52 | 192 | 93 | 54 | 53 | 144 | 123 | | 5 | 76 | 76 | 73 | 88 | 54 | 52 | 192 | 72 | 54 | 42 | 148 | 131 | | 6
7 | 68
68 | 81
87 | 73
72 | 88
87 | 56
54 | 51
51 | 192
189 | 72
72 | 54
55 | 81
157 | 151
153 | 132
129 | | 8 | 69 | 87 | 71 | 87 | 54 | 52 | 189 | 72 | 52 | 167 | 152 | 132 | | 9 | 69 | 87 | 74 | 87 | 54 | 52 | 165 | 72 | 45 | 179 | 152 | 136 | | 10 | 69 | 87 | 75 | 87 | 54 | 52 | 151 | 72 | 45 | 210 | 152 | 126 | | 11
12 | 69
69 | 86
96 | 74
74 | 87
87 | 54
54 | 51
51 | 151
151 | 72
68 | 45
45 | 201
187 | 152
151 | 113
103 | | 13 | 69 | 113 | 75 | 89 | 54 | 51 | 151 | 65 | 47 | 181 | 141 | 96 | | 14 | 68 | 114 | 74 | 87 | 53 | 51 | 151 | 65 | 50 | 149 | 116 | 98 | | 15 | 68 | 113 | 76 | 89 | 54 | 51 | 126 | 64 | 54 | 144 | 114 | 109 | | 16
17 | 68
88 | 113
113 | 76
75 | 87
87 | 54
53 | 50
50 | 64
77 | 64
64 | 53
54 | 166
151 | 112
125 | 117
121 | | 18 | 102 | 115 | 75 | 87 | 55 | 72 | 77 | 65 | 54 | 136 | 120 | 126 | | 19 | 102 | 95 | 75 | 93 | 54 | 96 | 77 | 65 | 54 | 117 | 110 | 130 | | 20 | 102 | 62 | 80 | 86 | 52 | 96 | 72 | 65 | 54 | 110 | 127 | 148 | | 21
22 | 77
6 1 | 56
56 |
88
87 | 86
86 | 52
52 | 96
96 | 59
59 | 65
88 | 63
61 | 110
108 | 136
139 | 141
130 | | 23 | 60 | 56 | 87 | 86 | 52
52 | 96 | 59
59 | 98 | 51 | 107 | 141 | 130 | | 24 | 60 | 58 | 88 | 86 | 53 | 96 | 59 | 85 | 52 | 108 | 162 | 130 | | 25 | 84 | 60 | 87 | 86 | 52 | 95 | 59 | 105 | 118 | 99 | 153 | 130 | | 26
27 | 104
108 | 58
5 <i>7</i> | 87
88 | 86
86 | 53
52 | 94
95 | 59
59 | 110
97 | 203
158 | 101
120 | 78
63 | 126
123 | | 28 | 107 | 52 | 90 | 74 | 52 | 94 | 59 | 78 | 108 | 101 | 52 | 127 | | 29 | 98 | 52 | 87 | 55 | 51 | 95 | 73 | 75 | 86 | 73 | 52 | 127 | | 30
31 | 77
77 | 55
 | 88
87 | 55
55 | | 95
95 | 120 | 78
85 | 61
 | 99
134 | 51
51 | 127 | | TOTAL | 2518 | 2395 | 2385 | 2597 | 1549 | 2181 | 3392 | 2488 | 2014 | 3785 | 3875 | 3680 | | MEAN | 81.2 | 79.8 | 76.9 | 83.8 | 53.4 | 70.4 | 113 | 80.3 | 67.1 | 122 | 125 | 123 | | MAX
MIN | 112
60 | 115
52 | 90
53 | 93
55 | 56
51 | 96
50 | 192
59 | 124
64 | 203
45 | 210
42 | 164
51 | 148
87 | | AC-FT | 4990 | 4750 | 4730 | 5150 | 3070 | 4330 | 6730 | 4930 | 3990 | 7510 | 7690 | 7300 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | R WATER ! | YEARS 1982 | - 1992 | , BY WATER | EAR (WY) | | | | | | MEAN | 87.4 | 65.0 | 62.5 | 55.8 | 53.5 | 80.5 | 95.8 | 115 | 186 | 206 | 189 | 113 | | MAX | 191 | 81.7 | 129 | 135 | 114 | 242 | 141 | 332 | 415 | 339 | 381 | 151 | | (WY)
MIN | 1985
30.1 | 1987
29.1 | 1990
28.2 | 1990
21.7 | 1990
21.9 | 1986
23.2 | 1983
66.5 | 1987
40.0 | 1985
38.8 | 1984
122 | 1984
125 | 1988
44.9 | | (WY) | 1982 | 1984 | 1985 | 1983 | 1982 | 1982 | 1982 | 1991 | 1991 | 1992 | 1992 | 1982 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALE | NDAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1982 | - 1992 | | ANNUAL | TOTAL | | | 28570 | | | 32859 | | | _ | | | | ANNUAL | | 10 AM | | 78.3 | | | 89.8 | | | a
110 | | 1985 | | | 'ANNUAL M
ANNUAL ME | | | | | | | | | 148
73.3 | | 1983 | | | DAILY ME | | | 6210
628 | Jul 24 | | 210 | Jul 10 | | 655 | Jun : | 12 1985 | | | DAILY MEA | | | D ₂₈ | Jun 4 | | 42 | Jul 5 | | .20 | | 25 1981 | | | SEVEN-DAY
ANEOUS PE | | | 29 | Jun 4 | | 47
337 | Jun 8
Aug 25 | | c ₃₉₇₀ 1.9 | | 20 1981
27 1970 | | | ANEOUS PE | | | | | | 2.25 | | | 7.60 | | 28 1970 | | | RUNOFF (A | | | 56670 | | | 65180 | - | | 79700 | - | | | | ENT EXCEE | | | 151
66 | | | 1 48
85 | | | 232
75 | | | | | ENT EXCEE | | | 37 | | | 52 | | | 35 | | | | | | | | | | | | | | | | | a-Average discharge for 42 years (water years 1940-81), 77.3 ft³/s; 56000 acre-ft/yr, prior to completion of Spinney Mountain Dam. -Also occurred Jun 5 11 b-Also occurred, Jun 5, 11. c-Maximum daily discharge. Maximum instantaneous discharge, not determined, occurred Apr 28, 1970. #### 06696000 SOUTH PLATTE RIVER NEAR LAKE GEORGE, CO LOCATION.--Lat 38°54'19", long 105°28'22", in SW¹/4 sec.20, T.13 S., R.72 W., Park County, Hydrologic Unit 10190001, on left bank 700 ft downstream from Elevenmile Canyon Reservoir and 8.2 mi southwest of town of Lake George. DRAINAGE AREA .-- 963 mi2. PERIOD OF RECORD.--October 1929 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Elevation of gage is 8,458 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 26, 1940, at site 1 mi downstream at datum 8,423.95 ft, National Geodetic Vertical Datum, adjustment of 1912. REMARKS.—Estimated daily discharge: Dec. 27. Records good. Natural flow of stream affected by transmountain diversions through East and West Hoosier ditches at Hoosier Pass prior to 1941, storage in Elevenmile Canyon Reservoir (see elsewhere in this report) and Antero Reservoir, capacity, 22,300 acre-ft, diversions for irrigation, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | - | DISCHARG | E, CUBIC | FEET PER | SECOND,
DAILY | WATER
MEAN | YEAR OCTOBER | 1991 т | о ѕертемве | R 1992 | | | |---|----------------------------------|---|----------------------------------|---|----------------------------------|----------------------------------|---|--|----------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 87
86
84
73
72 | 67
67
67
67
68 | 68
67
65
65
66 | 87
87
87
88
88 | 71
68
66
64
64 | 55
55
55
63
66 | 100
101
107
119
132 | 77
78
82
86
84 | 74
72
68
64
61 | 85
77
72
70
64 | 109
115
121
130
129 | 82
85
86
89
89 | | 6
7
8
9
10 | 67
65
63
61
60 | 69
70
71
71
73 | 68
69
70
71
72 | 89
90
89
89 | 64
63
62
61
60 | 64
63
63
69 | 143
151
158
163
161 | 82
80
77
76
7 4 | 58
58
55
55
53 | 63
67
76
88
99 | 133
131
131
134
136 | 92
95
98
95
95 | | 11
12
13
14
15 | 60
60
58
58
56 | 76
78
82
85
88 | 73
75
76
74
74 | 89
89
90
90 | 59
58
58
58
57 | 65
63
62
61
60 | 160
160
159
157
159 | 73
68
67
66
64 | 54
53
51
48
48 | 117
128
138
140
138 | 140
143
145
142
136 | 98
98
94
89
90 | | 16
17
18
19
20 | 56
56
58
59
64 | 95
104
100
106
100 | 74
74
74
76
76 | 90
89
89
89 | 58
59
56
56
55 | 59
59
59
63
66 | 155
147
138
125
116 | 61
58
59
58
55 | 46
40
38
39
40 | 140
147
147
140
134 | 133
161
164
112
111 | 91
92
92
97
105 | | 21
22
23
24
25 | 65
62
59
55
56 | 95
89
82
74
72 | 77
80
81
83
83 | 88
88
88
87
87 | 54
54
54
55
55 | 71
79
83
86
88 | 104
97
92
84
78 | 54
52
54
58
62 | 43
46
46
48
51 | 131
123
121
117
116 | 113
115
116
144
168 | 123
111
107
109
110 | | 26
27
28
29
30
31 | 57
61
63
68
69
68 | 76
72
68
67
68 | 84
84
85
86
87
87 | 86
87
87
83
78
74 | 55
55
55
55
 | 89
91
95
97
98
99 | 75
72
70
68
73 | 67
76
78
77
75
75 | 65
83
89
97
94 | 115
111
111
107
105
105 | 172
186
131
104
94
89 | 106
105
104
105
105 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1986
64.1
87
55
3940 | 2367
78.9
106
67
4690 | 2344
75.6
87
65
4650 | 2710
87.4
90
74
5380 | 1709
58.9
71
54
3390 | 2213
71.4
99
55
4390 | 3624
121
163
68
7190 | 2153
69.5
86
52
4270 | 1737
57.9
97
38
3450 | 3392
109
147
63
6730 | 4088
132
186
89
8110 | 2937
97.9
123
82
5830 | | MEAN | 53.1 | 41.3 | 25.9 | 24.3 | 25.7 | 40.1 | , BY WATER YE | 93.9 | 143 | 181 | 152 | 71.8 | | MAX
(WY)
MIN
(WY) | 221
1931
2.12
1941 | 166
1955
2.26
1940 | 107
1990
2.20
1940 | 133
1990
1.50
1933 | 117
1990
1.00
1933 | 201
1986
3.00
1933 | 436
1970
7.08
1939 | 775
1970
4.77
1961 | 614
1949
7.78
1961 | 610
1949
16.9
1940 | 459
1984
14.8
1940 | 288
1930
4.73
1953 | | SUMMARY | STATISTI | cs | FOR 19 | 991 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | | WATER YE | ARS 1930 - | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 26510
72.6
176
a18
22
52580
139
67
33 | Jul 25
Jun 27
Jun 23 | | 31260
85.4
186
38
42
206
2.16
62000
132
78
56 | Aug 27
Jun 18
Jun 16
Aug 26
Aug 26 | | 79.6
218
14.1
2820
1.0
3000
8.34
57660
206
39
8.0 | Feb :
Apr 21 | 1970
1940
8 1970
5 1930
1 1933
8 1970
8 1970 | a-Also occurred Jun 28. b-No flow at times in January 1930, February 1931, and November 1935. #### 06699005 TARRYALL CREEK BELOW ROCK CREEK, NEAR JEFFERSON, CO LOCATION.--Lat 39°27'13", long 105°41'43", in NW¹/4NW¹/4 sec.8, T.9 S., R.74 W., Park County, Hydrologic Unit 10190001, on left bank 1,800 ft downstream from Rock Creek, 1.0 mi northwest of Bordenville, and 9 mi southeast of Jefferson. DRAINAGE AREA. -- 230 ml2. PERIOD OF RECORD. -- April 1983 to current year. REVISED RECORDS.--WDR CO-86-1: Drainage area. WDR CO-87-1: 1986 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,020 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 28 to May 1, and Aug. 24-27. Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | DAY | | | DISCHAR | GE, CUBI | C FEET PE | R SECOND,
DAII
| WATER
LY MEAN | YEAR OCTOBER VALUES | 1991 T | O SEPTEM | 1BER 1992 | | | |---|---------|-----------|-----------|-----------|------------|-------------------|------------------|---------------------|----------|----------|-----------|----------|---------| | 2 23 19 11 5.2 5.0 5.4 19 33 64 43 37 31 31 49 32 49 86 37 31 32 49 38 63 37 31 49 20 18 9.5 5.0 5.0 5.0 5.0 5.8 21 32 49 49 38 38 28 49 38 28 49 38 28 49 38 28 49 38 28 49 38 28 49 38 28 49 38 30 38 38 28 49 38 30 38 38 28 49 38 30 38 38 38 38 38 38 38 38 38 38 38 38 38 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 23 19 11 5.2 5.0 5.4 19 33 64 43 37 31 49 31 64 143 37 31 49 31 64 143 37 31 49 31 64 143 37 31 49 31 64 143 37 31 49 31 64 143 37 28 149 31 64 143 37 28 149 31 64 143 37 28 149 31 64 143 37 28 149 31 64 143 37 28 149 31 64 143 37 28 149 31 64 143 37 29 14 143 143 143 143 143 143 143 143 143 | 1 | 26 | 19 | 12 | 5.4 | 5.0 | 5.3 | 17 | 32 | 74 | 46 | 37 | 33 | | 3 | 2 | | 19 | 11 | | | | | | 64 | 43 | 37 | | | 5 19 18 9.0 5.0 5.0 6.0 26 32 64 36 37 24 6 19 18 8.0 5.0 5.0 5.0 6.0 28 31 46 69 41 37 17 7 20 18 8.5 5.0 5.0 5.0 6.0 31 38 82 67 37 17 8 20 18 8.2 5.0 5.0 5.0 6.0 31 38 82 67 37 17 9 20 18 8.2 5.0 5.0 5.0 6.0 37 47 93 66 37 15 10 19 17 8.0 5.0 5.0 5.0 6.0 37 47 93 66 37 15 11 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 62 40 13 11 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 62 40 13 11 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 62 40 13 13 18 17 8.0 5.0 5.0 6.0 48 40 114 51 44 13 13 18 17 8.0 5.0 5.0 5.0 6.0 52 46 87 60 46 12 15 17 17 8.0 5.0 5.0 6.6 50 38 66 36 38 13 16 16 16 17 8.0 5.0 5.0 6.6 50 38 66 36 38 13 16 16 16 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 18 18 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 19 18 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 10 19 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 10 19 10 19 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 11 10 19 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 12 18 18 17 8.0 5.0 5.0 5.0 7.6 43 54 15 53 39 34 14 17 17 17 17 17 17 17 17 17 17 17 17 17 | 3 | 22 | 18 | 10 | 5.0 | 4.8 | | 21 | 32 | 49 | 42 | 38 | 30 | | 6 19 18 8.8 5.0 5.0 6.0 28 34 69 41 37 19 7 200 18 8.5 5.0 5.0 6.0 31 38 82 47 37 17 8 20 18 8.5 5.0 5.0 6.0 31 38 82 47 37 17 8 20 18 8.5 5.0 5.0 6.0 31 38 82 47 37 17 10 19 17 8.0 5.0 5.0 6.0 40 45 94 52 40 13 11 19 17 8.0 5.0 5.0 6.0 40 45 94 52 40 13 11 19 17 8.0 5.0 5.0 6.0 40 41 39 86 50 54 13 11 19 17 8.0 5.0 5.0 6.0 48 40 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 48 40 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 48 40 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 6.0 48 60 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 6.0 48 60 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 6.0 48 60 114 51 41 51 44 61 13 11 19 17 8.0 5.0 5.0 6.0 6.0 48 60 61 61 61 61 61 61 61 61 61 61 61 61 61 | | 20 | 18 | | 5.0 | 5.0 | 5.8 | | | 47 | 39 | | | | 7 20 18 8.5 5.0 5.0 6.0 31 38 82 47 37 17 9 17 8 20 18 8.3 5.0 5.0 6.0 31 38 82 47 37 17 9 20 18 8.2 5.0 5.0 6.0 37 17 9 20 18 8.2 5.0 5.0 5.0 6.0 37 47 93 66 37 17 17 9 20 18 8.2 5.0 5.0 5.0 6.0 37 47 93 66 37 17 15 10 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 52 40 13 15 11 19 17 8.0 5.0 5.0 5.0 6.0 40 44 39 86 50 54 13 11 11 19 17 8.0 5.0 5.0 5.0 6.0 48 40 114 51 44 13 13 13 18 17 8.0 5.0 5.0 5.0 6.0 48 40 114 51 44 13 13 13 18 17 8.0 5.0 5.0 5.0 6.0 52 46 87 60 46 12 15 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 6.6 50 38 66 36 38 13 14 17 17 17 8.0 5.0 5.0 5.0 7.0 45 41 53 39 34 14 17 17 17 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 15 19 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 15 19 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 11 15 19 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 12 12 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 12 12 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 12 12 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 12 12 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 32 29 19 20 12 12 16 17 8.0 5.0 5.0 5.0 8.0 37 58 69 32 29 19 22 12 16 17 8.0 5.0 5.0 5.0 8.0 37 58 69 32 29 19 22 12 16 17 7.0 5.0 5.0 5.0 8.0 30 77 6 63 30 30 30 17 7 6 12 12 12 12 14 6 6.8 5.0 5.0 5.0 8.0 30 77 6 63 30 30 30 17 7 6 12 12 12 12 12 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12 | 5 | 19 | 18 | 9.0 | 5.0 | 5.0 | 6.0 | 26 | 32 | 64 | 36 | 37 | 24 | | 8 20 18 8 33 5.0 5.0 5.0 6.0 34 43 92 60 37 17 9 20 18 8 8.2 5.0 5.0 5.0 6.0 37 47 93 66 37 15 10 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 552 40 13 11 19 17 8.0 5.0 5.0 5.0 6.0 44 39 86 552 40 13 112 18 17 8.0 5.0 5.0 5.0 6.0 48 40 114 51 44 13 13 18 17 8.0 5.0 5.0 5.0 6.0 52 46 87 60 46 113 11 19 17 8.0 5.0 5.0 6.0 5.0 48 40 114 51 44 13 13 18 17 17 8.0 5.0 5.0 6.0 52 46 87 60 46 112 14 17 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 14 17 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 14 17 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 16 16 17 8.0 5.0 5.0 5.0 6.4 54 38 78 78 42 41 12 16 16 17 8.0 5.0 5.0 5.0 6.4 54 38 78 78 42 41 12 17 17 17 18 8.0 5.0 5.0 5.0 6.4 54 38 78 78 42 41 12 18 16 16 17 8.0 5.0 5.0 5.0 6.0 45 41 53 39 34 14 17 17 17 18 8.0 5.0 5.0 5.0 7.0 45 41 53 39 34 14 18 16 17 8.0 5.0 5.0 5.0 8.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 21 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 22 11 6 17 8.0 5.0 5.0 8.0 30 73 63 30 20 21 21 14 6 17 8.0 5.0 5.0 8.0 30 73 63 30 10 17 23 15 15 7.6 5.0 5.0 8.0 8.0 30 73 63 30 30 10 17 24 17 15 7.2 5.0 5.0 8.0 8.0 30 73 63 30 30 10 17 24 17 15 7.2 5.0 5.0 8.0 8.0 28 79 57 32 28 17 24 17 15 7.2 5.0 5.0 8.0 8.0 28 79 57 32 28 17 24 17 15 7.2 5.0 5.0 8.0 8.0 28 79 57 32 28 17 25 20 14 7.0 5.0 5.0 8.0 11 29 82 86 40 37 70 16 26 18 14 6.6 5.0 5.0 5.0 11 29 82 86 40 37 10 16 26 18 14 6.6 5.0 5.0 5.0 11 29 82 86 40 37 10 16 27 18 14 6.6 5.0 5.0 5.0 11 29 82 86 40 37 10 16 28 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 10 16 28 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 10 16 29 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 10 16 29 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 10 16 29 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 10 16 20 18 19 12 6.0 5.0 5.0 11 29 82 80 107 45 43 16 30 19 12 5.6 5.0 5.0 11 29 82 80 107 45 43 16 30 19 12 5.6 5.0 5.0 3.0 11 29 82 80 107 45 43 30 10 10 30 19 12 6.0 5.0 5.0 5.0 11 29 82 92 92 92 92 92 92 92 92 92 92 92 92 92 | | | | | | | | | | | | | | | 9 20 18 8,2 5.0 5.0 5.0 6.0 37 47 93 66 37 15 10 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 52 40 13 11 19 17 8.0 5.0 5.0 5.0 6.0 40 45 94 52 40 13 12 18 17 8.0 5.0 5.0 5.0 6.0 44 39 96 50 54 13 13 18 17 8.0 5.0 5.0 5.0 6.0 44 39 96 50 54 13 14 17 17 8.0 5.0 5.0 5.0 6.0 44 38 78 42 41 13 15 18 17 17 8.0 5.0 5.0 6.0 52 46 114 60 46 13 16 16 17 17 8.0 5.0 5.0 6.6 52 46 34 38 78 42 41 12 15 17 17 17 8.0 5.0 5.0 6.6 52 46 34 38 78 42 41 12 15 17 17 17 8.0 5.0 5.0 6.6 52 38 66 36 38 13 16 16 16 17 8.0 5.0 5.0 6.6 52 38 66 36 38 13 16 16 17 8.0 5.0 5.0 5.0 6.6 52 38 66 36 38 13 17 17 17 8.0 5.0 5.0 5.0 6.6 52 38 66 36 38 13 18 18 17 17 17 8.0 5.0 5.0 5.0 6.6 52 38 66 36 38 13 19 16 17 8.0 5.0 5.0 5.0 8.0 32 55 54 68 27 37 15 19 16 17 8.0 5.0 5.0 5.0 8.0 35 54 68 27 37 17 20 16 17 8.0 5.0 5.0 8.0 32 65 69 32 29 19 22 15 16 8.0 5.0 5.0 5.0 8.0 32 65 69 32 29 19 22 15 16 7 18 5 7.2 5.0 5.0 8.0 30 73 63 30 30 30 17 24 17 18 5 7.2 5.0 5.0 8.0 30 73 63 30 30 30 17 24 17 18 17 7.0 5.0 5.0 8.0 30 73 63 30 30 30 17 25 10 14 7.0 5.0 5.0 5.0 18 80 28 79 55 37 37 28 16 26 18 14
6.6 5.0 5.0 5.0 18 80 28 79 55 33 2 29 19 27 18 14 6.6 5.0 5.0 5.0 11 26 101 155 58 50 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 29 87 86 40 37 16 30 19 19 12 6.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 29 10 10 10 10 155 10 10 10 10 10 10 10 10 10 10 10 10 10 | | | | | | | | | | | | | | | 10 19 17 8.0 5.0 5.0 6.0 6.0 40 45 94 52 40 13 11 19 17 8.0 5.0 5.0 6.0 6.0 48 30 16 50 54 13 12 18 17 8.0 5.0 5.0 5.0 6.0 48 30 114 51 44 13 13 18 17 8.0 5.0 5.0 5.0 6.0 48 30 114 51 44 13 13 18 17 8.0 5.0 5.0 5.0 6.0 48 30 114 51 44 13 13 18 17 17 8.0 5.0 5.0 6.0 48 30 114 51 44 11 13 18 17 17 8.0 5.0 5.0 6.0 6.0 48 30 18 66 30 38 30 13 16 16 16 17 8.0 5.0 5.0 7.0 45 41 53 33 39 34 14 17 17 17 17 8.0 5.0 5.0 5.0 7.6 43 52 54 34 45 16 18 16 17 8.0 5.0 5.0 5.0 7.6 43 52 54 34 45 16 18 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 21 16 17 8.0 5.0 5.0 8.0 30 37 48 56 27 37 17 22 11 6 17 8.0 5.0 5.0 8.0 30 37 48 56 27 37 17 23 15 16 8.0 5.0 5.0 8.0 30 37 48 56 27 37 17 23 15 16 8.0 5.0 5.0 8.0 30 37 36 30 30 27 24 17 15 7.2 5.0 5.0 8.0 30 73 63 30 30 17 24 17 15 7.2 5.0 5.0 8.0 30 73 63 30 30 17 24 17 15 7.2 5.0 5.0 8.0 8.8 26 80 86 37 70 16 25 20 14 7.0 5.0 5.0 8.8 26 80 86 37 70 16 26 18 14 6.8 5.0 5.0 5.0 11 28 89 107 45 43 16 27 18 14 6.6 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.2 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.2 5.0 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.2 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.2 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.2 5.0 5.0 11 28 89 107 45 43 10 10 31 19 5.6 5.0 5.0 11 28 89 107 45 43 10 10 31 19 5.6 5.0 5.0 11 28 89 107 45 40 40 40 40 40 40 40 40 40 40 40 40 40 | | | | | | | | | | | | | | | 122 18 17 8.0 5.0 5.0 5.0 6.0 48 40 114 51 44 13 13 18 17 8.0 5.0 5.0 5.0 6.0 52 46 87 60 46 12 14 17 17 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 15 17 17 18 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 16 16 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 16 16 17 8.0 5.0 5.0 5.0 7.0 45 41 53 39 34 14 17 17 17 18 8.0 5.0 5.0 5.0 7.6 43 52 54 34 45 16 18 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 33 54 68 28 30 21 21 16 17 8.0 5.0 5.0 8.0 32 65 69 32 29 19 22 1 15 16 8.0 5.0 5.0 8.0 30 73 68 30 30 73 23 115 16 8.0 5.0 5.0 8.0 30 73 67 30 30 30 17 23 17 17 15 7.6 5.0 5.0 8.0 30 73 67 30 30 30 17 24 17 15 7.6 5.0 5.0 8.0 30 73 67 30 30 30 17 25 20 14 7.0 5.0 5.0 8.0 8.0 30 73 67 30 30 30 17 26 18 14 6.8 5.0 5.0 5.0 8.0 8.0 80 80 80 80 80 80 80 80 80 80 80 80 80 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 14 17 17 8.0 5.0 5.0 5.0 6.4 54 38 78 42 41 12 15 17 17 8.0 5.0 5.0 5.0 6.6 54 38 78 66 36 36 38 13 16 16 16 17 8.0 5.0 5.0 5.0 7.0 45 41 53 39 34 14 17 17 17 8.0 5.0 5.0 5.0 7.6 43 52 54 34 45 16 18 16 17 8.0 5.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 8.0 40 58 55 29 41 15 19 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 21 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 22 15 16 8.0 5.0 5.0 8.0 37 48 56 27 37 17 23 15 15 7.6 5.0 5.0 8.0 32 65 69 32 29 19 22 15 16 18 8.0 5.0 5.0 8.0 32 65 69 32 29 19 23 15 15 7.6 5.0 5.0 8.0 32 65 69 32 29 11 24 17 15 7.2 5.0 5.0 8.0 88 82 68 80 86 37 70 16 25 20 14 7.0 5.0 5.0 8.8 82 68 80 86 37 70 16 26 18 14 6.8 5.0 5.0 5.0 8.8 82 68 80 86 37 70 16 28 19 13 6.4 5.0 5.0 5.0 11 26 101 155 58 50 16 28 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 29 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 43 16 30 19 19 12 6.6 5.0 5.0 11 28 89 107 45 43 16 30 19 19 12 5.6 5.0 5.0 11 28 89 107 45 43 16 30 19 19 12 6.6 5.0 5.2 11 30 67 75 36 31 30 31 31 19 1 5.6 5.0 5.0 4.8 5.3 75 89 57 32 28 12 34 35 15 15 7.6 5.0 5.0 10 25 81 100 1698 2295 1289 1225 535 35 36 36 31 16 30 19 12 5.6 5.0 5.0 17.8 23.7 54.8 76.5 41.6 39.5 17.8 36 37 30 30 30 30 30 30 30 30 30 30 30 30 30 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | | 19 16 17 8.0 5.0 5.0 8.0 37 48 56 27 37 17 20 16 17 8.0 5.0 5.0 8.0 35 4 68 28 30 21 21 16 17 8.0 5.0 5.0 8.0 33 7 48 56 27 37 17 22 15 16 8.0 5.0 5.0 8.0 30 73 63 30 30 17 23 15 15 7.6 5.0 5.0 8.0 30 73 63 30 30 17 24 17 15 7.2 5.0 5.0 8.0 28 79 57 32 28 17 24 17 15 7.2 5.0 5.0 8.8 26 80 86 37 70 16 25 20 14 7.0 5.0 5.0 10 25 81 100 40 60 16 26 18 14 6.8 5.0 5.0 5.0 11 26 101 155 58 50 16 27 18 14 6.6 5.0 5.0 5.0 11 28 89 107 45 44 16 29 19 13 6.4 5.0 5.0 5.0 11 28 89 107 45 44 16 29 19 13 6.4 5.0 5.0 5.1 11 28 89 107 45 44 16 29 19 11 6.2 5.0 5.0 5.2 11 30 67 55 36 31 10 31 19 5.6 5.0 5.0 13 32 1071AL 573 494 248.7 155.6 145.0 242.5 1010 1698 225 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MEAN 18.5 16.5 8.02 5.0 5.0 4.8 5.3 17 32 47 27 28 12 MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 15 12 5.6 5.6 5.0 4.8 5.3 17 32 47 27 28 12 MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 17.2 12.6 5.4 5.3 5.0 7.82 17.6 39.4 76.5 41.6 39.5 17.8 MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 17.2 12.6 5.4 8 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 17.2 12.6 5.4 8 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 MIN 17.2 12.6 5.4 8 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 MIN 17.2 12.6 5.4 8 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 MINGAL TOTAL MEAN 34.8 1988 1988 1989 1992 WATER YEAR WATER YEAR 1983 - 1992 SUMMARY STATISTICS FOR INSTITUTION 4.8 1988 1992 1992 BATER YEAR 1983 1994 1994 1994 1994 1994 1994 1994 199 | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 23 15 15 7.6 5.0 5.0 8.0 28 79 57 32 28 17 24 17 15 7.2 5.0 5.0 8.8 26 80 86 37 70 16 25 20 14 7.0 5.0 5.0 10 25 81 100 40 60 16 26 18 14 6.8 5.0 5.0 11 26 101 155 58 50 16 27 18 14 6.6 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 5.0 11 29 82 86 40 37 16 29 19 13 6.2 5.0 5.0 11 29 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 29 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 39 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 39 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 39 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 39 82 86 40 37 16 30 19 12 6.0 5.0 5.0 11 39 82 89 107 TOTAL 573 494 248.7 155.6 145.0 242.5 1010 1698 2295 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.02 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MAX 26 19 12 5.4 5.2 15 35 4 101 155 66 70 33 MIN 15 12 5.6 5.0 5.0 12 13 32 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 1985 1985 1984 1987 1985 1985 1987 1987 1987 1983 1984 1984 1984 MIN 17.2 12.6 5.48 30.2 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MIN 17.2 12.6 5.48 30.2 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 7.0 3.9 3.9 3.9 3.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 | | | | | | | | | | | | | | | 24 17 15 7.2 5.0 5.0 5.0 8.8 26 80 86 37 70 16 25 20 14 7.0 5.0 5.0 5.0 10 25 81 100 40 60 16 26 18 14 6.8 5.0 5.0 5.0 11 26 101 155 58 50 16 27 18 14 6.6 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.4 5.0 5.0 11 28 89 107 45 43 16 28 19 13 6.2 5.0 5.0 11 29 89 82 86 40 37 16 30 19 12 6.0 5.0 13 32 69 52 34 30 13 31 19 5.6 5.0 15 89 37 32 TOTAL 573 494 248.7 155.6 145.0 242.5 1010 1698 2295 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MMAX 26 19 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 ACFT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1988 1988 1988 1988 1989 1992 1992 1994 1986 1992 1992 1992 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR YEAR ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 1992 1992 1992 1994 1986 1995 1997 1997 1997 1998 1999 1992 1999 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR YEAR ANNUAL MEAN LOWEST ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1998
ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 26 6654 Apr 19 1997 TOTAL SEVEN-DAY MINIMUM A.9 Feb 4 5.0 Jan 26 6 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | 27 | | _ | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 29 19 13 6.2 5.0 5.2 11 30 67 75 36 31 16 30 19 12 6.0 5.0 5.0 13 32 69 52 34 30 13 31 19 5.6 5.0 15 89 37 32 TOTAL 573 494 248.7 155.6 145.0 242.5 1010 1698 2295 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1983 1984 1986 1980 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1988 1992 1992 1984 1986 1992 1992 1992 1992 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WATER YEARS 1983 - 1992 ANNUAL TOTAL 126 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1988 1992 1992 1984 1986 1992 1992 1992 1992 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1983 - 1992 ANNUAL TOTAL 205 JUN 7 155 JUN 26 540 Apr 19 1987 LOWEST ANNUAL MEAN 24.8 FOB 7 4.8 FOB 3 25.0 JAN 28 1988 INSTANTANEOUS PEAK FLOW 1.67 JUN 26 540 Apr 19 1987 LOWEST DAILY MEAN 24.8 FOB 7 4.8 FOB 3 25.0 JAN 28 1988 INSTANTANTONEOUS PEAK FLOW 1.67 JUN 26 560 4.8 PT 19 1987 INSTANTANTONEOUS PEAK STAGE 7.0 Apr INS | | | | | | | | | | | | | | | 30 19 12 6.0 5.0 13 32 69 52 34 30 13 31 19 5.6 5.0 15 89 37 32 3 TOTAL 573 494 248.7 155.6 145.0 242.5 1010 1698 2295 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1986 1987 1987 1987 1983 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1988 1992 1992 1984 1986 1992 1992 1992 1992 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WATER YEAR 1982 1992 1992 ANNUAL TOTAL 12694.1 9910.8 ANNUAL MEAN 34.8 27.1 46.6 HIGHEST ANNUAL MEAN 26 4.8 Feb 3 3 1984 1986 LOWEST ANNUAL MEAN 26 4.8 Feb 7 4.8 Feb 3 5.0 Jan 28 1984 LOWEST DAILY MEAN 34.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 44.8 Feb 7 4.8 Feb 3 3 1984 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 564 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 564 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 564 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 Apr 19 1987 LOWEST DAILY MEAN 54.8 Feb 7 5.0 Jan 28 566 | | | | | | | | | | | | | | | TOTAL 573 494 248.7 155.6 145.0 242.5 1010 1698 2295 1289 1225 535 MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 (WY) 1985 1985 1985 1985 1985 1985 1985 1985 | | | | | | | | | | | | | | | MEAN 18.5 16.5 8.02 5.02 5.00 7.82 33.7 54.8 76.5 41.6 39.5 17.8 MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1982 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1987 1987 1987 1983 1984 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> | | | | | | | | | | | | | | | MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1983 1984 1984 1983 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | TOTAL | 573 | 494 | 248.7 | 155.6 | 145.0 | 242.5 | 1010 | 1698 | 2295 | 1289 | 1225 | 535 | | MAX 26 19 12 5.4 5.2 15 54 101 155 66 70 33 MIN 15 12 5.6 5.0 4.8 5.3 17 32 47 27 28 12 AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1985 1987 1987 1987 1988 1988 1988 1988 1992 1992 1992 1992 | | | | | | | | | | | | | | | AC-FT 1140 980 493 309 288 481 2000 3370 4550 2560 2430 1060 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1983 1984 1984 1983 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | MAX | 26 | 19 | | 5.4 | 5.2 | 15 | 54 | 101 | 155 | 66 | 70 | 33 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY) MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 MAX 59.4 1985 1985 1984 1987 1985 1985 1987 1987 1987 1983 1984 1984 1984 1983 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | | | | | | | | | | | | | | | MEAN 31.0 18.5 10.9 7.28 8.79 13.1 37.2 76.8 149 105 80.2 42.3 MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1983 1984 1984 1983 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | AC-FT | 1140 | 980 | 493 | 309 | 288 | 481 | 2000 | 3370 | 4550 | 2560 | 2430 | 1060 | | MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1987 1983 1984 1984 1984 1988 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | EARS 1983 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MAX 59.4 31.8 17.9 12.5 20.5 29.2 85.4 148 234 254 161 83.0 (WY) 1985 1985 1984 1987 1985 1985 1987 1987 1987 1983 1984 1984 1984 1988 MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1984 1986 1992 1992 1992 1992 1992 1992 1992 199 | MEAN | 31.0 | 18.5 | 10-9 | 7.28 | 8.79 | 13.1 | 37-2 | 76.8 | 149 | 105 | 80.2 | 42.3 | | MY | | | | | | | 29.2 | | | | | | 83.0 | | MIN 17.2 12.6 5.48 3.02 5.00 7.82 17.6 39.4 76.5 41.6 39.5 17.8 (WY) 1988 1988 1988 1988 1992 1992 1992 1992 | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1983 - 1992 ANNUAL TOTAL 12694.1 9910.8 ANNUAL MEAN 34.8 27.1 46.6 HIGHEST ANNUAL MEAN 27.1 1994 LOWEST ANNUAL MEAN 205 Jun 7 155 Jun 26 540 Apr 19 1987 LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 5.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | 17.2 | 12.6 | | | | 7.82 | 17.6 | 39.4 | | 41.6 | 39.5 | 17.8 | | ANNUAL TOTAL 12694.1 9910.8 ANNUAL MEAN 34.8 27.1 46.6 HIGHEST ANNUAL MEAN 79.7 1984 LOWEST ANNUAL MEAN 205 Jun 7 155 Jun 26 540 Apr 19 1987 LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 660 127 50 PERCENT EXCEEDS 19 18 28 | (WY) | 1988 | 1988 | 1988 | 1988 | 1992 | 1992 | 1984 | 1986 | 1992 | 1992 | 1992 | 1992 | | ANNUAL MEAN 34.8 27.1 46.6 HIGHEST ANNUAL MEAN 205 Jun 7 155 Jun 26 540 Apr 19 1987 LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 3.66 Jun 26 654 Apr 19 1987 ANNUAL RUNOFF
(AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | SUMMARY | STATISTI | cs | FOR 1 | 1991 CALEN | DAR YEAR | | FOR 1992 WATE | ER YEAR | | WATER YE | ARS 1983 | - 1992 | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 B.0 Jan 26 B.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 B.0 Jan 28 B.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 B.0 Jan 28 B.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM A.9 Feb 4 B.0 Jan 28 B.0 Jan 3 1988 ANNUAL RUNOFF (AC-FT) B.0 | ANNUAL | TOTAL | | | 12694.1 | | | 9910.8 | | | | | | | LOWEST ANNUAL MEAN 205 Jun 7 155 Jun 26 540 Apr 19 1987 LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | | | | | | | 46.6 | | | | HIGHEST DAILY MEAN 205 Jun 7 155 Jun 26 540 Apr 19 1987 LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 127 50 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | HIGHEST | ANNUAL M | EAN | | | | | | | | | | | | LOWEST DAILY MEAN 4.8 Feb 7 4.8 Feb 3 3.0 Jan 3 1988 ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | | | | | | | | | | | ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | 205 | | | | | | 540 | - | | | ANNUAL SEVEN-DAY MINIMUM 4.9 Feb 4 5.0 Jan 28 3.0 Jan 3 1988 INSTANTANEOUS PEAK FLOW 167 Jun 26 654 Apr 19 1987 INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | 4.8 | | | | | | | | | | INSTANTANEOUS PEAK STAGE 3.66 Jun 26 7.00 Apr 19 1987 ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | 4.9 | Feb 4 | | | | | 3.0 | | | | ANNUAL RUNOFF (AC-FT) 25180 19660 33740 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | | | | | | | 654 | | | | 10 PERCENT EXCEEDS 85 60 127 50 PERCENT EXCEEDS 19 18 28 | | | | | 25122 | | | | Jun 26 | | 7.00 | Apr : | 19 1987 | | 50 PERCENT EXCEEDS 19 18 28 | a-Also occurred Feb 8-10. b-Also occurred Jan 4-29, 1988. c-From floodmarks. #### RESERVOIRS IN SOUTH PLATTE RIVER BASIN 06695500 ELEVENMILE CANYON RESERVOIR.—Lat 38°54'19", long 105°28'30", in N¹/25W¹/4 sec.20, T.13 S., R.72 W., Park County, Hydrologic Unit 10190001, at north end of dam on South Platte River, 8 mi southwest of Lake George. DRAINAGE AREA, 963 mi². PERIOD OF RECORD, October 1932 to current year. Prior to September 1938, published in WSP 1310. REVISED RECORDS, WSP 1730: Drainage area. GAGE, nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Denver Board of Water Commissioners); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. Reservoir is formed by concrete arch dam; storage began in October 1932; dam completed in November 1932 Spillway built 5.00 ft, higher, Aug. 1, 1957. Capacity, 97,780 acre-ft, between elevations 8,488.25 ft, invert of outlet pipe, and 8,597.00 ft, crest of spillway. Dead storage is negligible. Figures given represent total contents. Water is for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners. EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 111,200 acre-ft, Apr. 28, 1970, elevation, 8,600.82 ft; no contents at times in 1935. EXTREMES FOR CURRENT YEAR: Maximum contents observed, 100,700 acre-ft, Apr. 8-13, 15, Aug. 25, elevation, 8,597.86 ft; minimum observed, 99,180 acre-ft, June 18-20, elevation, 8,597.41 ft. 06701000 CHEESMAN LAKE.—Lat 39°12'26", long 105°16'18", in NW¹/45W¹/4 sec.6, T.10 S., R.70 W., Douglas County, Hydrologic Unit 10190002, at dam on South Platte River, 4.1 mi southwest of Deckers. DRAINAGE AREA, 1,752 mi². PERIOD OF RECORD, September 1900 to December 1901, September 1902 to current year. Prior to October 1938, published in WSP 1310. Published as Lake Cheesman prior to 1947. REVISED RECORDS, WSP 1730: Drainage area. GAGE, nonrecording gage read once daily. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Denver Board of Water Commissioners). Reservoir is formed by masonry dam. Storage began September 1900. Dam completed about October 1902. Capacity, 79,060 acre-ft at gage height 212 ft, spillway crest, above sill of lowest gate. No dead storage. Figures given represent total contents. Water is for municipal use by city of Denver. Records provided by Denver Board of Water Commissioners. EXTREMES FOR PERIOD OF RECORD: Maximum contents observed, 81,360 acre-ft, Apr. 29, 1970, gage height, 214.60 ft, minimum observed since appreciable storage was attained, 3,650 acre-ft, Apr. 20, 1933, gage height, EXTREMES FOR CURRENT YEAR: Maximum contents observed, 79,460 acre-ft, Aug. 26, gage height, 212.45 ft; minimum observed, 60,660 acre-ft, Oct. 25-27, gage height, 189.22 ft. MONTHEND ELEVATION IN FEET AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents | Change in contents | Gage
height | Contents | Change in contents | |-------------|--|---|--|--|--|---| | Date | a(feet) | (acre-feet | (acre-feet) | (feet) | (acre-feet) | (acre-feet) | | 06695500 | ELEVENMILE CANYON | RESERVOIR | | 06701000 | CHEESMAN | LAKE | | Sept. 30 | 8,597.49
8,597.49 | 99,860
99,450
99,450
99,760 | -410
0
+310 | 191.75
189.52
194.66
195.13 | 62,560
60,890
64,790
65,150 | -
-1,670
+3,900
+360 | | CAL YR 1991 | - | - | +1,130 | - | - | +5,820 | | Jan. 31 | 8,597.46
8,597.64
8,597.54
8,597.58
8,597.61
8,597.66
8,597.56 | 99,620
99,350
99,970
99,620
99,760
99,860
100,000
99,690 | -140
-270
+620
-350
+140
+100
+140
-310
+410 | 194.60
193.07
197.31
206.33
197.50
207.40
211.59
211.75
196.00 | 64,740
63,560
66,860
74,200
67,010
75,110
78,710
78,850
65,830 | -410
-1,180
+3,300
+7,340
-7,190
+8,100
+3,600
+140
-13,020 | | WTR YR 1992 | - | - | +240 | - | - | +3,270 | a-National Geodetic Vertical Datum of 1929. #### 06701500 SOUTH PLATTE RIVER BELOW CHEESMAN LAKE, CO LOCATION.--Lat 39°12'33", long 105°16'02", in SE¹/4NW¹/4 sec.6, T.10 S., R.70 W., Jefferson County, Hydrologic Unit 10190002, on left bank 1,400 ft downstream from toe of Cheesman Dam and 3.8 mi southwest of Deckers. DRAINAGE AREA .-- 1,752 mi2. PERIOD OF RECORD. -- October 1924 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS. -- WSP 1310: 1949. WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Datum of gage is 6,609.29 ft above National Geodetic Vertical Datum of 1929. Prior to May 14, 1956, at site 370 ft upstream at datum 0.50 ft, higher. REMARKS. -- No estimated daily discharges. Records good. Natural flow of stream affected by minor transmountain diversion from Colorado River basin through Boreas Pass ditch, Elevenmile Canyon Reservoir and Cheesman Lake (see elsewhere in this report), diversions for irrigation of about 40,000 acres, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHAR | GE, CUBI | C FEET PE | | | YEAR OCTOB | ER 1991 TO | SEPTEM | BER 1992 | | | |-------------|-----------------------|-------------|-------------|---------------|-------------|---------------------|------------------------|--------------------|--------------------|------------------|--------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 81 | 51 | 70 | 94 | 106 | 89 | 66 | 432 | 62 | 78 | 220 | 374 | | 2 | 42 | 41 | 69 | 94 | 106 | 89 | 66 | 432 | 65 | 92 | 284 | 476 | | 3 | 44 | 41 | 70 | 120 | 106 | 90 | 66 | 432 | 65 | 92 | 311 | 562 | | 4
5 | 45
45 | 41
41 | 69
82 | 137
137 | 106
106 | 63
44 | 66
66 | 430
429 | 66
66 | 92
92 | 259
198 | 601
599 | | | | | | | | | | | | | | | | 6
7 | 45 | 41 | 108 | 137 | 106 | 46 | 72 | 429 | 67 | 91 | 198 | 595 | | 8 | 45
44 | 42
42 | 119
119 | 111
84 | 98
89 | 46
47 | 81
81 | 428
414 | 68
68 | 92
91 | 230
269 | 526
425 | | 9 | 44 | 42 | 120 | 85 | 89 | 47 | 117 | 391 | 120 | 91 | 269 | 322 | | 10 | 44 | 42 | 121 | 85 | 89 | 47 | 198 | 301 | 133 | 91 | 294 | 230 | | 11 | 44 | 42 | 107 | 85 | 89 | 47 | 229 | 265 | 75 | 91 | 311 | 160 | | 12 | 44 | 42 | 81 | 85 | 89 | 47 | 189 | 345 | 62 | 91 | 261 | 161 | | 13 | 44 | 42 | 81 |
86 | 89 | 48 | 147 | 371 | 62 | 91 | 154 | 162 | | 14 | 105 | 42 | 81 | 108 | 89 | 48 | 147 | 371 | 62 | 91 | 100 | 162 | | 15 | 183 | 54 | 81 | 122 | 89 | 48 | 85 | 371 | 62 | 113 | 101 | 162 | | 16 | 214 | 71 | 81 | 122 | 89 | 48 | 39 | 372 | 111 | 162 | 154 | 204 | | 17 | 233 | 71 | 81 | 122 | 89 | 49 | 39 | 374 | 160 | 177 | 201 | 231 | | 18 | 253 | 71 | 81 | 122 | 90 | 50 | 40 | 397 | 160 | 176 | 166 | 251 | | 19
20 | 264
264 | 71
71 | 90
96 | 122
122 | 97
106 | 50
57 | 39
48 | 432
474 | 161
124 | 176
176 | 128
128 | 289
303 | | 20 | 204 | /1 | 90 | 122 | 106 | 3/ | 40 | 4/4 | 124 | 176 | 120 | 303 | | 21 | 263 | 71 | 96 | 123 | 106 | 71 | 108 | 504 | 100 | 176 | 171 | 361 | | 22 | 218 | 71 | 96 | 122 | 106 | 85 | 189 | 432 | 101 | 176 | 223 | 400 | | 23
24 | 1 89
177 | 71
70 | 96 | 122 | 106 | 95 | 250
250 | 377
3 49 | 113 | 160 | 223
151 | 399
399 | | 25 | 125 | 70 | 96
96 | 121
121 | 106
106 | 111
122 | 250 | 322 | 1 43
107 | 123
109 | 77 | 400 | | | 120 | , • | ,, | | 100 | 122 | 200 | 522 | 107 | 107 | • • | | | 26 | 103 | 70 | 96 | 121 | 106 | 122 | 285 | 224 | 66 | 82 | 179 | 400 | | 27
28 | 103
95 | 70
70 | 96
96 | 121 | 106
95 | 122 | 346 | 126 | 63 | 79 | 376
341 | 400
384 | | 29 | 95
79 | 70
70 | 96
96 | 112
106 | 95
89 | 122
122 | 370
399 | 75
60 | 63
63 | 167
210 | 292 | 362 | | 30 | 71 | 70 | 96 | 106 | | 113 | 426 | 61 | 66 | 190 | 245 | 361 | | 31 | 65 | | 94 | 106 | | 85 | | 62 | | 174 | 243 | | | TOTAL | 3615 | 1704 | 2861 | 3461 | 2843 | 2270 | 4754 | 10482 | 2704 | 3892 | 6757 | 10661 | | MEAN | 117 | 56.8 | 92.3 | 112 | 98.0 | 73.2 | 158 | 338 | 90.1 | 126 | 218 | 355 | | MAX | 264 | 71 | 121 | 137 | 106 | 122 | 426 | 504 | 161 | 210 | 376 | 601 | | MIN | 42 | 41 | 69 | 84 | 89 | 44 | 39 | 60 | 62 | 78 | 77 | 1 60 | | AC-FT | 7170 | 3380 | 5670 | 68 60 | 5640 | 4500 | 9430 | 20790 | 5360 | 7720 | 13400 | 21150 | | STATIST | ICS OF M | ONTHLY MEA | N DATA FO | R WATER | YEARS 1925 | - 1992 | 2, BY WATER | YEAR (WY) | | | | | | MEAN | 100 | CE 0 | 45.0 | 50.5 | 40.3 | E1 ^ | | 202 | 200 | 245 | 240 | 197 | | MEAN
MAX | 123
380 | 65.2
266 | 45.8
118 | 50.5
130 | 49.3
143 | 51.0
2 08 | 147
932 | 282
1716 | 326
1067 | 345
984 | 342
984 | 431 | | (WY) | 1985 | 1985 | 1991 | 1990 | 1990 | 1986 | 1942 | 1970 | 1949 | 1949 | 1984 | 1990 | | MIN | 12.9 | 6.33 | 5.26 | 5.26 | 2.76 | 3.11 | 2.00 | 11.0 | 38.5 | 53.5 | 66.7 | 33.5 | | (WY) | 1965 | 1960 | 1926 | 1926 | 1957 | 1957 | 1957 | 1938 | 1989 | 1967 | 197 8 | 1978 | | CURALADY | OMATICO: | | DOD 1 | 001 0070 | מבחע מבחע | | DOD 1002 W | MED VEND | | WAMED VE | ADC 1005 | 1000 | | SUMMARI | STATIST | ICS | FOR | 991 CALE | NDAR YEAR | | FOR 1992 WA | TER IEAR | | WATER YE | AK5 1925 | - 1992 | | ANNUAL | | | | 53777 | | | 56004 | | | _ | | | | ANNUAL | | (DAN) | | 147 | | | 153 | | | 169 | | 1970 | | | ANNUAL M
ANNUAL MI | | | | | | | | | 450
60.1 | | 1978 | | | DAILY M | | | 630 | Sep 12 | | 601 | Sep 4 | | 4580 | Apr | 29 1970 | | | DAILY MEA | | | a 28 | Feb 15 | | 601
6 ₃₉ | Apr 16 | | c _{1.6} | | B 1957 | | ANNUAL | SEVEN-DAY | MINIMUM | | 31 | Feb 14 | | 41 | Nov 2 | | 1.6 | Apr | B 1957 | | | | EAK FLOW | | | | | 605 | Sep 3 | | 4640 | | 29 1970 | | | | EAK STAGE | | 106700 | | | 2.91 | Sep 3 | | 13.40 | Apr | 29 1970 | | | RUNOFF (2
ENT EXCE | | | 106700
379 | | | 111100
371 | | | 122700
429 | | | | | ENT EXCE | | | 96 | | | 106 | | | 91 | | | | | ENT EXCE | | | 42 | | | 47 | | | 17 | | | | | , | | | | | | | | | | | | a-Also occurred Feb 16-18. b-Also occurred Apr 17 and 19. c-Also occurred Apr 9-14, 1957. 06706000 NORTH FORK SOUTH PLATTE RIVER BELOW GENEVA CREEK, AT GRANT, CO LOCATION.--Lat 39°27'26", long 105°39'29", in NW¹/4 sec.10, T.7 S., R.74 W., Park County, Hydrologic Unit 10190002, on left bank at Grant, 1,550 ft downstream from Geneva Creek, and 1.3 mi downstream from east portal of Harold D. Roberts tunnel. DRAINAGE AREA. -- 127 mi2. PERIOD OF RECORD.--July 1908 to November 1913 (published as "at Cassells"), June 1942 to current year. Monthly discharge only for some periods, published in WSP 1310. December 1913 to March 1918, equivalent records may be obtained by summation of flow of North Fork South Platte River at Grant (above Geneva Creek) and Geneva Creek at Grant. REVISED RECORDS.--WSP 956: Drainage area at site at Cassells. WSP 1116: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is 8,560.81 ft above National Geodetic Vertical Datum of 1929, adjustment of 1960. See WSP 1710 or 1730 for history of changes prior to July 23, 1948. July 23, 1948, to Nov. 15, 1968, water-stage recorder at site 50 ft downstream at datum 3.49 ft, lower. REMARKS.--Estimated daily discharges: Oct. 18, 20, 21, Nov. 3, and Nov. 4. Records good. Small diversions upstream from station for irrigation of about 200 acres. Diversions from Colorado River basin to North Fork South Platte River upstream from station through Harold D. Roberts tunnel (see elsewhere in this report). COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | Dar V | ~ <i>]</i> . | | | | | | | | | | | | |---------------|------------------------|--------------|-------------|-------------------|---------------------|------------------|---------------|------------------|--------------|--------------------------|-------------|-------------| | | | DISCHARGE | c, cubic | FEET PE | | | YEAR OCTOBER | R 1991 1 | ro septembe | R 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 192 | 124 | 130 | 103 | 106 | 103 | 21 | 81 | 352 | 470 | 270 | 45 | | 2 | 127 | 162 | 130 | 103 | 109 | 106 | 21 | 78 | 346 | 462 | 270 | 44 | | 3
4 | 127
124 | 162
170 | 127
124 | 103
103 | 109
109 | 109
109 | 22
24 | 74
82 | 366
434 | 420
413 | 270
270 | 42
41 | | 5 | 124 | 170 | 118 | 106 | 109 | 109 | 25 | 87 | 448 | 406 | 270 | 82 | | 6 | 124 | 174 | 115 | 106 | 106 | 106 | 27 | 97 | 298 | 413 | 270 | 138 | | 7 | 174 | 173 | 115 | 106 | 106 | 109 | 30 | 147 | 115 | 427 | 265 | 188 | | 8
9 | 270
270 | 192
220 | 118
115 | 106
106 | 106
106 | 103
100 | 30
31 | 173
140 | 109
138 | 427
420 | 265
265 | 265
260 | | 10 | 270 | 220 | 115 | 106 | 106 | 109 | 34 | 98 | 287 | 413 | 270 | 260 | | 11 | 270 | 215 | 118 | 106 | 106 | 109 | 37 | 85 | 413 | 413 | 276 | 265 | | 12
13 | 270
270 | 206
210 | 103
100 | 106
106 | 109
109 | 109
109 | 39
41 | 90
84 | 478
470 | 427
427 | 276
270 | 260
235 | | 13 | 103 | 210 | 103 | 106 | 109 | 109 | 39 | 85 | 470 | 427 | 270 | 265 | | 15 | 31 | 197 | 115 | 106 | 109 | 109 | 36 | 91 | 485 | 406 | 265 | 265 | | 16 | 30 | 174 | 115 | 106 | 109 | 109 | 39 | 95 | 508 | 413 | 265 | 269 | | 17
18 | 28
28 | 170
166 | 109
109 | 106
103 | 109
109 | 109
109 | 39
37 | 98
112 | 500
500 | 399
399 | 282
276 | 43
40 | | 19 | 27 | 142 | 109 | 103 | 109 | 109 | 31 | 120 | 508 | 392 | 270 | 44 | | 20 | 26 | 130 | 109 | 103 | 106 | 97 | 31 | 134 | 470 | 399 | 265 | 45 | | 21 | 24 | 134 | 109 | 103 | 103 | 82 | 30 | 139 | 448 | 346 | 265 | 42 | | 22
23 | 23
24 | 127
124 | 109
106 | 100
106 | 103
103 | 70
6 5 | 34
58 | 128
124 | 448
448 | 292
292 | 265
260 | 41
39 | | 24 | 24 | 130 | 106 | 106 | 106 | 34 | 45 | 133 | 478 | 292 | 287 | 39 | | 25 | 26 | 138 | 106 | 106 | 106 | 19 | 33 | 159 | 462 | 304 | 138 | 37 | | 26 | 26 | 138 | 103 | 106 | 106 | 19 | 34 | 259 | 427 | 287 | 63 | 37 | | 27
28 | 26
24 | 138
138 | 103
103 | 106
9 7 | 103
103 | 19
19 | 37
46 | 371
349 | 420
385 | 255
265 | 49
44 | 36
36 | | 29 | 17 | 134 | 103 | 106 | 103 | 19 | 50 | 333 | 385 | 276 | 42 | 36 | | 30 | 40 | 130 | 103 | 106 | | 21 | 72 | 366 | 392 | 276 | 41 | 34 | | 31 | 73 | | 103 | 106 | | 21 | | 366 | | 270 | 44 | | | TOTAL
MEAN | 3212
104 | 4914
164 | 3451
111 | 3247
105 | 30 92
107 | 2529
81.6 | 1073
35.8 | 4778
154 | 11988
400 | 11514
371 | 6898
223 | 3473
116 | | MAX | 270 | 220 | 130 | 106 | 107 | 109 | 33.8
72 | 371 | 508 | 470 | 223
287 | 269 | | MIN | 17 | 124 | 100 | 97 | 103 | 19 | 21 | 74 | 109 | 255 | 41 | 34 | | AC-FT | 6370 | 9 750 | 6850 | 6440 | 6130 | 5020 | 2130 | 9480 | 23780 | 22840 | 13680 | 6890 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 1909 | - 1992 | , BY WATER Y | EAR (WY |) | | | | | MEAN | 65.1 | | 48.6 | 44.2 | 40.5 | 34.2 | 46.9 | 150 | 283 | 227 | 155 | 84.2 | | MAX
(WY) | 340
1979 | | 130
1990 | 161
1981 | 132
1981 | 116
1978 | 162
1967 | 303
1970 | 493
1909 | 560
1978 | 450
1978 | 268
1909 | | MIN | 20.5 | | 11.4 | 8.57 | 8.43 | 10.6 | 18.2 | 67.4 | 74.0 | 49.5 | 34.6 | 26.0 | | (WY) | 1945 | | 1944 | 1944 | 1944 | 1944 | 1944 | 1963 | 1963 | 1963 | 1954 | 1944 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1909 - | - 1992 | | ANNUAL | | | | 62474 | | | 60169 | | | a | | | | ANNUAL | MEAN
ANNUAL M | CE A M | | 171 | | | 164 | | | ^a 71.6
239 | | 1978 | | | ANNUAL ME | | | | | | | | | 35.9 | | 1954 | | | DAILY ME | | | 613 | Jun 30 | | 508 | Jun 16 | | 860 | Jun 8 | | | | DAILY MEA | N
MINIMUM | | 17
24 | Oct 29
Oct 23 | | 17
20 | Oct 29
Mar 25 | | 6.5
7.2 | | | | INSTANT | ANEOUS PE | AK FLOW | | 24 | OCC 23 | | 538 | Jun 24 | | 990 | Jun 7 | | | INSTANT | ANEOUS PE | AK STAGE | | | | | 1.80 | Jun 24 | | 4.72 | | | | | RUNOFF (A
ENT EXCEE | | : | 123900
398 | | | 119300
399 | | | 51870
270 | | | | | ENT EXCEE | | | 118 | | | 109 | | | 55 | | | | 90
PERC | ENT EXCEE | DS | | 45 | | | 34 | | | 17 | | | a-Adjusted for inflow from Harold D. Roberts tunnel since 1964. #### 06709000 PLUM CREEK NEAR SEDALIA, CO LOCATION.--Lat 39°26'18", long 104°58'57", in NE¹/4SE¹/4 sec.15, T.7 S., R.68 W., Douglas County, Hydrologic Unit 10190002, on south side of county road no. 20 bridge, over Plum Creek, 1.0 mi west of Sedalia, and 1.4 mi downstream of the confluence of East and West Plum Creeks. PERIOD OF RECORD .-- June 1942 to September 1947. August 1990 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,720 ft above National Geodetic Vertical Datum of 1929, from topographic map. Aug. 1942 to Sept. 1947, water-stage recorder at site 150 ft upstream at different datum. Prior to Aug. 1942, non-recording gage at bridge. REMARKS.--Estimated daily discharges: Jan. 9 to Feb. 12 and Aug. 13-17. Records poor. Diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 COOPERATION .-- U.S. Army Corps of Engineers. | | | DISCHA | RGE, CUBI | C FEET PER | DAIL) | WATER I | VALUES | K 1991 T |) SEPTEM | BEK 1992 | | | |---|---|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--|-------------------------------------|--|------------------------------------|--| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.9
1.7
1.6
2.2
3.2 | 12
12
11
9.1
9.0 | 8.6
9.3
10
9.7 | 13
12
14
17
15 | 15
16
16
15
16 | 24
22
20
37
38 | 62
60
60
65
70 | 79
64
65
61
53 | 52
62
55
47
42 | 47
45
39
41
37 | 3.3
3.1
3.0
4.4
3.9 | 9.4
8.3
8.9
9.1
7.2 | | 6
7
8
9
10 | 3.0
2.6
2.2
2.3
2.1 | 8.8
7.7
7.4
7.0
7.4 | 11
14
13
13 | 14
16
14
13
15 | 17
18
17
19
21 | 32
29
33
34
36 | 71
76
83
84
88 | 57
56
50
39
42 | 49
52
47
45
45 | 37
31
24
26
21 | 4.1
3.3
2.7
2.7
2.9 | 6.0
3.7
3.4
4.0
8.0 | | 11
12
13
14
15 | 2.1
2.4
2.7
2.6
2.6 | 7.2
6.5
5.9
6.0
7.5 | 12
13
13
12
13 | 16
15
14
13 | 23
25
28
29
25 | 39
41
37
41
41 | 107
119
139
169
164 | 39
35
32
33
27 | 41
41
38
36
29 | 23
26
23
23
26 | 3.3
4.1
4.7
5.4
6.0 | 15
13
9.6
7.2
5.1 | | 16
17
18
19
20 | 2.7
3.6
3.9
5.2
5.2 | 11
15
15
22
19 | 15
16
15
15 | 12
12
11
12
12 | 28
29
26
22
28 | 37
38
33
34
35 | 160
165
156
151
146 | 28
26
25
22
19 | 29
23
24
32
41 | 26
26
15
13 | 6.4
7.0
7.6
7.2
6.6 | 4.3
3.8
4.0
4.4
4.5 | | 21
22
23
24
25 | 5.2
5.2
4.9
4.7
4.9 | 19
19
25
29
28 | 15
14
13
11
9.3 | 12
13
14
15
14 | 31
33
34
28
29 | 32
38
38
36
40 | 155
142
123
127
130 | 20
26
28
24
27 | 33
36
21
25
52 | 17
19
20
21
17 | 5.4
5.0
6.2
32
39 | 4.3
4.2
4.2
3.8
3.3 | | 26
27
28
29
30
31 | 4.9
4.9
5.5
7.7
9.6 | 22
20
20
9.8
8.9 | 8.8
8.0
11
13
13 | 13
13
14
14
14 | 22
23
26
27 | 36
32
58
58
56
56 | 107
106
96
93
87 | 27
28
36
37
29
34 | 72
55
52
49
51 | 13
8.9
5.2
4.7
4.5
4.7 | 31
21
17
10
13
8.4 | 3.2
3.4
4.2
4.1
3.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 124.3
4.01
11
1.6
247 | 407.2
13.6
29
5.9
808 | 379.7
12.2
16
8.0
753 | 421
13.6
17
11
835 | 686
23.7
34
15
1360 | 1161
37.5
58
20
2300 | 3361
112
169
60
6670 | 1168
37.7
79
19
2320 | 1276
42.5
72
21
2530 | 696.0
22.5
47
4.5
1380 | 279.7
9.02
39
2.7
555 | 176.6
5.89
15
3.0
350 | | STATIST | CICS OF MO | ONTHLY ME | AN DATA FO | OR WATER Y | EARS 1942 | - 1992, | BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 8.83
31.8
1943
1.32
1945 | 16.1
30.6
1943
3.34
1945 | 13.3
29.1
1943
5.00
1944 | 11.9
23.0
1943
4.78
1991 | 19.1
27.8
1944
6.50
1991 | 21.8
37.5
1992
9.92
1991 | 54.9
112
1992
15.7
1943 | 110
332
1944
5.06
1946 | 41.9
134
1947
2.70
1946 | 17.0
71.2
1947
1.91
1945 | 25.0
147
1945
.29
1943 | 5.66
13.6
1947
.000
1943 | | SUMMARY | STATIST | ics | FOR I | 991 CALEN | DAR YEAR | F | FOR 1992 WAT | ER YEAR | | WATER YE | EARS 1942 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MEA SEVEN-DAY ANEOUS PA | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 5498.0
15.1
62
a1.0
1.3
10910
38
9.7
2.2 | Jun 12
Jul 30
Sep 16 | | 10136.5
27.7
169
1.6
2.3
203
4.70
20110
59
17
4.0 | Apr 14
Oct 3
Oct 1
Apr 17
Apr 17 | | 29.1
58.3
10.6
915
0.00
47700
6.52
21090
60
12
1.2 | Jul 1
D Aug 1
Aug | 1947
1946
8 1945
11 1943
29 1943
8 1945
8 1945 | a-Also occurred Jul 31, Aug 1, Sep 9, 16-18, and Sep 23. b-No flow at times during 1943, 1944, and 1946. c-Maximum gage height, 5.61 ft, Jan 21, backwater from ice. d-Site and datum then in use, from rating curve extended above 350 ft³/s on basis of slope-area determination of peak flow. #### 06709530 PLUM CREEK AT TITAN ROAD NEAR LOUVIERS, CO LOCATION.--Lat 39°30'27", long 105°01'26", on line between sec.20 and sec.29, T.6 S., R.68 W., Douglas County, Hydrologic Unit 10190002, on upstream side of bridge on Titan Road, 2.4 mi north of Louviers. DRAINAGE AREA. -- 315 mi2. PERIOD OF RECORD. -- May 1, 1984 to current year. REVISED RECORDS. -- WDR CO-86-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 2-12, 17-24, Nov. 30 to Dec. 12, Dec. 14-19, Dec. 25 to Jan. 28, Feb. 7-23, and Mar. 9. Records poor. Diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAF | GE, CUBI | C FEET PE | | WATER | YEAR OCTOBE | R 1991 1 | O SEPTEM | BER 1992 | | | |---|---|--|---------------------------------------|---|--------------------------------------|--------------------------------------|--|--|-------------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 5.2
8.0
6.0
4.0
6.0 | 8.0
8.0
10
12
16 | 10
12
12
11
10 | 8.1
8.2
4.3
2.7
4.7 | 74
74
69
88
51 | 42
24
26
32
28 | 54
42
43
39
42 | 30
31
31
31
24 | 27
22
15
18
20 | .00
.00
.00 | 26
25
16
10
5.9 | | 6
7
8
9
10 | .00
.00
.00 | 6.0
7.0
7.0
8.0
9.0 | 16
15
15
14
15 | 9.0
8.0
8.0
9.0 | 4.2
6.0
8.0
12 | 41
36
50
100
52 | 25
33
37
37
55 | 58
60
55
53
31 | 23
25
29
25
26 | 18
15
16
16
15 | .00
.00
.00 | 5.0
3.6
2.2
3.2
5.4 | | 11
12
13
14
15 | .00
.00
.00
.00 | 9.0
9.0
9.4
7.2
6.9 | 15
16
17
18
18 | 8.0
8.0
8.0
7.0 | 18
21
23
23
22 | 47
47
49
49
46 | 75
81
111
156
202 | 25
25
23
16
15 | 29
26
33
24
18 | 15
16
13
12
11 | .00
.00
.00 | 5.3
3.6
2.2
1.7
.62 | | 16
17
18
19
20 | .00
.00
.00 | 9.5
10
10
11
13 | 17
16
14
13 | 8.0
8.0
8.0
8.0 | 22
23
27
33
38 | 50
46
46
33
25 | 209
232
327
252
166 | 14
15
16
17
16 | 16
27
21
19
31 | 11
12
12
13
13 | .00
.30
.50
.18 | .24
.11
.00
.50
.80 | | 21
22
23
24
25 | .00
.00
.00 | 12
11
11
14
17 | 13
9.3
10
8.5
9.0 | 9.0
9.0
9.0
10 | 42
48
51
55
54 | 22
30
26
30
30 |
112
99
92
82
72 | 16
13
11
8.3 | 17
17
16
19
53 | 11
10
10
10
9.3 | .00
.00
.00
28
49 | .94
1.0
.30
.05 | | 26
27
28
29
30
31 | .45
.99
1.3
2.8
4.1
5.3 | 16
17
17
12
10 | 9.0
9.0
10
9.0
8.0
8.0 | 10
10
10
10
9.1
9.6 | 60
60
59
65 | 24
18
51
33
41
45 | 60
46
61
56
55 | 8.2
8.4
13
12
12 | 81
78
78
74
73 | 9.0
7.4
4.5
1.8
.95 | 61
61
46
33
28
20 | .00
.03
.82
1.2
.18 | | TOTAL
MEAN
MAX
MIN
AC-FT | 14.94
.48
5.3
.00
30 | 298.2
9.94
17
4.0
591 | 388.8
12.5
18
8.0
771 | 286.7
9.25
12
7.0
569 | 817.2
28.2
65
2.7
1620 | 1423
45.9
100
18
2820 | 2885
96.2
327
24
5720 | 784.9
25.3
60
8.2
1560 | 1025
34.2
81
16
2030 | 383.96
12.4
27
.01
762 | 326.98
10.5
61
.00
649 | 121.89
4.06
26
.00
242 | | | | | | | | • | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 17.6
71.8
1985
.48
1992 | 21.2
75.9
1985
5.16
1990 | 16.6
44.3
1985
6.30
1991 | 14.4
29.7
1985
4.86
1991 | 20.0
42.7
1988
5.14
1990 | 35.2
62.1
1988
18.3
1991 | 74.5
126
1987
23.2
1989 | 197
779
1984
10.4
1989 | 53.5
135
1984
5.89
1990 | 16.9
45.4
1984
1.16
1989 | 17.1
63.4
1984
.69
1986 | 7.99
31.1
1984
.000
1990 | | SUMMARY | STATIST | ıcs | FOR 1 | 1991 CALEN | DAR YEAR | E | FOR 1992 WAT | ER YEAR | | WATER Y | EARS 1984 | 1 - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M ANNUAL M DAILY ME SEVEN-DAY ANEOUS PI | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 6119.32
16.8
152
a.00
.00
12140
46
9.0 | Jun 2
Jul 6
Jul 16 | | 8756.57
23.9
327
200
.00
367
8.32
17370
55
13 | Apr 18
Oct 1
Oct 1
Apr 18
Apr 18 | | 33.2
68.3
8.8
1770
0.0
2300
47.0
24040
81
17 | 6 May
0 Jul
0 Jul
May
0 May | 1987
1989
15 1984
2 1989
2 1989
15 1984
15 1984 | a-No flow many days. b-No flow many days, most years. c-Maximum gage height, 9.14 ft, Mar 9, backwater from ice. d-Maximum gage-height, 9.14 ft, Mar 9, 1992, backwater from ice. #### 06709600 CHATFIELD LAKE NEAR LITTLETON, CO LOCATION.--Lat 39°33'26", long 105°03'27", in NW¹/4SE¹/4 sec.1, T.6 S., R.69 W., Jefferson County, Hydrologic Unit 10190002, near left end of dam on South Platte River at mouth of Plum Creek and 4.7 mi southwest of courthouse in Littleton. DRAINAGE AREA. -- 3,018 mi2. PERIOD OF RECORD.--Contents, May 1975 to current year. Water-quality data available, October 1976 to September 1981. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army, Corps of Engineers); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by earthfill dam. Storage began May 29, 1975. Capacity, 235,000 acre-ft at elevation 5,500 ft, crest of spillway. No dead storage. Figures given represent total contents. Reservoir is for flood control and recreation. COOPERATION .-- Records provided by U.S. Army, Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 54,690 acre-ft, May 26, 1980, elevation, 5,447.58 ft; minimum since first filling in June 1979; 17,300 acre-ft, Nov. 17, 1986, elevation 5,424.46 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 27,740 acre-ft, Apr. 19, elevation, 5,432.48 ft; minimum, 20,610 acre-ft, July 7, elevation, 5,427.11 ft. #### MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents (acre-feet) | Change in contents
(acre-feet) | |--|--|---|---| | Sept. 30. | 5,427.82
5,428.64
5,429.77
5,431.68 | 22,530
23,580
25,080
27,700 | +1,050
+1,500
+2,620 | | CAL YR 1991 | - | - | +6,550 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 5,432.03
5,432.02
5,432.11
5,430.58
5,427.19
5,427.43
5,429.25
5,428.47
5,428.90 | *27,090
27,080
27,210
25,070
20,710
21,000
23,300
22,300
22,840 | *-610
- 10
+130
-2,140
-4,360
+290
+2,300
-1,000
+540 | | WTR YR 1992 | _ | - | +310 | ^{*-}New area-capacity table. #### 06710245 SOUTH PLATTE RIVER AT UNION AVENUE, AT ENGLEWOOD, CO LOCATION.--Lat 39°37'52", long 105°00'50", in NW¹/4SW¹/4 sec.9, T.5 S., R.68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank 280 ft downstream from Big Dry Creek, 285 ft upstream from Union Avenue bridge in Englewood, and 7.5 mi downstream from Chatfield Dam. DRAINAGE AREA. -- 3,043 mi2. PERIOD OF RECORD. -- April 11, 1989 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.—Estimated daily discharges: Nov. 20 to Dec. 19, Dec. 24 to Jan. 6, Jan. 20, 30, and Feb. 3-4. Records fair, except for estimated daily discharges and discharges less than 20 ft³/s or greater than 300 ft³/s, which are poor. Flow regulated by Chatfield Reservoir (station 06709600) 7.1 mi upstream. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARGE | E, CUBIC | FEET PER | SECOND, | WATER
MEAN | YEAR OCTOBE | R 1991 1 | O SEPTEMB | ER 1992 | | | |---|--------------------------------------|--|-------------------------------------|---|--------------------------------------|--|--|--|-----------------------------------|---|-----------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 30
29
27
36
31 | 16
63
76
84
82 | 30
28
26
25
23 | 11
13
15
20
30 | 78
78
76
74
74 | 62
62
62
222
140 | 250
205
153
146
114 | 206
359
357
310
313 | 300
199
139
77
101 | 145
207
136
159
91 | 61
61
60
55
129 | 35
35
32
31
30 | | 6
7
8
9
10 | 29
27
27
24
23 | 127
150
106
95
100 | 22
21
20
19
18 | 50
68
91
107
72 | 73
73
74
75
75 | 127
150
157
179
173 | 113
120
134
144
146 | 275
184
188
189
198 | 219
214
254
282
139 | 125
136
78
61
128 | 130
45
38
36
60 | 31
31
30
30
31 | | 11
12
13
14
15 | 22
22
23
23
23 | 94
89
29
24
29 | 18
17
16
15
14 | 67
68
78
105
101 | 76
7 4
73
73
72 | 158
132
126
118
112 | 147
152
161
182
215 | 217
228
122
111
106 | 169
227
143
160
266 | 211
297
233
131
133 | 127
171
192
201
133 | 31
32
31
30
27 | | 16
17
18
19
20 | 22
21
21
21
20 | 49
72
59
66
55 | 13
12
12
11
11 | 88
75
66
73
70 | 71
69
68
71
71 | 110
106
104
108
108 | 294
286
126
119
233 | 128
138
139
147
175 | 297
247
158
111
121 | 134
126
92
96
152 | 162
132
147
176
125 | 27
27
28
28
29 | | 21
22
23
24
25 | 20
20
20
31
21 | 50
45
40
30
30 | 11
11
11
10
10 | 71
67
72
62
58 | 71
71
74
71
81 | 109
118
111
89
92 | 368
334
191
164
262 | 142
142
88
88
156 | 152
151
149
141
142 | 137
118
93
119
123 | 114
92
87
490
85 | 28
27
26
27
27 | | 26
27
28
29
30
31 | 20
17
23
26
21
18 | 35
60
45
35
32 | 10
10
10
10
10 | 59
62
60
60
70
84 | 118
59
59
64
 | 107
108
276
155
178
259 | 273
280
288
279
213 | 198
178
251
225
205
225 | 167
311
441
339
280 | 137
83
53
83
133
119 | 36
34
32
31
30
31 | 27
27
27
27
27 | | TOTAL MEAN MAX MIN AC-FT | 738
23.8
36
17
1460 | 1867
62.2
150
16
3700 | 484
15.6
30
10
960 | 1993
64.3
107
11
3950 | 2136
73.7
118
59
4240 | 4118
133
276
62
8170 | | 5988
193
359
88
11880 | 6096
203
441
77
12090 | 4069
131
297
53
8070 | 3303
107
490
30
6550 | 876
29.2
35
26
1740 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 54.9
80.7
1991
23.8
1992 | | 50.3
113
1990
15.6
1992 | 36.2
64.3
1992
15.9
1991 | 36.2
73.7
1992
11.5
1991 | 73.2
133
1992
32.3
1991 |
135
203
1992
84.3
1990 | 173
193
1992
114
1991 | 198
222
1990
168
1991 | 176
241
1990
131
1992 | 179
241
1991
107
1992 | 73.3
101
1991
29.2
1992 | | SUMMARY | STATISTIC | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YEA | ARS 1989 - | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
OS | | 32393.5
88.7
418
9.7
10
64250
223
55
12 | Aug 5
Feb 18
Feb 23 | | 37760
103
490
a 10
10
1050
b6.09
74900
223
78
21 | Aug 24
Dec 24
Dec 24
Aug 24
Aug 24 | | 110
99.3
490
9.7
10
1520
66.63
249
84
19 | | 1991 | a-Also occurred Dec 25-31. b-Maximum gage height, 7.16 ft, Feb 3, 1992, backwater from ice. #### 06710385 BEAR CREEK ABOVE EVERGREEN, CO LOCATION.--Lat $39^{\circ}37^{\circ}58$ ", long $105^{\circ}19^{\circ}59$ ", in SE $^{1}/4NE^{1}/4$ sec.9, T.5 S., R.71 W., Jefferson County, Hydrologic Unit 10190002, on right bank 0.6 mi upstream from Evergreen Lake dam at Evergreen. DRAINAGE AREA .-- 104 mi2. PERIOD OF RECORD. -- August 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage 7,076 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 1, 1986, at site 200 ft downstream at present datum. REMARKS.--Estimated daily discharges: Oct. 30 to Apr. 6. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by small diversions for irrigation. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JUN AUG SEP JAN FEB MAR APR MAY JUL 34 5.5 7 20 24 13 25 47 37 25 25 3.3 23 2B ---TOTAL MEAN 28.4 22.7 18.2 16.5 17.5 26.7 55.8 61.1 59.0 39.0 31.2 20.9 MAX MIN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1984 - 1992, BY WATER YEAR (WY) 17.3 MEAN 34.5 28.5 18.7 13.3 42.2 91.6 96.2 60.3 65.8 42.6 17.5 MAX 85.1 56.2 32.8 18.3 26.7 89.7 76.5 (WY) MIN 8.89 20.9 10.8 (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1985 - 1992 ANNUAL TOTAL 15592.9 42.7 ANNUAL MEAN 42.0 33.1 HIGHEST ANNUAL MEAN 61.5 LOWEST ANNUAL MEAN 30.0 Aug 26 1984 HIGHEST DAILY MEAN 8.5 Jun 6 Apr 16 a8.0 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM Jan 29 Jan 27 Feb 15 1990 Feb 14 1990 8.6 Feb 25 8.4 9.0 Feb 23 p388 INSTANTANEOUS PEAK FLOW Aug 26 1984 Aug 24 INSTANTANEOUS PEAK STAGE 3.21 3.80 Aug 26 1984 Aug ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a-Also occurred Feb 16, 1990. b-Site then in use. #### 06710500 BEAR CREEK AT MORRISON, CO LOCATION.--Lat 39°39'11", long 105°11'43", in SE¹/4SW¹/4 sec.35, T.4 S., R.70 W., Jefferson County, Hydrologic Unit 10190002, on left bank at Morrison, 180 ft upstream from bridge on State Highway 8 and 0.2 mi upstream from Mount Vernon Creek. DRAINAGE AREA. -- 164 mi2. PERIOD OF RECORD.--Streamflow records, September 1887 to September 1891, May 1895 to December 1901, February 1902 (gage heights only), October 1919 to current year. No winter records for water years 1888-90, 1896, 1898, 1900. Monthly discharge only for some periods, published in WSP 1310. Published as "near Morrison" 1900-1902, as "at Starbuck" 1919-28, and as "at Idledale" 1929-34. Water-quality data available, October 1976 to September 1981. REVISED RECORDS.--WSP 976: 1942. WSP 1310: 1888, 1890-91, 1898, 1935(M). WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,780.43 ft above National Geodetic Vertical Datum of 1929. See WSP 1710 or 1730 for history of changes prior to Oct. 1, 1934. Oct. 1, 1934, to Oct. 10, 1961, water-stage recorder at site 80 ft downstream at present datum. REMARKS.--Estimated daily discharges: Oct. 31 to Nov. 5, Nov. 21-25, and Dec. 1 to Mar. 12. Records good except for estimated daily discharges, which are fair. Small diversions for irrigation of about 1,000 acres upstream COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | Surve | ;y. | | | | | | | | | | | | |-------------|------------------------|--------------|--------------|-----------------------|------------------|------------------|---------------------|----------------|----------------------|-----------------|------------------|---------------------| | | | DISCHARG | E, CUBIC | FEET PER | SECOND,
DAILY | WATER
MEAN | YEAR OCTOBER VALUES | 1991 TO | SEPTEMBER | 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 45 | 27 | 23 | 15 | 15 | 21 | | 84 | 76 | 75 | 25 | 38 | | 2
3 | 40
42 | 26
26 | 24
26 | 15
14 | 15
15 | 21
22 | | 83
77 | 71
67 | 86
71 | 25
24 | 33
30 | | 4 | 41 | 28 | 29 | 14 | 15 | 22 | | 76 | 65 | 61 | 26 | 29 | | 5 | 41 | 29 | 29 | 14 | 15 | 22 | | 75 | 62 | 58 | 23 | 27 | | 6
7 | 39
33 | 30
32 | 28
27 | 13
13 | 15
15 | 23
23 | | 74
77 | 66
67 | 51
47 | 24
23 | 27
26 | | 8 | 34 | 27 | 27 | 13 | 16 | 24 | | 74 | 61 | 47 | 22 | 24 | | 9 | 32 | 30 | 26 | 12 | 16 | 24 | | 74 | 60 | 46 | 25 | 23 | | 10
11 | 31
30 | 30
29 | 25 | 12 | 16 | 24 | | 74
65 | 64
65 | 38
37 | 24
26 | 23
22 | | 12 | 30 | 29
25 | 25
24 | 12
12 | 16
17 | 25
25 | | 65 | 74 | 3 /
45 | 30 | 22 | | 13 | 30 | 26 | 24 | 13 | 17 | 28 | 80 | 64 | 65 | 54 | 34 | 20 | | 14
15 | 30
29 | 24
30 | 23
22 | 13
13 | 17
17 | 31
29 | | 65
64 | 60
58 | 44
41 | 27
24 | 20
20 | | 16 | 29 | 27 | 22 | 13 | 17 | 32 | | 62 | 54 | 48 | 23 | 20 | | 17 | 28 | 30 | 21 | 13 | 18 | 33 | 104 | 61 | 52 | 52 | 38 | 20 | | 18
19 | 27
27 | 23
28 | 21
20 | 13
13 | 18
18 | 33
29 | | 70
66 | 51
50 | 46
39 | 34
29 | 20
20 | | 20 | 28 | 19 | 20 | 13 | 19 | 27 | | 64 | 50 | 43 | 23 | 21 | | 21 | 27 | 21 | 19 | 13 | 19 | 28 | | 68 | 64 | 46 | 23 | 19 | | 22
23 | 26
26 | 22
23 | 19
19 | 13
14 | 19
19 | 30
27 | | 76
68 | 65
67 | 37
35 | 23
25 | 20
19 | | 24 | 29 | 25
25 | 18 | 14 | 20 | 28 | | 66 | 68 | 37 | 97 | 19 | | 25 | 30 | 27 | 18 | 14 | 20 | 28 | 68 | 65 | 72 | 40 | 87 | 17 | | 26
27 | 29
29 | 29
27 | 17
17 | 14
14 | 20
20 | 31
33 | | 64
70 | 98
103 | 46
37 | 57
4 5 | 15
15 | | 28 | 29 | 27
25 | 16 | 14 | 20 | 33
45 | | 68 | 103 | 31 | 39 | 14 | | 29 | 20 | 25 | 16 | 14 | 21 | 44 | 75 | 65 | 90 | 29 | 33 | 16 | | 30
31 | 28
28 | 21 | 16
15 | 14
15 | | 4 4
51 | 80 | 64
72 | 81 | 27
28 | 34
35 | 17 | | TOTAL | 968 | 791 | 676 | 416 | 506 | 907 | 2173 | 2160 | 2046 | 1422 | 1027 | 656 | | MEAN | 31.2 | 26.4 | 21.8 | 13.4 | 17.4 | 29.3 | 72.4 | 69.7 | 68.2 | 45.9 | 33.1 | 21.9 | | MAX
MIN | 45
20 | 32
19 | 29
15 | 15
12 | 21
15 | 51
21 | 104
41 | 84
61 | 103
50 | 86
27 | 97
22 | 38
14 | | AC-FT | 1920 | 1570 | 1340 | 825 | 1000 | 1800 | | 4280 | 4060 | 2820 | 2040 | 1300 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 1900 | - 199 | 2, BY WATER Y | (EAR (WY) | | | | | | MEAN | 31.8 | 23.8 | 17.0 | 13.6 | 14.4 | 20.2 | | 148 | 136 | 73.2 | 65.3 | 44.6 | | MAX | 115
1985 | 86.7
1924 | 57.0 | 34.0 | 36.0 | 48.3 | | 525
1973 | 551
19 4 9 | 249
1949 | 307
1923 | 371
193 8 | | (WY)
MIN | 9.52 | 9.59 | 1924
7.31 | 1924
5.19 | 1924
4.00 | 1960
4.00 | | 12.4 | 11.5 | 5.72 | 6.58 | 5.41 | | (WY) | 1935 | 1957 | 1940 | 1950 | 1933 | 1933 | | 1963 | 1954 | 1963 | 1978 | 1978 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALENI | DAR YEAR | | FOR 1992 WAT | TER YEAR | | WATER Y | EARS 1900 - | - 1992 | | ANNUAL T | | | | 17776 | | | 13748 | | | F2 0 | | | | ANNUAL N | ANNUAL M | EAN | | 48.7 | | | 37.6 | | | 53.0
125 | | 1942 | | LOWEST A | ANNUAL ME. | AN | | | | | | | | 14.6 | | 1954 | | | DAILY ME. | | | 203
a
13 | Jun 2 | | 104
612 | Apr 17 | | 1410 | • | 7 1969 | | | DAILY MEA
SEVEN-DAY | | | 13
14 | Feb 25
Feb 21 | | 12 | Jan 9
Jan 6 | | 3.0 | | 6 1939
1 1933 | | INSTANTA | ANEOUS PE | AK FLOW | | | | | 171 | Aug 24 | | d8600 | Jul 24 | | | | ANEOUS PE | | | 25260 | | | 5.07 | Aug 24 | | 38400 | | | | | RUNOFF (A | | | 352 6 0
108 | | | 27270
74 | | | 121 | | | | 50 PERCI | ENT EXCEE | DS | | 29 | | | 28 | | | 26 | | | | 90 PERCE | ENT EXCEE | DS | | 16 | | | 15 | | | 11 | | | a-Also occurred Feb 26, 27. b-Also occurred Jan 10-12. c-Result of freezeup. d-Estimated. #### 06710605 BEAR CREEK ABOVE BEAR CREEK LAKE NEAR MORRISON, CO LOCATION.--Lat $39^{\circ}39^{\circ}08^{\circ}$, long $105^{\circ}10^{\circ}23^{\circ}$, in $NW^{1}/4NE^{1}/4$ sec.1, T.5 S. R.70 W., Jefferson County, Hydrologic Unit 10190002, on left bank, 0.9 mi downstream from Strain Gulch, 1.0 mi east of Morrison, 1.1 mi downstream from Mt. Vernon Creek. DRAINAGE AREA. -- 176 mi2. PERIOD OF RECORD. -- May 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage 5,645 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 21, 1989, at datum 3.37 ft, higher. REMARKS.--Estimated daily discharges: Oct. 1, 2, Oct. 28 to Nov. 8, Nov. 15-22, Nov. 25-29, Dec. 28 to Jan. 26, Feb. 2-10, 14, 15, 25-27, Mar. 8, June 7-12, and Aug. 4 to Sept. 22. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions to Harriman Canal, and Ward Canal, 0.7 mi upstream from gage. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR
OCTOBER
VALUES | 1991 | то ѕертемві | ER 1992 | | | |---|---|--|--------------------------------------|---|--------------------------------------|--------------------------------------|-----------------------------------|--|-------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 29
25
23
23
23 | 9.0
10
12
14
15 | 9.3
10
15
19
20 | 12
12
12
12
12 | 16
16
15
15 | 19
17
16
28
24 | 26
32
31
34
31 | 76
72
65
58
57 | 58
56
53
49
45 | 41
49
36
31
29 | 7.9
4.4
5.7
7.8
8.8 | 14
14
13
12 | | 6
7
8
9
10 | 24
23
23
23
21 | 15
16
17
20
21 | 20
20
19
20
19 | 13
13
13
13
13 | 14
14
15
17 | 20
20
20
21
23 | 29
41
46
51
53 | 54
59
53
51
51 | 46
47
47
47
46 | 27
26
26
26
24 | 9.6
10
10
11
13 | 12
11
11
11 | | 11
12
13
14
15 | 19
20
20
19
18 | 20
17
19
17 | 20
19
18
16
18 | 13
12
12
14
15 | 18
19
19
19 | 27
29
29
31
30 | 62
56
64
68
83 | 46
42
40
39
38 | 46
64
54
47
44 | 23
28
36
28
24 | 16
17
21
18
17 | 10
9.0
7.6
6.2
4.5 | | 16
17
18
19
20 | 18
18
17
18 | 17
17
17
17
17 | 19
20
20
20
20 | 15
15
15
15
15 | 19
19
16
17
15 | 31
31
28
19
14 | 101
106
111
100
87 | 30
30
45
43
38 | 40
40
36
30
26 | 27
28
28
20
21 | 17
18
16
13 | 3.6
2.4
1.8
1.4 | | 21
22
23
24
25 | 18
17
16
17
11 | 16
15
7.9
13 | 18
19
17
13 | 14
14
14
14 | 14
15
15
16
17 | 14
15
11
11
12 | 76
78
71
64
64 | 43
57
46
40
39 | 27
27
27
30
36 | 24
18
17
17
20 | 11
11
13
52
32 | .90
.86
3.9
7.7
7.7 | | 26
27
28
29
30
31 | 3.9
2.5
4.5
5.5
6.0
8.0 | 18
18
18
17
16 | 11
11
11
11
12
12 | 14
14
15
16
16
16 | 18
18
19
19 | 15
17
24
26
26
39 | 64
61
62
73
72 | 41
48
47
43
41
50 | 56
57
55
47
44 | 23
20
16
14
13 | 24
18
16
15
14 | 8.1
7.7
7.3
7.3
7.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 532.4
17.2
29
2.5
1060 | 479.9
16.0
21
7.9
952 | 506.3
16.3
20
9.3
1000 | 427
13.8
16
12
847 | 485
16.7
19
14
962 | 687
22.2
39
11
1360 | 1897
63.2
111
26
3760 | 1482
47.8
76
30
2940 | 1327
44.2
64
26
2630 | 771
24.9
49
11
1530 | 472.2
15.2
52
4.4
937 | 227.36
7.58
14
.86
451 | | STATIST | rics of M | ONTHLY MEA | N DATA FO | R WATER YE | ARS 1987 | - 1992 | , BY WATER YE | AR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.7
20.4
1991
4.34
1990 | 16.6
32.1
1987
.38
1990 | 18.4
29.5
1987
11.9
1989 | 16.6
23.1
1987
12.4
1991 | 17.7
23.4
1987
12.2
1990 | 24.6
44.8
1987
12.8
1991 | 2.83 | 115
377
1987
6.95
1989 | 80.0
211
1987
14.9
1989 | 30.2
56.4
1987
5.23
1989 | 28.3
66.8
1991
2.80
1989 | 18.9
33.0
1991
4.17
1989 | | SUMMARY | STATIST | ıcs | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WATE | R YEAR | | WATER YE | EARS 1987 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | MEAN CANNUAL MANNUAL MI CANNUAL MI CDAILY MEA DAILY MEA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 12528.49
34.3
a ₁₉₂
1.6
24850
84
19
8.0 | Jun 2
Mar 31
Mar 30 | | .86
1.7
119 | Apr 18
Sep 22
Sep 16
Apr 18
Apr 18 | | 36.7
85.1
10.4
492
5.25
825
5.84
26620
72
20
3.5 | Nov
Nov
Jul | 1987
1989
21 1987
11 1989
10 1989
8 1990
8 1990 | a-Also occurred Jun 7. b-Also occurred Nov 12 and 13, 1990. #### 06711500 BEAR CREEK AT MOUTH, AT SHERIDAN, CO LOCATION.--Lat 39°39'08", long 105°01'57", in NW¹/4NW¹/4 sec.5, T.5 S., R.68 W., Arapahoe County, Hydrologic Unit 10190002, on left bank just downstream from bridge on road to Fort Logan Mental Health Center, at Highway Department maintenance building at northwest city limits of Sheridan, 1.3 mi upstream from mouth, and 2.1 mi west of city hall in Englewood. DRAINAGE AREA .-- 260 mi2. PERIOD OF RECORD.—April to November 1914, March 1927 to current year. Monthly discharge only prior to October 1933, published in WSP 1310. Published as "at Sheridan Junction" 1934-41. REVISED RECORDS. -- WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,295 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1710 or 1730 for history of changes prior to Oct. 9, 1953. Oct. 9, 1953, to Aug. 6, 1969, water-stage recorder at present site at datum 1.0 ft, higher. REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 1, Nov. 16 to Dec. 4, Jan. 14-16, 19-21, and Jan. 23. Records good except for estimated daily discharges, which are fair. Flow regulated by Bear Creek Lake since July 1979. Storage and diversions upstream from station for irrigation of about 12,000 acres. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER VALUES | 1991 T | O SEPTEMB | ER 1992 | | | |--|-------------------------------------|--|--|--|--|--|---------------------------------|--|-------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 47
41
39
41
41 | 29
30
28
29
40 | 28
27
26
32
41 | 25
24
24
24
25 | 26
27
27
26
24 | 27
27
26
100
64 | 59
54
53
55
75 | 92
92
89
83
77 | 117
79
66
60
58 | 50
58
47
39
38 | 17
15
14
13 | 17
18
18
16
14 | | 6
7
8
9
10 | 40
39
36
34
33 | 41
42
39
37
40 | 40
40
39
37
34 | 25
27
26
25
26 | 24
24
24
25
25 | 41
34
44
58
49 | 74
80
96
100 | 79
75
75
74
81 | 59
65
66
59
59 | 35
31
32
31
29 | 13
13
13
13 | 14
15
14
12
21 | | 11
12
13
14
15 | 31
30
30
30
29 | 40
38
36
34
39 | 34
32
32
30
28 | 25
27
26
26
26 | 25
26
25
24
21 | 50
53
51
51
47 | 114
118
123
127
142 | 73
64
58
56
53 | 59
67
70
60
57 | 29
45
48
40
40 | 20
28
38
44
44 | 21
17
15
14
12 | | 16
17
18
19
20 | 32
34
28
29
28 | 38
37
37
36
35 | 30
31
30
30
31 | 26
26
26
26
25 | 21
23
21
20
23 | 48
49
51
41
32 | 159
167
157
148
138 | 47
42
46
51
48 | 52
48
44
50
48 | 41
49
42
34
38 | 43
49
57
61
49 | 10
8.5
9.5
11 | | 21
22
23
24
25 | 30
29
28
34
33 | 34
33
33
32
31 | 30
30
30
29
24 | 25
24
25
25
26 | 22
21
25
24
25 | 28
31
23
19
16 | 120
113
104
96
88 | 47
68
61
51
63 | 44
37
33
36
42 | 43
34
34
29
32 | 47
48
50
296
175 | 11
10
10
11
11 | | 26
27
28
29
30
31 | 27
23
24
25
26
28 | 30
30
29
28
27 | 24
22
22
22
23
23 | 26
26
27
27
26
27 | 24
25
25
26
 | 15
45
86
58
52
59 | 89
82
79
80
89 | 67
71
64
63
57
72 | 57
61
66
59
52 | 45
32
24
20
21
19 | 70
44
33
24
22
18 | 11
13
12
13
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 999
32.2
47
23
1980 | 1032
34.4
42
27
2050 | 931
30.0
41
22
1850 | 794
25.6
27
24
1570 | 698
24.1
27
20
1380 | 1375
44.4
100
15
2730 | 103
167
53
6110 | 2039
65.8
92
42
4040 | 1730
57.7
117
33
3430 | 1129
36.4
58
19
2240 | 1397
45.1
296
12
2770 | 404.0
13.5
21
8.5
801 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 22.1
151
1985
1.52
1955 | VTHLY MEAN
22.5
99.8
1985
3.53
1955 | DATA
FOR
21.3
61.3
1985
8.21
1951 | 19.6
46.3
1970
3.85
1945 | ARS 1927
19.1
43.5
1942
5.09
1945 | - 1992
22.2
94.4
1960
5.35
1935 | 3.33 | 148
859
1973
1.16
1963 | 97.0
630
1949
1.67
1966 | 35.1
238
1983
1.77
1963 | 36.5
255
1984
3.05
1954 | 24.1
256
1938
1.82
1956 | | SUMMARY | STATISTIC | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | R YEAR | | WATER YEA | RS 1927 | - 1992 | | LOWEST ANIONAL INSTANTANIONAL ANNUAL 10 PERC 50 PERC | | AN N MINIMUM AK FLOW AK STAGE C-FT) OS | | 18745.7
51.4
334
8.0
8.1
37180
117
33
19 | Jun 1
Apr 1
Mar 30 | | 8.5
10
490 | Aug 24
Sep 17
Sep 16
Aug 24
Aug 24 | | 43.7
157
6.53
4020
.00
b8150
10.50
31680
91
16
5.7 | Jul 1
May 2
May | 1983
1954
7 1969
3 1954
3 1963
7 1969
7 1969 | a-Also occurred Apr 2-5. b-Present datum, from floodmarks, from rating curve extended above 3400 ft 3 /s. #### 06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO LOCATION.--Lat 39°39'54", long 105°00'13", in NW¹/4NE¹/4 sec.33, T.4 S., R.68 W., Arapahoe County, Hydrologic Unit 10190002, on right bank, 0.3 mi downstream from Dartmouth Ave bridge at Englewood, 1.4 mi downstream from Bear Creek. DRAINAGE AREA. -- 3,387 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,250 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Aug. 31 to Sept. 8. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage and flood control reservoirs, power developments, diversions for irrigation and municipal use, and return flow from irrigated areas. Flow regulated by Chatfield Dam since May 29, 1975 (station 06709600), and Bear Creek Dam since July 1979. | | | DISCHARG | E, CUBIC | FEET PER | SECOND,
DAIL | WATER
Y MEAN | YEAR OCTOBE | R 1991 T | O SEPTEM | BER 1992 | | | |---|----------------------------------|---|----------------------------------|--|---------------------------|--|--|--|---------------------------------|--|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 81 | 50 | 70 | 50 | 93 | 86 | 235 | 291 | 514 | 188 | 64 | 58 | | 2 | 76 | 93 | 80 | 51 | 97 | 91 | 210 | 433 | 306 | 277 | 61 | 57 | | 3 | 70 | 116 | 65 | 43 | 95 | 89 | 167 | 423 | 201 | 196 | 59 | 56 | | 4 | 86 | 106 | 64 | 50 | 92 | 438 | 174 | 370 | 131 | 228 | 58 | 55 | | 5 | 78 | 115 | 65 | 48 | 89 | 256 | 184 | 373 | 143 | 139 | 126 | 54 | | 6 | 72 | 140 | 66 | 50 | 85 | 182 | 181 | 342 | 275 | 165 | 140 | 53 | | 7 | 69 | 161 | 66 | 88 | 88 | 202 | 191 | 249 | 272 | 182 | 51 | 52 | | 8 | 67 | 150 | 64 | 102 | 94 | 236 | 207 | 247 | 300 | 138 | 44 | 51 | | 9 | 63 | 127 | 60 | 124 | 95 | 321 | 231 | 244 | 360 | 138 | 44 | 48 | | 10 | 62 | 132 | 56 | 93 | 93 | 273 | 233 | 259 | 203 | 157 | 59 | 52 | | 11 | 57 | 130 | 55 | 91 | 91 | 233 | 253 | 260 | 246 | 255 | 130 | 57 | | 12 | 58 | 127 | 57 | 90 | 92 | 203 | 257 | 269 | 365 | 368 | 208 | 48 | | 13 | 61 | 78 | 59 | 97 | 86 | 187 | 269 | 160 | 215 | 319 | 237 | 45 | | 14 | 61 | 70 | 62 | 113 | 85 | 173 | 306 | 145 | 213 | 162 | 253 | 42 | | 15 | 58 | 81 | 50 | 132 | 81 | 163 | 360 | 135 | 319 | 166 | 169 | 35 | | 16 | 59 | 104 | 52 | 196 | 84 | 159 | 446 | 151 | 340 | 190 | 217 | 32 | | 17 | 59 | 143 | 51 | 93 | 86 | 159 | 425 | 156 | 305 | 185 | 188 | 31 | | 18 | 57 | 123 | 52 | 88 | 81 | 169 | 270 | 154 | 221 | 129 | 210 | 35 | | 19 | 59 | 140 | 54 | 104 | 83 | 162 | 258 | 164 | 186 | 126 | 249 | 39 | | 20 | 56 | 115 | 48 | 93 | 83 | 141 | 346 | 194 | 196 | 235 | 172 | 41 | | 21 | 61 | 109 | 51 | 89 | 87 | 145 | 457 | 154 | 227 | 180 | 155 | 37 | | 22 | 57 | 105 | 53 | 84 | 80 | 173 | 427 | 198 | 216 | 147 | 127 | 40 | | 23 | 60 | 74 | 52 | 92 | 92 | 135 | 300 | 127 | 202 | 126 | 126 | 34 | | 24 | 78 | 60 | 49 | 85 | 90 | 100 | 255 | 112 | 190 | 138 | 1210 | 35 | | 25 | 70 | 64 | 47 | 86 | 94 | 101 | 344 | 209 | 198 | 168 | 363 | 32 | | 26
27
28
29
30
31 | 58
55
66
73
54
48 | 82
135
89
78
71 | 43
43
43
42
45
42 | 81
84
83
86
97 | 139
81
80
87 | 109
133
436
179
183
239 | 346
347
344
345
298 | 249
232
306
280
255
286 | 234
382
518
407
349 | 191
119
72
87
133
118 | 133
100
79
68
62
60 | 38
39
38
41
36 | | TOTAL | 1989 | 3168 | 1706 | 2747 | 2603 | 5856 | 8666 | 7427 | 8234 | 5422 | 5222 | 1311 | | MEAN | 64.2 | 106 | 55.0 | 88.6 | 89.8 | 189 | 289 | 240 | 274 | 175 | 168 | 43.7 | | MAX | 86 | 161 | 80 | 196 | 139 | 438 | 457 | 433 | 518 | 368 | 1210 | 58 | | MIN | 48 | 50 | 42 | 43 | 80 | 86 | 167 | 112 | 131 | 72 | 44 | 31 | | AC-FT | 3950 | 6280 | 3380 | 5450 | 5160 | 11620 | 17190 | 14730 | 16330 | 10750 | 10360 | 2600 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER YE | ARS 1983 | - 1992 | , BY WATER ! | YEAR (WY) | | | | | | MEAN | 203 | 200 | 107 | 93.3 | 95.0 | 161 | 468 | 1061 | 759 | 540 | 499 | 186 | | MAX | 1050 | 733 | 268 | 216 | 166 | 261 | 1074 | 2576 | 2224 | 1549 | 1574 | 724 | | (WY) | 1985 | 1985 | 1985 | 1985 | 1985 | 1983 | 1984 | 1987 | 1983 | 1983 | 1984 | 1984 | | MIN | 64.2 | 39.3 | 49.6 | 45.4 | 35.5 | 51.7 | 123 | 209 | 243 | 175 | 168 | 43.7 | | (WY) | 1992 | 1990 | 1989 | 1991 | 1991 | 1991 | 1991 | 1989 | 1990 | 1992 | 1992 | 1992 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WAT | TER YEAR | | WATER YE | ARS 1983 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | 1 | 54309
149
982
25
32
107700
353
81
36 | Jun 1
Mar 31
Feb 26 | | 54351
148
1210
31
36
2620
4.38
107800
301
109
50 | Aug 24
Sep 17
Sep 15
Aug 24
Aug 24 | | 323
692
148
3910
a25
31
4090
5.25
233700
954
167
52 | Feb
Nov 2
Aug 2 | 1984
1992
6 1984
1 1990
24 1989
20 1984
0 1984 | a-Also occurred Mar 31, 1991. ## 06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1985 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: March 1985 to current year. PH: March 1985 to current year. WATER TEMPERATURE: March 1985 to current year. DISSOLVED OXYGEN: March 1985 to current year. INSTRUMENTATION .- - Water-quality monitor since March 1985. Values recorded hourly. REMARKS .-- Daily maximum and minimum specific conductance data available in District office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum mean, 995 microsiemens, Jan. 31, 1990; minimum mean, 223 microsiemens, May 16, 1987. pH: Maximum, 9.9 units, July 14, 15, 18, 1987; minimum, 6.4 units, Oct. 18, 1989. WATER TEMPERATURE: Maximum, 29.0°C, Aug. 17, 1986, July 30, 1987; minimum, 0.0°C, freezing point on many days during winter months. DISSOLVED OXYGEN: Maximum, 17.4 mg/L, Mar. 14, 1985; minimum, 3.4 mg/L, July 31, 1987. EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum mean, 841 microsiemens, Sept. 30; minimum mean, 325 microsiemens Aug. 24. pH: Maximum, 9.3 units, May 2; minimum, 6.9 units, Dec. 1. WATER TEMPERATURE: Maximum, 26.9°C, July 6; minimum, 0.3°C, Dec. 14. DISSOLVED OXYGEN: Maximum, 16.8 mg/L, Feb. 12; minimum, 4.8 mg/L, Aug. 3-5. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES | | | | | | • • | LIM TILDOL | .5 | | | | | | |----------|-----|-------------|-------------|-----|-------------|--------------|------|-------|-----|-----|-----|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | 7 77 | | | 559 | 502 | 406 | 397 | 428 | 603 | 830 | | 2 | | | 718 | | | 576 | 527 | 436 | 449 | 417 | 615 | 798 | | 3 | | | 734 | | | 572 | 549 | 447 | 476 | 440 | 630 | 767 | | 4 | | | 789 | | | 452 | 544 | 445 | 535 | 432 | 670 | | | 5 | | | 724 | | | 507 | 532 | 466 | 543 | 492 | 541 | | | _ | | | | | | | | | | | | | | 6 | | | 715 | | | 675 | 527 | 460 | 461 | 462 | 460 | | | 7 | | | 718 | | | 729 | 512 | 479 | 439 | 447 | | | | 8 | | | 721 | | 599 | 605 | 494 | 475 | 443 | 532 | | | | 9 | | | 717 | | 595 | 603 | 472 | 483 | 427 | 570 | | | | 10 | | 512 | 740 | | 584 | 616 | 462 | 490 | 454 | 499 | | | | 11 | | 4 98 | 738 | | 582 | 5 8 5 | 452 | 434 | 467 | 423 | | | | 12 | | 512 | 738 | | 591 | 581 | 445 | 403 | 402 | 405 | | | | 13 | | 592 | 75 6 | | 600 | 548 | 430 | 475 | 453 | 410 | 426 | | | 14 | | 622 | 731 | | 587 | 539 | 419 | 478 | 452 | 462 | 401 | | | 15 | | 667 | 668 | | 598 | 513 | 462 | 476 | 414 | 459 | 439 | | | | | | 505 | | 030 | 010 | | • • • | | | | | | 16 | | 628 | 700 | | 602 | 494 | 493 | 462 | 401 | 484 | 402 | | | 17 | | 642 | 681 | | 606 | 471 | 424 | 460 | 408 | 493 | 456 | | | 18 | | 617 | 726 | | 592 | 467 | 483 | 453 | 445 | 500 | | | | 19 | | 649 | 758 | | 608 | 553 | 482 | 436 | 485 | 524 | | | | 20 | | 691 | | | 594 | 540 | 438 | 430 | 518 | 469 | 431 | | | 21 | | 650 | | | 507 | 700 | 40.6 | 4.61 | 400 | 465 | 449 | | | 21 | | 650 | | | 587 | 708 | 406 | 461 | 490 | | | | | | | 689 | | | 601 | 746 | 433 | 433 | 485 | 463 | 491 | |
 23 | | 745 | | | 605 | 687 | 396 | 480 | 484 | 521 | 484 | | | 24
25 | | 79 8 | | | 59 8 | 705 | 409 | 565 | 481 | 488 | 325 | | | 25 | | 72 8 | | | 57 6 | 693 | 408 | 564 | 471 | | 459 | | | 26 | | 663 | | | 491 | 620 | 378 | 467 | 455 | | 606 | | | 27 | | 599 | | | 593 | 56 8 | 392 | 500 | 419 | | 647 | | | 28 | | 671 | | | 586 | 431 | 387 | 410 | 374 | | 679 | | | 29 | | 793 | | | 562 | 582 | 386 | 441 | 380 | | 743 | | | 30 | | 747 | | | | 581 | 389 | 455 | 390 | | 774 | 841 | | 31 | | | | | | 522 | | 459 | | 477 | 812 | | | MEAN | | | | | | 582 | 454 | 462 | 450 | | | | 06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | rn (SIA | NDAKD ON | .13/, MAIL | K ILIK OC | CTOBER 199 | 71 10 021 | LEMBER 13 | - | | | |---|---|--|---|---|---|-------------|---|--|---|---|----------------------------|-----------------------| | DAY | XAM | MIN | MAX | MIN | XAM | MIN | MAX | MIN | XAM | MIN | MAX | MIN | | | OCT | OBER | NOV | EMBER | DEC | EMBER | JAN | JARY | FEB | RUARY | MA | RCH | | _ | | | | | | | | | | | | | | 1
2 | | | | | 8.1
8.1 | 6.9
7.0 | | | | | 9.1
9.1 | 8.6
8.7 | | 3 | | | | | 7.9 | 7.4 | | | | | 8.9 | 8.2 | | 4 | | | | | 7.7 | 7.3 | | | | | 8.7 | 8.1 | | 5 | | | | | 7.6 | 7.2 | | | | | 8.3 | 7.9 | | 6 | | | | | 8.2 | 7.1 | | | | | 8.4 | 8.1 | | 7
8 | | | | | 7.9 | 7.3 | | | | | 8.4 | 8.2 | | 9 | | | | | 7.7 | 7.3 | | | 8.5 | 8.1 | 8.6
8.7 | 8.2
8.3 | | 10 | | | 8.9 | 8.1 | | | | | 8.5 | 8.1 | 8.6 | 8.3 | | 11 | | | 8.9 | 8.1 | | | | | 8.5 | 8.0 | 8.6 | 8.3 | | 12 | | | 8.9 | 8.1 | | | | | 8.5 | 8.0 | 8.5 | 8.3 | | 13 | | | 8.8 | 8.1 | | | | | 8.4 | 8.0 | 8.7 | 8.3 | | 14
15 | | | 8.8
8.4 | 8.1
8.0 | | | | | 8.6
8.7 | 7.9
8.1 | 8.8
8.8 | 8.0
8.0 | | | | | | | | | | | | | | | | 16
17 | | | 8.4
8.3 | 8.1
8.0 | | | | | 8.7
8.7 | 8.2 | 8.6 | 7.9
7.9 | | 18 | | | 8.1 | 7.7 | | | | | 8.7 | 8.2
8.2 | 8.8
8.8 | 7.9 | | 19 | | | 8.1 | 7.7 | | | | | 8.7 | 8.2 | 8.6 | 7.9 | | 20 | | | 7.9 | 7.8 | | | | | 8.5 | 8.2 | 8.6 | 7.9 | | 21 | | | 8.0 | 7.8 | | | | | 8.7 | 7.9 | 8.5 | 8.0 | | 22 | | | 8.0 | 7.6 | | | | | 8.7 | 8.1 | 8.7 | 8.0 | | 23
24 | | | 7.8
7.7 | 7.6
7.4 | | | | | 8.8
8.8 | 8.2
8.3 | 8.8
8.7 | 8.1
8.1 | | 25 | | | 7.7 | 7.3 | | | | | 8.8 | 8.3 | 8.9 | 8.3 | | 26 | | | 7.0 | 7 7 | | | | | 0.0 | 0.5 | | 0.4 | | 26
27 | | | 7.8
7.7 | 7.3
7.5 | | | | | 8.8
8.9 | 8.5
8.4 | 9.0
9.2 | 8.4
8.5 | | 28 | | | 7.5 | 7.3 | | | | | 8.9 | 8.5 | 8.5 | 8.0 | | 29
30 | | | 7.6 | 7.3 | | | | | 9.0 | 8.6 | 8.8 | 8.0 | | 31 | | | 7.5 | 7.2 | | | | | | | 8.9
8.6 | 8.0
8.1 | | | | | | | | | | | | | | | | MONTH | | | | | | | | | | | 9.2 | 7.9 | אוע | WAV | MTN | WNV | | WNV | W711 | VAV | 14717 | ww | MTN | ww | MTN | | DAY | MAX | MIN | МАХ | MIN | MAX | MIN | мах | MIN | MAX | MIN | MAX | MIN | | DAY | MAX
API | | MAX
M/ | | | MIN
JNE | | MIN | | MIN
GUST | | MIN
EMBER | | | API | RIL | M | ΑY | JŪ | JNE | Jt | JLY | AUC | GUST | SEPTI | EMBER | | 1 2 | | | | | | | | | | | | | | 1
2
3 | API
8.8
8.5
8.9 | 8.1
8.0
8.0 | 9.2
9.3
8.9 | 8.0
7.9
7.8 | JT
 | JNE
 | J.7
7.9
8.0 | 7.3
7.3
7.4 | AU0 | GUST | SEPTI
8.1
8.1
8.1 | 7.8
7.7
7.7 | | 1
2
3
4 | API
8.8
8.5
8.9
8.9 | 8.1
8.0
8.0
7.9 | 9.2
9.3
8.9
8.8 | 8.0
7.9
7.8
8.1 | JT
 | JNE
 | Jt
7.7
7.9
8.0
7.9 | 7.3
7.3
7.4
7.4 | AUC | GUST | SEPTI
8.1
8.1 | 7.8
7.7 | | 1
2
3
4
5 | API
8.8
8.5
8.9
8.9
8.7 | 8.1
8.0
8.0
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9 | 8.0
7.9
7.8
8.1
7.9 | | JNE

 | JU
7.7
7.9
8.0
7.9
7.9 | 7.3
7.3
7.4
7.4
7.3 | AUC | GUST | SEPTI
8.1
8.1
8.1 | 7.8
7.7
7.7 | | 1
2
3
4
5 | APE
8.8
8.5
8.9
8.9
8.7 | 8.1
8.0
8.0
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9 | 8.0
7.9
7.8
8.1
7.9 | JU | JNE | 7.7
7.9
8.0
7.9
7.9
8.5 | 7.3
7.3
7.4
7.4
7.3
7.5 | AUC | GUST | 8.1
8.1
8.1 | 7.8
7.7
7.7
 | | 1
2
3
4
5 | 8.8
8.5
8.9
8.9
8.7
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9 | JU | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.5 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5 | AUC | GUST | SEPTI
8.1
8.1
8.1 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8 | 8.8
8.5
8.9
8.9
8.7
8.6
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9
8.8
8.2
8.2 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8 | JU | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5 | DUA |

 | 8.1
8.1
8.1 | 7.8
7.7
7.7
 | | 1
2
3
4
5 | 8.8
8.5
8.9
8.9
8.7
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9
8.2 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8 | Jt | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.5
8.0 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5 | AUC | GUST | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8 | 8.8
8.5
8.9
8.9
8.7
8.6
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9 | 9.2
9.3
8.9
8.8
8.9
8.8
8.2
8.2 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8 | JU | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5 | DUA |

 | 8.1
8.1
8.1 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10 | API
8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.9
7.8
7.8 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.2 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
8.0
7.8 | | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.8
8.0 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5
7.5
7.3
7.4
7.5 | DUA |

 | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.6
8.7 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.1
9.0 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.8 | JU | UNE | 7.7
7.9
8.0
7.9
7.9
7.9
8.5
8.0
7.8
8.0
7.9
8.4 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5
7.3
7.4
7.5 | DUA |

 | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10 | API
8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.9
7.8
7.8 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.2 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
8.0
7.8 | | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.8
8.0 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5
7.5
7.3
7.4
7.5 | DUA | GUST | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.7
8.7
8.5 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.0 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.1
9.0
9.1
8.6
8.8
8.7 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.7 | | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.9
8.4
8.8
8.5 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5
7.5
7.5
7.7 | | | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.5
8.7
8.7
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9 |
8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.6 | | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5 | 7.3
7.4
7.4
7.4
7.3
7.5
7.5
7.5
7.3
7.4
7.5 | | | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.7
8.7
8.7 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.2 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.8
7.7
7.6
7.6
7.6 | | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.8
8.1
8.4
8.8
8.5
8.1 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.3
7.5
7.5
7.6
7.9
7.9 | AUG | GUST | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.6
8.5
8.7 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
7.8
8.0
8.1
8.2
8.2
8.1
8.0 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.6 | | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.4
7.5
7.4
7.6
7.9
7.9 | AUG | GUST | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.8
8.5
8.9
8.7
8.6
8.6
8.6
8.7
8.7
8.7 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.2 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.8
7.7
7.6
7.6
7.6 | | UNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.8
8.1
8.4
8.8
8.5
8.1 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.3
7.5
7.5
7.6
7.9
7.9 | AUG | GUST | 8.1
8.1
8.1
 | 7.8
7.7
7.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 8.8
8.5
8.9
8.6
8.6
8.6
8.7
8.6
8.7
8.7
8.6
8.7
8.6
8.9
9.0 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
7.8
8.0
8.1
8.2
8.2
8.1
8.3 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.6
7.5
7.4
7.3 | JT | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.4
7.5
7.9
7.9
7.9 | AUG | GUST | 8.1
8.1
8.1
 | 7.8 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 8.8
8.5
8.9
8.6
6.6
8.4
8.5
7
8.7
8.7
8.7
8.7
8.8
8.9
9.8 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
7.8
8.0
8.1
8.2
8.1
8.2
8.1
8.3 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.8 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.6
7.5
7.4
7.3 | JT | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.6
8.5
8.1 | 7.3 7.4 7.4 7.3 7.5 7.5 7.4 7.5 7.7 7.9 7.9 7.9 | ### AUG | SUST | 8.1
8.1
8.1
 | 7.8 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 8.8
8.5
8.9
8.6
8.6
8.6
8.7
8.6
8.7
8.7
8.6
8.7
8.6
8.9
9.0 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
7.8
8.0
8.1
8.2
8.2
8.1
8.3 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
7.8
7.7
7.6
7.5
7.4
7.3 | JT | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3
7.4
7.4
7.4
7.5
7.5
7.5
7.5
7.4
7.5
7.9
7.9
7.9 | AUG | GUST | 8.1
8.1
8.1
 | 7.8 7.7 7.7 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 8.8
8.5
8.9
8.6
8.6
8.6
8.6
8.7
8.7
8.7
8.7
8.8
8.9
9.0
8.9 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.1
8.2
8.1
8.3
8.3 | 9.2
9.3
8.9
8.8
8.9
8.2
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.8 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.6
7.7
7.6
7.5
7.4
7.4
7.3 | JT | UNE | 7.7
7.9
8.0
7.9
7.9
7.8
8.0
7.8
8.0
7.8
8.1
8.6
 | 7.3
7.3
7.4
7.4
7.3
7.5
7.5
7.5
7.3
7.4
7.5
7.6
7.9
7.7 | 8.0
8.5
8.1
7.9
8.1 | SUST | 8.1
8.1
8.1
 | 7.8 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 8.5
8.9
8.6
6.6
6.6
8.5
7
8.6
8.6
8.5
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.1
8.2
8.1
8.3
8.1
7.9 | 9.2
9.3
8.9
8.8
8.9
8.8
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
8.0
7.7
7.6
7.5
7.4
7.3
7.5
7.4
7.3 | 8.1
8.3
8.4
8.5
8.7
6.2 | UNE | 7.7
7.9
8.0
7.9
7.9
7.8
8.0
7.8
8.0
7.8
8.1
8.6
 | 7.3 7.3 7.4 7.4 7.3 7.5 7.5 7.4 7.5 7.7 7.9 7.9 7.7 | 8.0
8.5
8.1
7.9
8.0 | T.5 7.6 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 | 8.1
8.1
8.1
 | 7.8 7.7 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.8
8.5
8.9
8.6
8.6
8.6
8.6
8.7
8.6
8.7
8.6
8.7
8.6
8.9
9.8
9.8
9.8 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
7.9
8.0
8.1
8.2
8.1
8.2
8.1
8.3
8.3
8.1 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9
8.8 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.7
7.6
7.5
7.4
7.3 | 3.1
 | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3
7.4
7.4
7.4
7.5
7.5
7.5
7.4
7.5
7.4
7.6
7.9
7.9
7.7 | 8.0
8.5
8.1
7.9
8.1 | GUST | 8.1
8.1
8.1
 | 7.8 7.7 7.7 7.7 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 8.5
8.9
8.6
6.6
6.6
8.4
8.5
7.5
8.7
8.7
8.8
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9 | 8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.1
8.3
8.1
8.3
8.1
7.9
6.1 | 9.2
9.3
8.9
8.8
8.9
8.8
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9
8.8
8.7
7.7
7.7
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
8.0
7.7
7.6
7.5
7.4
7.3
7.5
7.4
7.3
7.5
7.4
7.3 | 3.1
8.3
8.4
8.5
8.7
8.2
8.4
8.6
8.1 | JNE | 7.7
7.9
8.0
7.9
7.9
7.8
8.0
7.8
8.0
7.8
8.1
8.6
 | 7.3 7.3 7.4 7.3 7.5 7.5 7.4 7.5 7.7 7.9 7.7 | ## AUG | T.5 7.6 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 8.1
8.1
8.1
 | 7.8 7.7 7.7 7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
22
23
24
25
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 8.5
8.9
8.6
6.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
9.8
8.6
9.8
8.6
9.8
8.6
9.8
8.6
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8 | 8.1
8.0
8.0
7.9
7.9
7.9
7.8
7.8
7.8
7.9
8.0
8.1
8.2
8.1
8.3
8.3
8.3
8.1
7.9
6.1 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.8
8.8
8.7
7.7
7.6
8.6
7.7
7.7
8.6
7.7
7.8 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.7
7.6
7.6
7.5
7.4
7.3
7.3
7.3
7.3
7.2
7.7 | 8.1
8.3
8.4
8.5
8.7
8.2
8.4
8.6
8.1 | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
8.0
7.8
8.4
8.5
8.1
8.6 | 7.3 7.4 7.4 7.3 7.5 7.5 7.4 7.5 7.7 7.9 7.9 7.7 7.9 | 8.0
8.5
8.1
7.9
8.0
8.2
8.1 | T.5 7.6 7.6 7.5 7.5 7.5 7.9 7.9 | SEPTI 8.1 8.1 8.1 | 7.8 7.7 7.7 7.7 | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 8.5
8.9
8.6
6.6
6.6
8.4
8.5
7.5
8.7
8.7
8.8
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9 |
8.1
8.0
8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8
8.0
8.1
8.2
8.1
8.3
8.1
8.3
8.1
7.9
6.1 | 9.2
9.3
8.9
8.8
8.9
8.8
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.9
8.8
8.7
7.7
7.7
8.9 | 8.0
7.9
7.8
8.1
7.9
8.2
7.9
7.8
7.8
8.0
7.7
7.6
7.5
7.4
7.3
7.5
7.4
7.3
7.5
7.4
7.3 | 3.1
8.3
8.4
8.5
8.7
8.2
8.4
8.6
8.1 | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3 7.4 7.4 7.3 7.5 7.5 7.4 7.5 7.4 7.6 7.9 7.9 7.7 | ## AUG | T.5 7.6 7.5 7.5 7.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 | 8.1
8.1
8.1
 | 7.8 7.7 7.7 7.7 | | 1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 8.5
8.9
8.6
6.6
6.6
8.4
8.5
7
8.6
8.7
8.7
8.7
8.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8
9.8 | 8.1
8.0
8.0
7.9
7.9
7.9
7.8
7.8
7.8
7.9
8.0
8.1
8.2
8.1
8.3
8.1
8.3
8.1
8.3 | 9.2
9.3
8.9
8.8
8.9
8.2
8.1
9.0
9.1
8.6
8.8
8.7
8.9
9.0
8.8
8.7
7.7
7.6
8.6
8.7 | 8.0
7.9
7.8
8.1
7.9
8.2
7.8
7.8
7.8
7.7
7.6
7.5
7.4
7.3
7.5
7.4
7.3
7.5
7.4
7.3 | 8.1
8.3
8.4
9.5
8.2
8.4
8.3
8.2 | JNE | 7.7
7.9
8.0
7.9
7.9
8.5
8.0
7.8
7.8
8.0
7.9
8.4
8.5
8.1 | 7.3 7.4 7.4 7.3 7.5 7.5 7.4 7.5 7.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 8.0
8.1
8.2
8.1
7.9
8.0
8.4
8.2
8.1 | T.5 7.6 7.7 7.6 7.5 7.5 7.5 7.9 7.9 7.9 | SEPTI 8.1 8.1 8.1 | 7.8 7.7 7.7 7.7 | 06711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |---|--|---|--|--|---|--|--|--|--|---|------------------------------|--| | | OCTOBER | | NOV | EMBER | DEC | EMBER | JAN | JANUARY | | RUARY | MA | RCH | | 1 | | | | | 3.3 | . 4 | | | | | 9.4 | 4.2 | | 2
3 | | | | | 2.5
3.9 | . 4
. 4 | | | | | 11.1
8.8 | 4.0
4.7 | | 4
5 | | | | | 5.6
6.2 | 1.0
1.9 | | | | | 8.3
9.0 | 4.9
4.6 | | | | | | | | | | | | | | | | 6
7 | | | | | 6.8
7.4 | 2.0
2.5 | | | | | 12.1
10.6 | 4.6
4.7 | | 8 | | | | | 6.7 | 2.7 | | | 5.8 | 2.0 | 9.5 | 2.2 | | 9
10 | | <u>'</u> | 10.0 | 7.7 | 6.4
5.5 | 1.6
1.4 | | | 8.0
7.6 | 2.2
2.6 | 6.0
8.7 | $\substack{1.6\\1.9}$ | | | | | | | | | | | | | | | | 11
12 | | | 11.2
11.1 | 6.2
4.5 | 4.6
6.1 | 2.4
2.5 | | | 8.3
9.1 | 4.0
4.3 | 10.8
12.1 | 2.8
4.9 | | 13 | | | 10.9 | 4.7 | 4.9 | 1.5 | | | 6.4 | 2.7 | 12.4 | 4.9 | | 14
15 | | | 8.7
6.4 | 4.4
5.0 | 4.7
5.2 | .3
.5 | | | 8.1
7.4 | 3.7
2.0 | 11.1
13.3 | 5.2
5.1 | | 16 | | | 5.7 | 3.2 | 6.6 | 1.4 | | | 5.1 | 2.1 | 13.2 | 5.4 | | 17 | | | 6.2 | 1.9 | 5.3 | 1.6 | | | 6.3 | 2.2 | 11.6 | 6.1 | | 18 | | | 7.1 | 2.4 | 4.5 | 1.3 | | | 6.2 | 1.0 | 9.9 | 6.5 | | 19
20 | | | 5 .8
6.5 | 1.9
.9 | 5.6
 | 2.0 | | | 7.0
6.8 | .7
3.1 | 11.6
12.1 | 6.0
4.6 | | 21 | | | 7.9 | 3.5 | | | | | 9.3 | 3.8 | 7.9 | 4.2 | | 22 | | | 5.5 | 3.2 | | | | | 7.9 | 3.6 | 11.7 | 3.7 | | 23
24 | | | 4.7
5.8 | 1.0
.8 | | | | | 8.5
8.2 | 4.9
2.3 | 11.7
10.6 | 4.7
6.1 | | 25 | | | 6.7 | 2.2 | | | | | 6.6 | 4.0 | 13.0 | 5.0 | | 26 | | | 8.2 | 3.3 | | | | | 8.0 | 2.5 | 13.7 | 6.5 | | 27 | | | 8.4 | 3.0 | | | | | 10.3 | 4.8 | 12.8 | 7.2 | | 28
29 | | | 5.0
4.7 | 3.8
1.5 | | | | | 10.9
11.0 | 4.2
4.0 | 9.8
14.4 | 7.8
7.0 | | 30 | | | 3.6 | . 5 | | | | | | | 15.4 | 6.6 | | 31 | | | | | | | | | | | 9.7 | 6.7 | | MONTH | | | | | | | | | | | 15.4 | 1.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MA. | MIN | MAX | MIN | | DAY | | MIN
RIL | | MIN
AY | | MIN
UNE | | MIN | | MIN
GUST | MAX
SEPT | | | 1 | | | | | | | | | | | | | | 1 2 | AP
13.9
12.1 | RIL
5.6
7.0 | 19.9
17.9 | 12.2
12.5 | J
14.8
21.1 | UNE
11.9
12.2 | J
21.2
22.5 | ULY
17.8
17.0 | AU
22.7
24.6 | GUST
17.3
16.9 | SEPT
20.4
21.9 | EMBER
14.6
15.2 | | 1 | AP
13.9 | 5.6
7.0
6.3 | M
19.9 | 12.2
12.5
12.2 | J
14.8
21.1
22.0 | UNE
11.9
12.2
13.7 | J
21.2
22.5
25.7 | 17.8
17.0
16.4 | AU
22.7 | GUST | SEPT | EMBER | | 1
2
3 | AP
13.9
12.1
15.9 | RIL
5.6
7.0 | 19.9
17.9
19.1 | 12.2
12.5 | J
14.8
21.1 | UNE
11.9
12.2 | J
21.2
22.5 | ULY
17.8
17.0 | AU
22.7
24.6
22.1 | 17.3
16.9
18.2 | SEPT
20.4
21.9
20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5 | AP
13.9
12.1
15.9
15.5
13.8 | 5.6
7.0
6.3
7.5
8.1 | 19.9
17.9
19.1
20.2 | 12.2
12.5
12.2
12.4 | J
14.8
21.1
22.0
21.5 | 11.9
12.2
13.7
14.6 | J
21.2
22.5
25.7
25.4 | 17.8
17.0
16.4
17.9 | 22.7
24.6
22.1
24.4 | 17.3
16.9
18.2
17.2 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7 | 5.6
7.0
6.3
7.5
8.1
7.8
7.7 | 19.9
17.9
19.1
20.2
20.2 | 12.2
12.5
12.2
12.4
12.6 |
J
14.8
21.1
22.0
21.5
18.4
21.3
20.0 | 11.9
12.2
13.7
14.6
15.0 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8 | 17.8
17.0
16.4
17.9
17.7 | 22.7
24.6
22.1
24.4
23.9 | 17.3
16.9
18.2
17.2
17.8 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5 | AP
13.9
12.1
15.9
15.5
13.8 | 5.6
7.0
6.3
7.5
8.1 | M
19.9
17.9
19.1
20.2
20.2 | 12.2
12.5
12.2
12.4
12.6 | J
14.8
21.1
22.0
21.5
18.4
21.3 | UNE 11.9 12.2 13.7 14.6 15.0 | J
21.2
22.5
25.7
25.4
25.7 | 17.8
17.0
16.4
17.9
17.7 | 22.7
24.6
22.1
24.4
23.9 | 17.3
16.9
18.2
17.2
17.8
18.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5
6
7
8 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7
16.3 | 5.6
7.0
6.3
7.5
8.1
7.8
7.7 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0 | 12.2
12.5
12.2
12.4
12.6 | 14.8
21.1
22.0
21.5
18.4
21.3
20.0 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0 | 22.7
24.6
22.1
24.4
23.9 | 17.3
16.9
18.2
17.2
17.8 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5
6
7
8
9 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7
16.3
15.0 | 7.6
7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0 | 12.2
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7 | 11.9
12.2
13.7
14.6
15.0
14.2
14.4
13.9
15.1 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0 | ULY 17.8 17.0 16.4 17.9 17.7 18.8 18.6 18.0 17.3 | 22.7
24.6
22.1
24.4
23.9
23.7 | 17.3
16.9
18.2
17.8
18.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2 | | 1
2
3
4
5
6
7
8
9
10 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1 | 7.6
7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
20.8
26.0
25.3 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7 | 22.7 24.6 22.1 24.4 23.9 23.7 | 17.3
16.9
18.2
17.2
17.8
18.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1 | 7.6
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.9 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
16.6
20.5 | 12.2
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6 | 11.9
12.2
13.7
14.6
15.0
14.2
14.4
13.9
15.1
13.9
14.5
13.0
16.0 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
20.8
26.0
25.3 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7 | 22.7
24.6
22.1
24.4
23.9
23.7
 | 17.3
16.9
18.2
17.2
17.8
18.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10 | 13.9
12.1
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1 | 7.6
7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
20.8
26.0
25.3 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7 | 22.7 24.6 22.1 24.4 23.9 23.7 | 17.3
16.9
18.2
17.2
17.8
18.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP
13.9
15.9
15.5
13.8
15.6
15.7
15.0
16.1
14.2
16.4
17.5
14.9
15.9 | 7.6
7.7
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
166.6
20.5
19.3
20.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.9 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 15.1 13.9 15.1 13.9 14.5 13.0 16.0 15.6 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5 | 17.3
16.9
18.2
17.2
17.8
18.0

18.3
17.3 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13.9
12.1
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9 | 7.6
7.7
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 16.0 15.6 16.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
25.3
26.2
24.0 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
17.8
18.1 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7 | 17.3
16.9
18.2
17.2
17.8
18.0

18.3
17.3
18.7
17.9 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP
13.9
15.9
15.5
13.8
15.6
15.7
15.0
16.1
14.2
16.4
17.5
14.9
15.9 | 7.6
7.7
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
166.6
20.5
19.3
20.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.3
13.2
13.3
12.0
13.4
12.3
12.9
13.4 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 15.1 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5 | 17.3
16.9
18.2
17.2
17.8
18.0

18.3
17.3
18.7
17.9 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP
13.9
15.5
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9 | 7.6
7.7
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8
10.8 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.4
13.6 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
20.8
25.3
24.4
25.3
26.2
24.0 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
18.4
17.8
18.1 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5 | 17.3
16.9
18.2
17.2
17.8
18.0

18.3
17.3
18.7 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 |
AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9
12.0
14.2
13.5
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14.2
14 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5 | 12.2
12.5
12.2
12.4
12.6
12.7
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.2
13.4
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
23.0
24.4
22.6
21.3
21.9 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.0
25.3 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.2 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5 | 17.3
16.9
18.2
17.2
17.8
18.0

18.3
17.3
18.7
17.9

17.1 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | AP 13.9 12.1 15.5 13.8 15.6 15.7 16.3 15.0 16.1 14.2 16.4 17.5 13.5 13.6 14.7 16.2 14.2 | 7.6
7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8
10.8
10.2
9.6
8.9
8.9
8.6
8.3 | 19.9
17.9
17.9
19.1
20.2
20.2
20.6
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5 | 12.2
12.5
12.5
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.6
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
24.4
22.6
21.3
21.9
22.6 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
25.3
24.0
25.3 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.2 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5
23.4
23.0 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
15.2
15.2
15.2
15.2
15.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
12.0
14.2
13.5
14.7
16.2
14.2
14.2 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.9
8.7
10.5
9.1 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5 | 12.2
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.9
13.4
13.2
13.4
13.5
13.6
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
23.0
24.4
22.6
21.3 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 15.9 14.9 17.2 16.9 16.6 16.3 18.0 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.0
25.3
26.2
24.0 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.5
17.5 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5
23.0
23.4
23.0
21.8 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.1 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 13.9
12.1
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9 | 7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.9
8.6
8.3 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5 | 12.2
12.5
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.6
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
24.4
22.6
21.3
21.3 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 16.3 15.9 17.2 16.6 16.3 18.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
25.3
26.3
24.0
25.9
24.5
23.6
24.0 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.2
18.0 | 22.7 24.6 22.1 24.4 23.9 23.7 24.5 25.7 22.7 21.5 24.5 23.4 23.0 21.8 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
12.0
14.2
13.5
14.7
16.2
14.2
14.7
16.6
17.1
16.9
18.0 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.3
8.7
10.5
9.1
9.6 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5
21.6
18.0
18.6
19.1 | 12.2
12.5
12.2
12.4
12.6
12.7
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.2
13.3
12.9
13.4
13.5
13.6
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
23.0
24.4
22.6
21.3
21.9
25.7
23.1
20.0
22.3 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 15.6 16.3 15.9 14.9 17.2 16.9 16.6 16.3 18.0 17.5 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.0
25.3
26.2
24.0 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.5
17.5 |
22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5
23.0
21.8
19.0
19.8 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.1 15.2 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
27 | AP
13.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9
12.0
14.2
13.5
14.7
16.2
16.6
17.1
16.9
16.1
16.9
16.1
16.1
16.2
16.6
17.1
16.9
16.1
16.1
16.1
16.2
16.6
17.1
16.9
16.1
16.1
16.2
16.6
17.1
16.9
16.1
16.1
16.2
16.6
17.1
16.9
16.1
16.2
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.6
17.1
16.9
17.1
16.9
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17.1
17 | 7.6
7.0
6.3
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
9.9
10.8
10.8
10.2
9.6
8.9
8.6
8.3
8.7
10.5
9.6
9.1
9.6 | 19.9
17.9
17.9
19.1
20.2
20.2
20.6
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5
21.6
18.0
18.6
19.1
17.1 | 12.2
12.5
12.5
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.6
13.6
15.0
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.9
19.7
22.3
20.9
22.8
23.6
22.8
23.1
22.0
24.4
22.6
21.3
21.9
25.2
25.7
23.1
20.0 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 15.9 14.9 15.9 16.9 17.2 16.9 17.3 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.0
25.3
24.0
25.3
24.0
25.3 | 17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.2
18.0 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5
23.0
21.8
19.0
19.8
20.8
21.9 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.1 15.2 15.6 13.8 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
12.0
14.5
14.9
15.9
16.1
16.2
16.6
17.1
16.9
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.3
8.7
10.5
9.1
9.6 | 19.9
17.9
19.1
20.2
20.2
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5
21.6
18.6
18.6
19.1
17.1 | 12.2
12.5
12.2
12.4
12.6
12.7
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
12.3
12.9
13.4
13.2
13.3
12.9
13.4
13.2
13.3
13.6
15.0
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.1
22.0
23.0
24.4
22.6
21.3
21.9
25.7
23.1
20.0
22.3
23.5
22.9
22.7 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 15.6 16.3 15.9 14.9 17.2 16.9 17.2 16.9 17.2 17.0 17.3 17.3 17.9 17.7 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.5
23.6
24.7
24.3
24.3
24.5
24.5 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1
16.7
17.2
18.0
17.2
18.0
17.5
17.5 | 22.7 24.6 22.1 24.4 23.9 23.7 24.5 25.7 22.7 21.5 23.4 23.0 21.8 19.0 19.8 20.8 21.9 26.5 22.2 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.1 15.2 15.6 13.8 14.6 12.3 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
15.9
12.0
14.2
13.5
14.7
16.2
14.2
16.6
17.1
16.9
18.0
18.3
19.6
20.5 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.9
8.7
10.5
9.1
9.6 | 19.9
17.9
19.1
20.2
20.2
20.6
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5
21.6
18.0
19.1
17.1 | 12.2
12.5
12.2
12.4
12.6
12.7
13.2
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
13.2
13.4
12.9
13.4
13.6
15.0
15.0
15.0
15.0 |
J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.1
22.0
23.0
24.4
22.6
21.3
21.9
25.2
25.7
23.1
20.0
22.3
22.9
22.5
22.7
22.7 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 15.1 13.9 15.1 13.9 14.5 13.0 16.0 15.6 16.3 15.9 14.9 17.2 16.9 17.2 16.9 17.3 17.7 18.4 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
20.8
26.0
25.3
24.4
22.4
4
25.3
26.2
24.0
20.3
24.5
23.6
24.5
23.6 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
18.0
17.3
18.7
19.1
18.4
17.8
18.1
16.7
16.9
17.2
18.0
17.5
17.1
17.5 | 22.7
24.6
22.1
24.4
23.9
23.7

24.5
25.7
22.7
21.5

24.5
23.0
21.8
19.0
19.8
20.8
21.9
26.5
22.2
20.6 | GUST 17.3 16.9 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.2 15.6 13.8 14.6 12.3 12.0 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | AP
13.9
15.9
15.5
13.8
15.6
15.7
16.3
15.0
16.1
14.2
16.4
17.5
14.9
12.0
14.5
14.9
15.9
16.1
16.2
16.6
17.1
16.9
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18 | 7.6
7.5
8.1
7.8
7.7
8.2
8.9
9.2
9.5
9.8
10.8
10.8
10.2
9.6
8.3
8.7
10.5
9.1
9.6 | 19.9
17.9
19.1
20.2
20.2
20.0
20.0
19.5
17.4
21.1
16.6
20.5
19.3
20.4
21.0
20.9
23.7
22.6
23.5
21.6
18.6
18.6
19.1
17.1 | 12.2
12.5
12.2
12.4
12.6
12.7
13.8
13.2
13.3
12.0
13.4
12.3
12.9
13.4
12.3
12.9
13.4
13.2
13.3
12.9
13.4
13.2
13.3
13.6
15.0
15.0
15.0 | J
14.8
21.1
22.0
21.5
18.4
21.3
20.0
19.1
19.7
22.3
20.9
22.8
23.1
22.0
23.0
24.4
22.6
21.3
21.9
25.7
23.1
20.0
22.3
23.5
22.9
22.7 | UNE 11.9 12.2 13.7 14.6 15.0 14.2 14.4 13.9 15.1 13.9 14.5 13.0 15.6 16.3 15.9 14.9 17.2 16.9 17.2 16.9 17.2 17.0 17.3 17.3 17.9 17.7 | 21.2
22.5
25.7
25.4
25.7
26.9
23.8
26.0
25.3
24.4
22.4
25.3
26.2
24.0
20.3
24.5
23.6
24.7
24.3
24.3
24.5
24.5 | 17.8
17.8
17.0
16.4
17.9
17.7
18.8
18.6
17.3
18.7
19.1
18.4
17.8
18.1
16.7
17.2
18.0
17.2
18.0
17.5
17.5 | 22.7 24.6 22.1 24.4 23.9 23.7 24.5 25.7 22.7 21.5 23.4 23.0 21.8 19.0 19.8 20.8 21.9 26.5 22.2 | GUST 17.3 16.9 18.2 17.2 17.8 18.0 18.3 17.3 18.7 17.9 17.1 17.4 17.6 17.7 15.1 15.2 15.6 13.8 14.6 12.3 | SEPT 20.4 21.9 20.5 | 14.6
15.2
15.2
15.2
 | 61 ## O6711565 SOUTH PLATTE RIVER AT ENGLEWOOD, CO--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | XAM | MIN | XAM | MIN | MAX | MIN | MAX | MIN | XAM | MIN | MAX | MIN | |---|---|---|--|--|--------------|-----------------|--------------|-----------------|--|--|--------------|-------| | | OCTOBER | | NOV | EMBER | DECEMBER | | JANUARY | | FEBRUARY | | MARCH | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | 12.9 | 11.5 | 14.0 | 8.9 | | | | 9 | | | | | | | 13.1 | 11.7 | 14.3 | 8.7 | | | | 10 | | | | | | | 13.0 | 11.1 | 14.8 | 8.7 | | | | 11 | | | | | | | 12.8 | 10.8 | 15.7 | 8.8 | | | | 12 | | | | | | | 12.5 | 11.0 | 16.8 | 9.3 | | | | 13 | | | | | | | 12.7 | 11.3 | | | | | | 14
15 | | | | | | | 12.5
12.4 | 11.2
11.3 | 15.1 | 7.7 | | | | | | | | | | | | | 13.1 | | | | | 16 | | | | | | | 12.4 | 11.1 | 14.6 | 7.8 | | | | 17
18 | | | | | | | 12.3 | 10.8 | 15.3 | 7.9 | | | | 19 | | | | | | | 12.6
12.5 | 11.0
10.9 | 14.8
15.4 | 8.2
7.3 | | | | 20 | | | | | | | 12.4 | 10.6 | 15.3 | 7.3 | | | | 21 | | | | | | | 12.2 | 10.4 | 15.2 | 7.5 | | | | 22 | | | | | 14.4 | 11.6 | 12.4 | 10.4 | 15.1 | 7.2 | 11.4 | 8.5 | | 23 | | | | | 14.5 | 11.2 | 12.5 | 10.4 | | | | | | 24 | | | | | | | 12.6 | 10.1 | | | | | | 25 | | | | | | | 12.9 | 10.0 | | | | | | 26 | | | | | | | 13.0 | 10.0 | | | | | | 27 | | | | | | | | | | | | | | 28
29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | | DAY | | | | | | | | | | | | | | | AP | RIL | MA | ΛΥ | | MIN
UNE | | MIN | MAX
DUA | UST | MAX
SEPTE | | | 1 | AP | RIL | M <i>F</i>
10.0 | ΛΥ
7.6 | J1 | UNE | J1 | ULY | AUG
11.1 | SUST
5.2 | SEPTE | EMBER | | 1
2 | AP | RIL | MA
10.0
9.8 | 7.6
8.0 | J1 | UNE | J1 | ULY | AUG
11.1
12.5 | 5.2
4.9 | SEPTE | EMBER | | 1 | AP | RIL | MF
10.0
9.8
9.7 | 7.6
8.0
7.9 | J1 | UNE | J1 | ULY | AUG
11.1
12.5
12.6 | 5.2
4.9
4.8 | SEPTE | EMBER | | 1
2
3 | AP | RIL | MA
10.0
9.8 | 7.6
8.0 | J1 | UNE | J1 |

 | AUG
11.1
12.5 | 5.2
4.9 | SEPTE | EMBER | | 1
2
3
4
5 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7 | 7.6
8.0
7.9
7.7
7.7 | J1 | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
4.8 | SEPTE | EMBER | | 1
2
3
4
5 | AP | RIL | MF
10.0
9.8
9.7
9.7 | 7.6
8.0
7.9
7.7 |

 | UNE

 | JI |

ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8 | SEPTE | EMBER | | 1
2
3
4
5 | AP | RIL | 10.0
9.8
9.7
9.7
9.7
9.4
9.5 | 7.6
8.0
7.9
7.7
7.3
7.4
7.3
7.3 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7
9.4
9.5
9.5 | 7.6
8.0
7.9
7.7
7.7
7.3
7.3
7.3 | J1 | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4
 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10 | AP | RIL |
MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.4
7.3
7.3
7.3 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
4.8 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3
7.4 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10 | AP | RIL | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.4
7.3
7.3
7.3 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4
 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP 12.4 12.1 11.5 11.2 | RIL 9.7 9.6 9.7 9.6 | MI
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3
7.4 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9 | 5.2
4.9
4.8
4.8
5.4
 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | AP 12.4 12.1 11.5 | RIL 9,7 9,6 9,7 | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4 | 7.6
8.0
7.7
7.7
7.7
7.3
7.3
7.3
7.3
7.4 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | AP 12.4 12.1 11.5 11.5 11.2 | RIL 9.7 9.6 9.7 9.6 9.6 9.6 9.6 | MI
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4

9.3
9.2
9.2 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.5 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.5 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 | RIL 9.7 9.6 9.7 9.6 9.6 9.6 9.6 | MI
10.0
9.8
9.7
9.7
9.7
9.5
9.5
9.6
9.4

9.3
9.2
9.2 | 7.6
8.0
7.9
7.7
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5 | | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 9.7 | MF
10.0
9.8
9.7
9.7
9.7
9.4
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.5
9.4
10.2 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.5
6.1
6.3 | JI | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 10.6 10.2 | RIL 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.4 | MF 10.0 9.8 9.7 9.7 9.7 9.4 9.5 9.6 9.4 9.3 9.2 9.2 9.2 9.5 9.4 10.2 10.1 8.8 | 7.6
8.0
7.7
7.7
7.7
7.4
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.7
6.0
6.1
6.3 | JI | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7
 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 11.0 10.6 10.2 10.6 | RIL 9.7 9.6 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.7 | MF
10.0
9.8
9.7
9.7
9.7
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.2
9.3
10.2 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.7
6.0
6.1
6.7
6.7 | JI | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 10.6 10.2 | RIL 9.7 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.7 9.4 | MF 10.0 9.8 9.7 9.7 9.7 9.4 9.5 9.6 9.4 9.3 9.2 9.2 9.2 9.5 9.4 10.2 10.1 8.8 | 7.6
8.0
7.7
7.7
7.7
7.4
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.7
6.0
6.1
6.3 | JI | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7
 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 11.0 10.6 11.0 11.0 10.7 | RIL 9.7 9.6 9.6 9.6 9.6 9.6 10.0 9.7 9.4 9.1 8.9 9.1 | MI
10.0
9.8
9.7
9.7
9.7
9.4
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.2
9.2
9.1
10.1
8.8
9.7
9.9 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.7
6.0
6.1
6.7 | JI | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 11.0 10.6 10.2 10.6 10.8 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 9.7 | MF
10.0
9.8
9.7
9.7
9.7
9.4
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.3
10.2
10.1
8.8
9.7 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.7
6.0
6.1
6.3
6.4
7.0
6.8 | JI | UNE | | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 11.0 11.0 10.6 10.2 10.6 10.8 10.7 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 9.7 9.4 9.1 8.9 9.1 | MI
10.0
9.8
9.7
9.7
9.7
9.4
9.5
9.6
9.4

9.3
9.2
9.2
9.2
9.2
9.5
9.4
9.3
10.2 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.3
7.3
6.8
6.5
6.5
6.7
6.0
6.1
6.7
6.8
6.7 | JII | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 11.0 11.0 10.6 10.2 10.6 10.8 10.7 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 9.7 9.4 9.1 8.9 9.1 8.7 8.1 7.8 | 9.8 9.7 9.7 9.4 9.5 9.6 9.4 9.3 9.2 9.2 9.2 9.5 9.4 9.3 10.2 10.1 8.8 9.7 9.9 9.1 | 7.6
8.0
7.7
7.7
7.4
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.7
6.0
6.1
6.3
6.7
6.4
7.0
6.8
6.7 | JII | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | AP 12.4 12.1 11.5 11.2 10.5 10.6 11.0 11.0 11.0 11.0 10.6 10.2 10.6 10.8 10.7 | RIL 9.7 9.6 9.7 9.6 9.6 9.6 9.6 9.7 9.4 9.1 8.1 8.7 8.1 7.8 | MF 10.0 9.8 9.7 9.7 9.7 9.4 9.5 9.5 9.6 9.4 9.3 9.2 9.2 9.2 9.5 9.4 9.3 10.2 10.1 8.8 9.7 9.1 10.1 9.8 | 7.6
8.0
7.7
7.7
7.3
7.3
7.3
7.3
7.3
7.3
6.8
6.5
6.5
6.7
6.0
6.1
6.3
6.7
6.4
7.0
6.8
6.7 | JI | UNE | JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7
 | 5.2
4.9
4.8
4.8
4.8
5.4
 | SEPTE | EMBER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | AP 12.4 12.1 11.5 11.2 10.5 11.0 11.0 11.0 11.0 10.6 10.2 10.6 10.8 10.7 | RIL 9.7 9.6 9.6 9.6 9.6 10.0 9.7 9.4 9.1 8.9 9.1 8.7 8.1 7.8 | 9.8 9.7 9.7 9.4 9.5 9.6 9.4 9.3 9.2 9.2 9.2 9.5 9.4 9.3 10.2 10.1 8.8 9.7 9.9 9.1 | 7.6
8.0
7.7
7.7
7.4
7.3
7.3
7.3
7.4

6.8
6.5
6.5
6.5
6.7
6.0
6.1
6.3
6.7
6.4
7.0
6.8
6.7 | JII | UNE |
JI | ULY | 11.1
12.5
12.6
14.4
11.9
10.7 | 5.2
4.9
4.8
4.8
4.8
5.4

 | SEPTE | EMBER | #### 06712000 CHERRY CREEK NEAR FRANKTOWN, CO LOCATION.--Lat 39°21'21", long 104°45'46", in NE¹/4 sec.15, T.8 S., R.66 W., Douglas County, Hydrologic Unit 10190003, on right bank 1.5 mi upstream from Russellville Gulch, and 2.5 mi south of Franktown. DRAINAGE AREA .-- 169 mi2. PERIOD OF RECORD .-- November 1939 to current year. REVISED RECORDS.--WSP 1730: Drainage area. WDR CO-87-1: 1983-85 (P). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,170 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1730 for history of changes prior to Oct. 1, 1953. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 3, Dec. 13-15, 18, 24-30, Jan. 2, 9, 13, 15, 19, 22,23, 27-30, Feb. 5, 7, and Feb. 8. Records good except for estimated daily discharges, which are poor. Many small diversions upstream from station for irrigation of about 800 acres. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of Aug. 3, 1933, caused by Castlewood Dam failure, exceeded all other observed floods at this location. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBE | R 1991 T | O SEPTEMB | ER 1992 | | | |---|-------------------------------------|---|--------------------------------------|---|--------------------------------------|-------------------------------------|--|--|--------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.9
2.9
2.9
2.9
2.7 | 4.0
3.4
2.9
3.2
3.4 | 4.3
4.4
4.4
4.6 | 4.6
4.8
4.9
4.9 | 6.6
6.8
6.9
6.5
6.5 | 25
25
27
80
74 | 26
23
20
18
17 | 4.9
4.6
4.7
4.5
4.4 | 20
18
9.3
9.1
7.4 | 5.2
5.2
5.1
4.9
4.4 | 1.7
1.7
1.7
1.7 | 1.9
1.7
1.7
1.7 | | 6
7
8
9 | 2.7
2.8
2.8
2.8
2.9 | 3.8
4.2
4.3
4.1
4.3 | 4.6
4.6
4.7
4.8
5.5 | 5.2
4.4
4.1
4.8
5.0 | 6.6
6.6
6.7
6.7 | 39
26
29
20
17 | 16
16
15
15 | 4.3
4.0
4.1
4.1
4.4 | 6.8
7.0
6.9
18 | 4.1
3.9
4.1
4.2
3.8 | 2.1
2.4
2.1
2.0
2.1 | 1.6
1.6
1.7
1.8 | | 11
12
13
14
15 | 2.9
3.0
3.1
3.0
3.1 | 4.1
4.1
3.9
3.9
4.0 | 4.9
4.8
4.8
4.8 | 5.3
4.8
5.4
5.8
5.9 | 6.8
7.4
8.8
9.1
8.9 | 14
25
65
76
72 | 14
12
12
11
10 | 4.4
4.4
5.1
4.9
4.5 | 8.7
7.2
6.5
5.6
5.2 | 3.6
5.4
7.0
4.8
4.0 | 2.5
2.4
2.3
2.2
2.1 | 1.8
1.8
1.7
1.7 | | 16
17
18
19
20 | 3.1
3.3
3.3
3.3
3.2 | 4.5
4.9
4.7
4.7
5.4 | 4.8
4.7
4.6
4.7
4.8 | 5.9
5.8
5.4
5.6
6.0 | 8.5
8.3
7.9
7.9
9.1 | 59
50
48
43
31 | 12
15
13
12 | 3.8
3.8
3.8
3.7
3.4 | 4.5
4.0
3.8
4.1
4.7 | 3.8
4.2
3.7
3.0
2.9 | 2.2
2.4
2.3
2.3
2.1 | 1.7
1.7
1.8
1.8 | | 21
22
23
24
25 | 3.3
3.3
3.2
3.3 | 5.0
5.3
5.1
5.1
5.0 | 4.9
5.1
4.8
4.8 | 5.6
5.8
5.9
6.0
5.9 | 13
14
15
12 | 26
30
42
30
26 | 11
11
11
9.7
9.3 | 3.5
3.7
3.7
3.7
3.8 | 4.7
5.1
5.0
4.7
8.6 | 3.0
3.0
2.7
2.7
3.8 | 1.9
2.0
2.0
30
17 | 1.9
1.9
1.9
2.0
2.0 | | 26
27
28
29
30
31 | 3.4
3.6
3.5
3.7
4.2 | 5.3
5.5
5.5
5.0
4.5 | 4.7
4.7
4.6
4.6
4.6 | 5.9
6.1
6.2
6.2
6.3
6.3 | 11
17
21
25 | 24
23
93
73
49
32 | | 4.2
4.9
5.2
4.9
4.8
5.0 | 15
8.9
6.5
6.0
5.7 | 3.8
3.8
2.1
1.9
1.8 | 9.9
6.0
3.8
3.0
2.2 | 2.0
2.0
2.0
2.0
2.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 97.8
3.15
4.2
2.7
194 | 133.1
4.44
5.5
2.9
264 | 146.3
4.72
5.5
4.3
290 | 169.7
5.47
6.3
4.1
337 | 289.2
9.97
25
6.5
574 | 1293
41.7
93
14
2560 | 390.5
13.0
26
5.5
775 | 133.2
4.30
5.2
3.4
264 | 238.0
7.93
20
3.8
472 | 117.7
3.80
7.0
1.8
233 | 121.7
3.93
30
1.7
241 | 54.3
1.81
2.0
1.6
108 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.45
29.1
1985
.97
1953 | 5.59
30.7
1985
1.32
1955 | 5.03
25.2
1985
1.41
1964 | 5.05
17.7
1985
1.57
1951 | 8.48
29.3
1948
1.99
1956 | 23.5
184
1960
2.36
1972 | 20.3
138
1984
1.70
1963 | 16.0
138
1973
1.43
1963 | 8.61
42.6
1983
1.12
1954 | 7.19
43.8
1957
.80
1981 | 8.75
59.9
1945
.76
1962 | 3.44
18.2
1984
.78
1950 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1940 | - 1992 | | LOWEST ANIGHEST LOWEST INSTANT INSTANT ANNUAL 10 PERCE 50 PERCE | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 1895.0
5.19
65
1.5
1.7
3760
8.7
4.0
2.6 | Jun 10
Jul 7
Jul 1 | | 3184.5
8.70
93
41.6
1.7
303
4.62
6320
19
4.8
2.0 | Mar 28
Sep 5
Sep 2
Mar 28
Mar 28 | | 9.72
31.9
2.89
1400
0.20
6.27
9170
4.91
7040
17
4.3
1.3 | May
Jul 10
Jul 1
Aug ! | 1984
1954
6 1973
3 1946
0 1946
5 1945
5 1945 | a-Also occurred Sep 6 and 7. b-Also occurred Sep 30, and Oct 1, 1950. c-Site and datum then in use, by float measurement. #### 393109104464500 CHERRY CREEK NEAR PARKER, CO LOCATION.--Lat $39^{\circ}31^{\circ}09^{\circ}$, long $104^{\circ}46^{\circ}45^{\circ}$, in $SE^{1}/4NW^{1}/4NE^{1}/4$ sec.21, T.6 S., R.67 W., Douglas County, Hydrologic Unit 10190003, on right bank 200 ft upstream from Main Street, 0.8 mi west of City of Parker, and 1,100 ft downstream from mouth of Sulphur Gulch. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- October 1991 to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 5,805 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 5, and Dec. 10 to Jan. 30. Records fair except for estimated daily discharges, which are poor. Several diversions upstream from station for irrigation. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER
LY MEAN | YEAR OCTOBE | R 1991 S | TO SEPTEM | BER 1992 | | | |--|--|---|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--|---------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.1
1.1
1.1
1.1 | 1.3
1.2
1.1
1.2 | .86
1.0
1.0
1.0 | 1.3
1.3
1.4
1.5 | 7.5
8.5
7.9
7.3
6.4 | 24
24
25
46
55 | 40
37
34
30
29 | 6.7
4.9
6.2
6.8
6.9 | 14
17
11
7.7
6.8 | 5.1
5.7
4.6
4.1
3.8 | 1.9
1.8
1.9
1.9 | 2.2
1.7
1.7
1.8
1.8 | | 6
7
8
9 | 1.1
1.1
1.1
1.2
1.2 | 1.2
1.2
1.3
1.5 | 1.3
1.3
1.2
1.4 | 1.4
1.4
1.4
1.6
2.1 | 6.2
5.9
6.7
7.6
8.2 | 55
35
35
26
31 | 27
24
24
23
21 | 5.9
5.8
5.6
5.3
5.6 | 5.2
4.9
4.8
6.8 | 3.3
3.0
3.3
3.0
2.5 | 1.9
1.9
1.9
1.9 | 1.9
1.9
2.0
1.9 | | 11
12
13
14
15 | 1.2
1.2
1.2
1.2 | 1.5
1.6
1.6
1.3 | 1.3
1.3
1.3
1.4
1.5 | 2.6
3.4
3.2
2.9
2.9 | 8.8
8.2
9.8
9.5
9.5 | 28
30
47
61
63 | 21
19
18
17
17 | 5.0
5.0
6.9
6.6
6.1 | 7.3
5.9
4.9
4.4
3.8 | 2.3
24
20
3.7
3.4 | 1.9
2.0
1.9
1.9 | 1.8
1.7
1.8
1.8 | | 16
17
18
19
20 | 1.2
1.3
1.3
1.3 | 1.2
1.3
1.3
1.1 | 1.4
1.3
1.2
1.3
1.3 | 3.2
3.6
4.2
4.6
5.0 | 9.5
7.9
7.0
8.2
9.5 | 57
48
45
45
39 | 18
20
19
18
17 | 5.1
5.6
6.3
4.7
4.0 | 3.4
2.9
2.8
3.6 | 3.2
2.9
2.4
2.2
2.3 | 1.9
1.8
1.6
1.5 | 1.7
1.7
1.6
1.7 | | 21
22
23
24
25 | 1.3
1.3
1.4
1.4 | 1.2
1.2
.94
1.1
1.2 | 1.3
1.3
1.4
1.4 | 5.3
5.6
5.8
5.9
6.0 | 12
14
15
14
13 | 35
35
40
45
41 | 18
17
16
15
14 | 3.9
3.9
4.2
4.3
4.3 | 5.1
3.5
3.1
2.8
21 |
2.4
2.2
2.3
2.4
3.0 | 1.6
1.6
1.7
8.4 | 1.7
1.7
1.7
1.6
1.7 | | 26
27
28
29
30
31 | 1.4
1.4
1.5
1.5
1.5 | 1.2
1.4
1.2
1.1 | 1.4
1.4
1.4
1.3
1.2 | 6.1
6.3
6.5
6.7
6.9
7.0 | 11
13
20
21 | 35
34
57
83
57
46 | 13
12
11
9.2
7.8 | 4.4
4.4
4.4
4.4
4.5 | 80
61
17
8.4
6.2 | 3.5
5.0
2.8
2.3
2.1
1.8 | 11
5.2
3.2
2.5
2.2
2.6 | 1.7
1.6
1.5
1.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 39.0
1.26
1.5
1.1
77 | 37.28
1.24
1.6
.94
74 | 39.66
1.28
1.5
.86
79 | 118.4
3.82
7.0
1.3
235 | 293.1
10.1
21
5.9
581 | 1327
42.8
83
24
2630 | 606.0
20.2
40
7.8
1200 | 162.1
5.23
6.9
3.9
322 | 346.3
11.5
80
2.8
687 | 134.6
4.34
24
1.8
267 | 108.9
3.51
32
1.5
216 | 52.2
1.74
2.2
1.5
104 | | STATIST | ICS OF MO | ONTHLY ME. | AN DATA FO | R WATER YE | ARS 1992 | - 1992 | , BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.26
1.26
1992
1.26
1992 | 1.24
1.24
1992
1.24
1992 | 1.28
1.28
1992
1.28
1992 | 3.82
3.82
1992
3.82
1992 | 10.1
10.1
1992
10.1
1992 | 42.8
42.8
1992
42.8
1992 | 20.2
20.2
1992
20.2
1992 | 5.23
5.23
1992
5.23
1992 | 11.5
11.5
1992
11.5
1992 | 4.34
4.34
1992
4.34
1992 | 3.51
3.51
1992
3.51
1992 | 1.74
1.74
1992
1.74
1992 | | SUMMARY | STATIST | cs | | | FOR 19 | 92 WATE | R YEAR | | | | | | | LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN
DAILY MEA
DAILY MEA
SEVEN-DAY
ANEOUS PE | AN
MINIMUM
EAK FLOW
EAK STAGE
AC-FT)
EDS | | | 24
648 | .86
1.0
16
6.43 | Mar 29
Dec 1
Nov 28
Jul 12
Jul 12 | | | | | | ### 06712990 CHERRY CREEK LAKE NEAR DENVER, CO LOCATION.--Lat 39°39'03", long 104°51'13", in NW¹/4NE¹/4 sec.2, T.5 S., R.67 W., Arapahoe County, Hydrologic Unit 10190003, 0.8 mi southwest from intersection of Interstate Highway 225 and Parker Road, 0.2 mi from right end of dam, 1.6 mi northwest of intersection of Parker and Airline Roads, and 11.5 mi upstream from mouth. DRAINAGE AREA. -- 385 mi2. PERIOD OF RECORD. -- Contents, October 1960 to current year. Water-quality data available, October 1976 to September 1981. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army, Corps of Engineers); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by earthfill dam. Dam completed in June 1950; storage began May 15, 1957. Capacity, 92,820 acre-ft, at elevation 5,598.00 ft, crest of spillway. No dead storage. Figures given represent total contents. Reservoir is for flood control and recreation. COOPERATION. -- Records provided by U.S. Army, Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 31,120 acre-ft, June 3, 1973, elevation, 5,565.82 ft; minimum, 9,980 acre-ft, Nov. 23, 24, 1978, elevation, 5,545.90 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 14,090 acre-ft, Mar. 31, elevation, 5,551.48 ft; minimum, 11,590 acre-ft, Nov. 13-17, elevation, 5,548.52. MONTHEND ELEVATION AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents
(acre-feet) | Change in contents
(acre-feet) | |--|--|--|---| | Sept. 30 | 5,548.62
5,548.57
5,549.01 | 11,670
11,630
11,980 | -
-40
+350 | | Dec. 31 | 5,549.30 | 12,220 | +240 | | CAL YR 1991 | - | - | -540 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 5,549.70
5,550.07
5,551.48
5,550.58
5,550.04
5,550.10
5,549.79
5,550.08
5,549.84 | 12,560
12,860
14,090
13,300
12,820
12,890
12,630
12,670 | +340
+300
+1,230
-790
-480
+70
-260
+240
-200 | | WTR YR 1992 | _ | _ | +1,000 | ### 06713000 CHERRY CREEK BELOW CHERRY CREEK LAKE, CO LOCATION.--Lat 39°39'10", long 104°51'40", in SW¹/4SW¹/4 sec.35, T.4 S., R.67 W., Denver County, Hydrologic Unit 10190003, on right bank 2,000 ft downstream from Cherry Creek Dam, 2.2 mi southeast of Sullivan, 9 mi southeast of Civic Center in Denver, and 11 mi upstream from mouth. DRAINAGE AREA. -- 385 mi2. PERIOD OF RECORD. -- June 1950 to current year. REVISED RECORDS.--WSP 1730: Drainage area. GAGE.--Water-stage recorder and concrete control. Datum of gage is 5,490.51 ft, (Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Nov. 12-22, Dec. 5-8, 15-17, 27-28, Jan. 7-8, 11, 20-21, 24-26, and 28. Records poor. Flow regulated by Cherry Creek Lake (see elsewhere in this report). Diversions upstream from station for irrigation of about 1,800 acres. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood known, 34,000 ft³/s, Aug. 3, 1933, by slope-area measurement near present site (Castlewood Dam failure). | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | , WATER
LY MEAN | YEAR OCTOR | BER 1991 T | O SEPTEM | IBER 1992 | | | |--|--------------------------------------|--|--|--|------------------------------|-------------------------------------|--|---|-------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.01 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.67 | 83
84
84
83
83 | 8.5
8.1
7.8
7.2
7.8 | .67
.34
.48
.71 | .12
.27
.20
.28 | 10
10
8.3
1.1
1.2 | .40
.33
.12
.00 | | 6
7
8
9 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00 | .51
.43
.84
2.2
9.3 | 84
84
59
.59 | 7.8
7.7
7.7
7.2
7.2 | 1.3
1.5
1.6
1.7 | .54
.50
.55
.61 | 1.1
1.0
1.1
1.3 | .00
.00
.00
.02 | | 11
12
13
14
15 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 19
33
33
32
32 | .47
.47
4.7
8.6
8.9 | 7.2
7.3
7.0
6.8
6.7 | 2.1
2.2
2.3
2.5
2.3 | 1.1
1.4
1.3
1.3
8.2 | 1.4
1.4
1.5
1.3 | .00
.02
.00
.00 | | 16
17
18
19
20 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 33
38
39
42
46 | 8.9
9.2
9.4
9.8
9.9 | 6.5
6.5
6.2
16
26 | 2.3
2.3
2.5
10
20 | 10
10
10
10
10 | 1.3
1.2
1.0
1.1 | .00
.00
.17
.00 | | 21
22
23
24
25 | .00
.00
.00
.01 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 46
46
46
46
46 | 10
11
11
10
9.9 | .00
.00
.00
.00 | 19
9.7
.02
.02 | 16
18
18
18 | .95
.87
.83
3.4
.83 | .11
.00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00 | .00 | .00
.00
.00
.00 | .00
.00
.00 | 46
44
44
41
40
70 | 10
9.8
9.7
9.2
8.9 | .20
.20
.20
.21
.37 | .22
.21
.15
.20 | 18
15
10
10
10 | .68
.59
.49
.52
.48 | .00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.02
.001
.01
.00 | .000
.00
.00 | 0.00
.000
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 877.42
28.3
70
.00
1740 | 815.05
27.2
84
.47
1620 | 175.04
5.65
26
.00
347 | 89.48
2.98
20
.02
177 | 231.44
7.47
18
.12
459 | 59.04
1.90
10
.40
117 | 1.25
.042
.40
.00
2.5 | | MEAN
MAX
(WY)
MIN
(WY) | 1.60
29.6
1985
.000
1958 | 38.5
1985
.000 | 0ATA FOI
2.50
39.1
1985
.000 | 1.87
42.4
1985
.000
1958 | 6.67
60.3
1984
.000 | 12.6
108
1974
.000
1958 | 16.7
166
1984
.000
1958 | 9.77
104
1984
.000
1958 | 9.57
243
1973
.000
1961 | 4.84
71.3
1983
.000
1964 | 11.3
218
1965
.000
1957 | 2.93
54.2
1965
.000
1957 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 W | ATER YEAR | | WATER Y | EARS 1950 | - 1992 | | LOWEST ANIONAL INSTANTANIONAL INSTANTANION PERCE | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | 1335.34
3.66
81
5.00
.00
2650
13 | May 21
Jan 1
Jan 1 | | 2248.7
6.1
84
5.0
276
4.8
4460
18 | Apr 2
0 Oct 1
0 Oct 5
May 20
5 May 20 | | 6.84
38.88
.00
721
C.00
1440
6.07
4960
2.7 | 00 Aug 1 May 1 Jul 3 Jul 3 | 1984
1967
1 1956
9 1957
9 1957
11 1956
11 1956 | a-Also occurred Apr 3, 6, and 7. b-No flow many days.
c-No flow most of time since May 1957. ### 06713300 CHERRY CREEK AT GLENDALE, CO. LOCATION.--Lat 39°42'22", long 104°56'13", in sw¹/4Nw¹/4 sec.18, T.4 S., R.67 W., Denver County, Hydrologic Unit 10190003, on left bank 900 ft upstream from Colorado Boulevard, on Cherry Creek South Drive and Ash Court, in the City of Glendale, and 5 miles downstream from Cherry Creek Reservoir. DRAINAGE AREA. -- 404 mi2. PERIOD OF RECORD .-- January 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,320 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Cherry Creek Lake (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND
DA | , WATER
LLY MEAN | YEAR OCTOBE
VALUES | ER 1991 T | O SEPTEM | IBER 1992 | | | |---|---|--|--|--|--------------------------------------|--------------------------------------|---|--|--------------------------------------|--|--------------------------------------|--| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
8.0
7.2
17 | 6.3
6.1
6.2
7.2
8.4 | 5.7
5.5
6.7
7.5
7.0 | 6.6
6.1
6.6
5.5
5.6 | 9.2
8.0
7.1
5.9
5.0 | 4.1
4.2
4.1
115
36 | 63
66
68
69
70 | 16
17
18
17
15 | 117
36
15
15
24 | 13
26
17
16
15 | 19
19
30
21
15 | 17
15
10
11
15 | | 6
7
8
9
10 | 8.6
8.2
8.1
8.5
8.5 | 8.2
7.4
6.4
6.3
7.0 | 6.8
6.8
6.5
6.0 | 5.4
5.5
5.8
5.8
7.4 | 4.7
4.7
4.7
4.5
4.4 | 11
7.0
13
40
37 | 71
72
65
14
8.4 | 16
16
16
16
16 | 32
26
20
21
15 | 13
10
9.3
8.6
8.0 | 13
12
11
10
9.1 | 14
12
14
17
24 | | 11
12
13
14
15 | 8.2
7.3
7.0
7.0
6.9 | 5.6
5.4
5.2
4.9
9.1 | 6.0
6.6
6.2
5.8
5.8 | 8.7
8.0
6.7
6.8
6.9 | 4.6
4.9
4.7
4.7 | 41
48
44
40
39 | 9.8
9.1
8.3
18
15 | 16
16
16
15 | 17
18
18
16
16 | 7.4
40
22
8.7
9.7 | 9.1
28
10
8.3
7.6 | 25
13
9.1
7.5
7.3 | | 16
17
18
19
20 | 6.9
7.0
6.6
6.3
6.0 | 21
30
21
33
22 | 6.0
6.0
5.9
6.1
6.4 | 8.0
8.0
6.8
7.0
7.7 | 4.4
4.4
4.3
4.1
4.1 | 39
41
46
49
49 | 16
15
15
21
19 | 15
18
14
15
34 | 17
15
14
22
30 | 16
36
14
13
98 | 7.0
14
11
8.8
8.5 | 7.0
6.2
5.9
6.1
6.1 | | 21
22
23
24
25 | 6.1
6.3
6.5
15
6.5 | 23
14
8.6
7.0
6.9 | 6.4
6.3
6.2
5.9
5.7 | 8.2
7.8
8.8
10 | 4.4
4.0
4.5
3.9
3.7 | 52
57
52
59
53 | 18
18
17
16 | 23
16
12
11
37 | 29
27
18
17
15 | 33
19
51
28
25 | 9.0
9.2
8.0
416
157 | 5.9
5.2
5.3
4.9
4.6 | | 26
27
28
29
30
31 | 6.0
5.8
11
12
9.5
7.0 | 8.4
11
8.4
8.3
6.3 | 5.7
5.7
5.7
5.8
5.9
6.0 | 11
10
11
12
11 | 3.9
4.0
4.1
4.1 | 52
53
213
48
36
49 | 17
18
19
18
17 | 25
23
20
18
17
28 | 14
14
14
20
17 | 42
29
19
20
20 | 11
8.6
8.1
7.7
8.3 | 4.1
3.9
3.9
3.6
3.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 256.0
8.26
17
5.8
508 | 328.6
11.0
33
4.9
652 | 190.6
6.15
7.5
5.5
378 | 246.7
7.96
12
5.4
489 | 139.4
4.81
9.2
3.7
276 | 1431.4
46.2
213
4.1
2840 | 886.6
29.6
72
8.3
1760 | 567
18.3
37
11
1120 | 689
23.0
117
14
1370 | 705.7
22.8
98
7.4
1400 | 925.3
29.8
416
7.0
1840 | 287.0
9.57
25
3.4
569 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 198 | 5 - 1992 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.8
38.0
1986
7.38
1990 | 11.3
22.2
1988
4.84
1990 | 12.1
29.8
1988
3.41
1990 | 14.3
45.7
1985
3.66
1990 | 20.7
53.2
1988
3.46
1990 | 37.9
75.2
1985
4.51
1991 | 44.4
74.5
1986
9.81
1991 | 37.2
77.3
1987
18.3
1992 | 37.5
63.1
1985
13.7
1990 | 23.5
36.3
1985
15.7
1988 | 25.6
42.9
1991
8.41
1986 | 18.6
37.9
1990
9.22
1986 | | SUMMARY | STATIST | ics | FOR | 1991 CALEN | DAR YEAR | 1 | FOR 1992 WA | TER YEAR | | WATER Y | EARS 1985 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M ANNUAL M DAILY ME SEVEN-DA ANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 5737.8
15.7
266
1.1
1.7
11380
33
8.4
3.0 | Aug 3
Apr 1
Mar 31 | | 416
3.4
4.0
841
7.27
13200
39 | Aug 24
Sep 30
Feb 24
Aug 24
Aug 24 | | 23.4
36.2
16.7
416
1.1
1.7
1970
66.74
16970
66
13
4.8 | Apr
Mar | 1988
1991
24 1992
1 1991
31 1991
20 1986
20 1986 | a-Maximum gage height, 7.54 ft, Jun 8, 1987. ### 06713500 CHERRY CREEK AT DENVER, CO LOCATION.--Lat $39^{\circ}44^{\circ}58$ ", long $105^{\circ}00^{\circ}08$ ", in NE $^{1}/4$ sec.33, T.3 S., R.68 W., Denver County, Hydrologic Unit 10190003, on right bank on downstream side of Wazee Street Bridge in Denver, 0.5 mi upstream from mouth. DRAINAGE AREA .-- 409 mi2. PERIOD OF RECORD. -- August 1942 to September 1969, February 1980 to September 1983, and annual maximums 1984, 1985. April 1986 to current year. REVISED RECORDS.--WSP 1710: Drainage area. WDR CO-82-1: 1982 (M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,175.48 ft above National Geodetic Vertical Datum of 1929. See WSP 1730 for history of changes prior to July 16, 1951. July 16, 1951 to Sept. 30, 1969, water-stage recorder at present site and datum. REMARKS.--No estimated daily discharges. Records fair. Several diversions upstream from station for irrigation of about 1,900 acres. Floodflow regulated by Cherry Creek Reservoir 11 mi upstream, capacity, 95,960 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 26, 1885, reached a discharge of 20,000 ft³/s, by float measurement. Flood of May 19 and 20, 1864, reached a somewhat higher stage. Flood of Aug. 3, 1933, reached a discharge of about 15,000 ft³/s, as determined by rise of South Platte River at Denver. | | | DISCHAR | RGE, CUBIC | FEET PE | | WATER
Y MEAN | YEAR OCTOBER | ₹ 1991 т | O SEPTEMB | ER 1992 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|--|-------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22
18
16
33
18 | 12
12
11
13
15 | 12
11
11
12
12 | 13
12
12
11
11 | 12
11
9.6
9.0
8.9 | 14
12
8.5
200
56 | 74
78
80
80
82 | 25
26
29
28
24 | 149
58
31
26
37 | 18
54
26
24
23 | 25
25
34
27
19 | 27
26
19
20
25 | | 6
7
8
9
10 | 16
16
16
16
16 | 15
14
11
9.7
13 | 13
13
11
11
12 | 10
14
13
11
14 | 8.8
8.9
8.6
9.5 | 17
11
27
61
46 | 81
81
81
31
21 | 26
25
27
28
28 | 40
41
40
33
26 | 21
15
15
15
18 | 16
14
15
14
13 | 24
21
23
24
28 | | 11
12
13
14
15 | 17
16
16
17
15 | 9.3
10
10
10
20 | 12
13
13
12
12 | 15
13
11
10
11 | 11
11
11
9.5
8.6 | 51
56
48
43
40 | 20
19
17
32
25 | 26
29
30
28
29 | 26
26
27
26
23 | 13
57
33
11
11 | 15
30
15
14
14 | 31
18
16
16
15 | | 16
17
18
19
20 | 15
16
17
17
17 | 38
56
36
60
39 | 12
12
12
12
12 | 13
13
10
11
12 | 8.7
8.4
8.5
8.4
8.4 | 40
41
48
51
48 | 27
26
28
34
30 | 29
34
27
25
45 | 25
20
18
26
43 | 22
51
24
24
92 | 15
28
15
12
13 | 15
18
20
20
19 | | 21
22
23
24
25 | 17
15
18
31
19 | 43
30
17
13 |
12
12
12
12
11 | 13
13
14
15
14 | 9.7
12
12
11
11 | 54
60
52
60
56 | 28
27
27
26
25 | 28
26
23
23
63 | 40
39
27
26
27 | 51
35
59
41
35 | 14
16
16
505
88 | 19
18
19
18
20 | | 26
27
28
29
30
31 | 16
15
24
22
17 | 17
18
15
17
13 | 11
13
14
12
9.7
9.8 | 14
13
14
14
13 | 11
12
14
15 | 52
52
270
68
52
60 | 26
28
28
25
26 | 38
37
29
27
26
41 | 19
20
24
27
24 | 88
39
27
27
26
26 | 25
20
21
19
19 | 18
18
17
17
16 | | TOTAL
MEAN
MAX
MIN
AC-FT | 557
18.0
33
13
1100 | 610.0
20.3
60
9.3
1210 | 368.5
11.9
14
9.7
731 | 391
12.6
15
10
776 | 296.3
10.2
15
8.4
588 | 1754.5
56.6
270
8.5
3480 | 1213
40.4
82
17
2410 | 929
30.0
63
23
1840 | 1014
33.8
149
18
2010 | 1021
32.9
92
11
2030 | 1138
36.7
505
12
2260 | 605
20.2
31
15
1200 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.0
31.2
1943
3.66
1949 | 10.5
30.3
1988
3.61
1955 | 9.06
54.4
1988
3.39
1956 | 8.73
27.5
1943
3.17
1956 | 14.7
73.8
1948
4.18
1952 | 24.5
179
1948
3.25
1955 | 24.9
119
1983
3.28
1955 | 33.8
119
1983
6.10
1966 | 28.3
117
1944
3.17
1946 | 22.4
161
1983
3.74
1948 | 38.1
236
1945
4.05
1948 | 15.3
64.9
1965
4.03
1948 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1942 | - 1992 | | LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA INSTANTA ANNUAL F 10 PERCE 50 PERCE | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY ANEOUS PE | EAN EAN IN IMUM EAK FLOW EAK STAGE EAC-FT) EDS | | 9350.7
25.6
323
6.5
7.7
18550
53
17
8.9 | Aug 3
Mar 24
Mar 14 | | 9897.3
27.0
505
8.4
8.6
1100
5.51
19630
11 | Aug 24
Feb 17
Feb 14
Aug 24
Aug 24 | | 20.2
70.7
6.00
1350
9.40
293
3120
45.25
14650
38
9.3
4.2 | Aug
Jun 1
Jun 1
Aug | 1983
1954
8 1945
6 1948
4 1948
5 1945
5 1945 | a-Also occurred Feb 19 and 20. b-Also occurred Jun 17 and 18, 1948. c-Site and datum then in use. d-Maximum gage height, 11.91 ft, Jun 17, 1965, backwater from South Platte River. ### 06714000 SOUTH PLATTE RIVER AT DENVER, CO LOCATION.—Lat $39^{\circ}45^{\circ}35^{\circ}$, long $105^{\circ}00^{\circ}10^{\circ}$, in $NW^{1}/4SE^{1}/4$ sec.28, T.3 S., R.68 W., Denver County, Hydrologic Unit 10190003, on right bank 90 ft upstream from Nineteenth Street Bridge in Denver and 0.4 mi downstream from Cherry Creek. DRAINAGE AREA . -- 3,861 m12. PERIOD OF RECORD.--May to October 1889, June to October 1890, July 1895 to current year. Monthly discharge only for some periods, published in WSP 1310. Statistical summary computed for 1976 to current year. REVISED RECORDS.--WSP 1310: 1934(M). WSP 1730: 1957(M). WDR CO-86-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,157.64 ft above National Geodetic Vertical Datum, adjustment of 1960. Prior to Aug. 12, 1909, nonrecording gages, and Aug. 12, 1909, to Aug. 28, 1931, water-stage recorder, at several sites within 0.5 mi of present site at various datums. Aug. 29, 1931, to June 28, 1965, water-stage recorder at site 70 ft downstream at datum 3.66 ft, lower. June 29, 1965, to Mar. 18, 1966, water-stage recorder at site 70 ft downstream at present datum. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 79,000 acres and municipal use, and return flow from irrigated areas. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBE | R 1991 T | O SEPTEME | ER 1992 | | | |--------------|---------------------|--------------------|-------------|-------------|--------------------|-----------------|--------------|------------------|--------------------|--------------------|--------------------|-----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 156 | 99 | 122 | 126 | 163 | 163 | 403 | 306 | 1150 | 266 | 154 | 138 | | 2 | 139 | 132 | 112 | 124 | 166 | 164 | 377 | 446 | 511
325 | 539
270 | 146 | 137
124 | | 3
4 | 129
162 | 150
15 8 | 110
126 | 118
120 | 155
1 49 | 156
1220 | 328
330 | 466
424 | 325
243 | 270
283 | 154
146 | 119 | | 5 | 144 | 173 | 128 | 120 | 156 | 403 | 340 | 419 | 248 | 190 | 180 | 120 | | 6 | 134 | 189 | 129 | 116 | 149 | 263 | 343 | 411 | 377 | 206 | 229 | 112 | | 7 | 130 | 203 | 130 | 164 | 149 | 272 | 343 | 321 | 411 | 198 | 136 | 112 | | 8 | 124 | 194 | 128 | 175 | 158 | 375 | 347 | 321 | 509 | 170 | 118 | 114 | | 9 | 114 | 173 | 126 | 194 | 160 | 574 | 325 | 339 | 521 | 149 | 116 | 112 | | 10 | 116 | 185 | 120 | 175 | 156 | 440 | 314 | 379 | 314 | 199 | 117 | 122 | | 11
12 | 112
112 | 178
175 | 114
122 | 175
175 | 151
151 | 411
364 | 350
336 | 340
368 | 320
497 | 314
626 | 215
365 | 132
110 | | 13 | 112 | 116 | 125 | 172 | 151 | 340 | 332 | 262 | 317 | 494 | 326 | 100 | | 14 | 105 | 122 | 118 | 175 | 149 | 314 | 386 | 240 | 293 | 234 | 360 | 101 | | 15 | 103 | 162 | 118 | 175 | 149 | 291 | 412 | 224 | 381 | 257 | 251 | 94 | | 16 | 87 | 216 | 114 | 173 | 149 | 280 | 492 | 236 | 419 | 285 | 314 | 92 | | 17 | 99 | 298 | 110 | 173 | 154 | 280 | 503 | 243 | 380 | 374 | 343 | 91 | | 18 | 96 | 226 | 120 | 158 | 149 | 310 | 350 | 229 | 280 | 215 | 299 | 94 | | 19
20 | 103
99 | 291
241 | 116
118 | 156
165 | 146
145 | 314
272 | 339
390 | 237
299 | 256
280 | 194
524 | 3 43
251 | 103
107 | | | | | | | | | | | 289 | 329 | 237 | 101 | | 21
22 | 103
101 | 226
200 | 120
122 | 168
161 | 15 8
152 | 283
332 | 515
511 | 237
306 | 283 | 251 | 237 | 97 | | 23 | 105 | 146 | 118 | 163 | 159 | 283 | 381 | 223 | 256 | 288 | 215 | 99 | | 24 | 147 | 128 | 115 | 163 | 158 | 258 | 321 | 200 | 248 | 244 | 3300 | 96 | | 25 | 122 | 128 | 114 | 166 | 156 | 254 | 392 | 428 | 267 | 251 | 773 | 96 | | 26 | 107 | 134 | 112 | 163 | 209 | 237 | 398 | 373 | 295 | 400 | 260 | 98 | | 27 | 106 | 203 | 114 | 154 | 154 | 251 | 398 | 364 | 448 | 240 | 210 | 99 | | 28
29 | 122
139 | 15 8
156 | 116
114 | 156 | 151 | 1230 | 381 | 419
394 | 65 4
505 | 161
163 | 183
156 | 97
103 | | 30 | 112 | 139 | 114 | 151
151 | 161 | 381
317 | 387
351 | 351 | 442 | 206 | 148 | 92 | | 31 | 105 | | 115 | 168 | | 394 | | 471 | | 215 | 142 | | | TOTAL | 3645 | 5299 | 3680 | 4893 | 4516 | 11426 | 11375 | 10276 | 11719 | 8735 | 10400 | 3212 | | MEAN | 118 | 177 | 119 | 158 | 156 | 369 | 379 | 331 | 391 | 282 | 335 | 107 | | MAX | 162 | 298 | 130 | 194 | 209 | 1230 | 515 | 471 | 1150 | 626 | 3300 | 138 | | MIN
AC-FT | 87
7230 | 99
10510 | 110
7300 | 116
9710 | 145
8960 | 156
22660 | 314
22560 | 200
20380 | 243
23240 | 149
17330 | 116
20630 | 91
6370 | | | | | | | | | | | 23240 | 17330 | 20030 | 0370 | | • | | | | | | | , BY WATER | | | | | | | MEAN
MAX | 216 | 199 | 146 | 131 | 145 | 211 | 471 | 1011 | 824
2759 | 543
1913 | 517
1774 | 242
911 | | (WY) | 1184
1985 | 809
1985 | 366
1985 | 282
1985 | 273
1984 | 420
1983 | 1377
1984 | 2970
1980 | 1983 | 1983 | 1984 | 1984 | | MIN | 66.8 | 94.4 | 84.1 | 64.9 | 80.7 | 94.9 | 99.1 | 218 | 164 | 183 | 177 | 76.5 | | (WY) | 1978 | 1976 | 1978 | 1979 | 1977 | 1978 | 1982 | 1978 | 1981 | 1977 | 1981 | 1977 | | SUMMARY | STATIST | ICS | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1976 | - 1992 | | ANNUAL | TOTAL | | | 86989 | | | 89176 | | | _ | | | | ANNUAL | | | | 238 | | | 244 | | | ^a 389 | | | | | ANNUAL | | | | | | | | | 961 | | 1983 | | | ANNUAL M
DAILY M | | | 1690 | Tun 1 | | 3300 | Aug 24 | | b ₄₀₂₀ | May 2 | 1978
1987 7: | | | DAILY ME. | | | 59 | Jun 1
Jan 26 | | 3300
87 | Aug 24
Oct 16 | | 4020
43 | | 8 1978 | | | | Y MINIMUM | | 75 | Jan 24 | | 96 | Sep 13 | | 50 | | 2 1978 | | | ANEOUS P | | | . 3 | Jun 23 | | 6170 | Aug 24 | | ^d 12200 | Jun | 8 1987 | | INSTANT | ANEOUS P | EAK STAGE | | | | | 8.42 | Aug 24 | | e _{7.77} | Jun | 8 1987 | | | RUNOFF (| | 1 | 72500 | | | 176900 | 7 | | 282100 | | | | | ENT EXCE | | | 475 | | | 403 | | | 816 | | | | | ENT EXCE | | | 158 | | | 175
112 | | | 194
84 | | | | JU PERC | ENT EXCE | EUS | | 85 | | | 112 | | | 0 % | | | a-Average discharge for 79 years (water years 1896-1974), 344 ft³/s; 249200 acre-ft/yr, prior to completion of Chatfield Dam. b-Maximum daily discharge for period of record, 12000 ft³/s, Jun 17, 1965. c-Minimum daily discharge for period of record, 8.8 ft³/s, Mar 25, 1951. d-Maximum discharge and stage for period of record, 40300 ft³/s, Jun 17, 1965, gage height, 18.66 ft, from floodmarks, present datum, from rating curve extended above 2700 ft³/s, on basis of contracted-opening measurement of peak flow. e-Maximum gage height for statistical period, 8.42 ft, Aug 24, 1991. ### 06714215 SOUTH PLATTE RIVER AT 64TH AVENUE AT COMMERCE CITY, CO LOCATION.--Lat $39^{\circ}48^{\circ}44^{\circ}$, long $104^{\circ}57^{\circ}28^{\circ}$, in NW $^{1}/4$ NW $^{1}/4$ sec.12, T.3 S., R.68 W., Adams County, Hydrologic Unit 10190003, on right bank 300 ft southeast of intersection of York Street and East 64th
Avenue and 1,900 ft upstream from mouth of Sand Creek at northeast corner of Metro Denver Sewage Disposal plant at Commerce City. DRAINAGE AREA. -- 3,884 mi². PERIOD OF RECORD .-- January 1982 to current year. REVISED RECORDS. -- WDR CO-86-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,105 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage and flood-control reservoirs, power developments, diversions for irrigation and municipal use, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBI | C FEET PER | | | YEAR OCTOBER
VALUES | 1991 T | O SEPTEMB | ER 1992 | | | |---|---|--|--|--|-------------------------------------|---|--|---|-------------------------------------|--|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
12
7.3
12 | 14
14
14
18
13 | 15
13
13
12
8.3 | 6.3
5.8
5.1
5.5
5.9 | 39
36
34
32
33 | 16
17
16
841
125 | 392
370
319
323
335 | 16
23
25
56
66 | 526
73
16
13
14 | 30
247
39
215
129 | 51
34
32
57
65 | 15
13
11
10
11 | | 6
7
8
9
10 | 12
118
114
106
108 | 11
12
12
12
11 | 12
13
12
11 | 6.5
59
135
148
140 | 30
32
31
34
32 | 106
96
214
518
463 | 290
223
199
79
38 | 66
64
175
248
291 | 19
61
112
137
18 | 149
175
116
103
162 | 114
44
19
20
18 | 12
11
13
17
16 | | 11
12
13
14
15 | 105
41
33
29
32 | 12
12
10
11 | 10
10
8.6
5.4
5.3 | 142
135
126
136
136 | 31
31
30
28
29 | 406
361
321
282
263 | 51
71
320
366
72 | 253
282
177
153
137 | 13
69
19
15
14 | 253
508
513
198
147 | 81
286
231
297
165 | 11
10
31
83
25 | | 16
17
18
19
20 | 28
24
23
21
18 | 14
121
60
134
69 | 7.0
8.7
8.8
9.2
8.2 | 133
135
122
123
129 | 28
27
25
23
22 | 255
249
271
294
249 | 327
451
293
288
303 | 149
159
144
148
212 | 16
15
14
65
145 | 215
295
125
104
321 | 242
275
218
286
189 | 18
17
19
19
16 | | 21
22
23
24
25 | 20
17
16
17
16 | 60
37
13
12
10 | 7.2
6.4
8.2
8.3
8.6 | 132
98
69
72
71 | 19
19
20
19
17 | 263
326
241
128
143 | 301
202
32
20
27 | 150
219
139
113
344 | 136
138
114
107
171 | 272
154
178
180
146 | 172
147
146
3170
376 | 14
24
30
25
22 | | 26
27
28
29
30
31 | 15
14
17
18
17 | 9.0
11
15
16
14 | 8.0
7.9
8.6
7.5
6.8
5.8 | 69
63
51
35
34
38 | 20
17
15
19 | 118
135
1140
385
307
374 | 34
35
63
98
17 | 229
105
57
59
21
70 | 208
115
67
29
55 | 328
136
22
42
83
95 | 28
21
17
23
18
21 | 23
25
24
20
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1084.3
35.0
118
7.3
2150 | 782.0
26.1
134
9.0
1550 | 283.8
9.15
15
5.3
563 | 2566.1
82.8
148
5.1
5090 | 772
26.6
39
15
1530 | 8923
288
1140
16
17700 | 5939
198
451
17
11780 | 4350
140
344
16
8630 | 2514
83.8
526
13
4990 | 5680
183
513
22
11270 | 6863
221
3170
17
13610 | 604
20.1
83
10
1200 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 154
1286
1985
10.0
1989 | 143
927
1985
9.00
1989 | 82.8
199
1986
8.79
1991 | 107
235
1984
13.7
1990 | 91.1
325
1984
8.57
1982 | 159
305
1984
8.75
1982 | 411
1335
1984
21.0
1991 | 946
2675
1987
75.1
1986 | 539
2462
1983
47.3
1990 | 463
1769
1983
183
1992 | 467
1410
1984
186
1990 | 153
755
1984
20.1
1992 | | SUMMAR | Y STATIST | ıcs | FOR | 1991 CALENI | AR YEAR | | FOR 1992 WATE | ER YEAR | | WATER YE | EARS 1982 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 33841.2
92.7
1330
4.6
6.6
67120
283
17
7.4 | Aug 3
Mar 4
Apr 23 | | 40361.2
110
3170
5.1
5.8
8070
6.78
80060
289
36
11 | Aug 24
Jan 3
Dec 31
Aug 24
Aug 24 | | 329
825
90.0
4110
3.2
5.5
14300
8.09
238300
833
115
9.7 | Nov 2
Apr
Jun | 1983
1991
7 1987
9 1988
7 1982
8 1987
8 1987 | ### 06714220 SENAC CREEK AT NORTH BORDER SLUDGE AREA NEAR AURORA, CO LOCATION.--Lat 39°39'06", long 104°40'34", NW1/4NW1/4 Sec.4, T.5 S., R.65 W., Arapahoe County, Hydrologic Unit 10190003, on left bank 0.9 mi downstream from where stream crosses under E. Quincy Ave. 2 mi east of Lowry landfill site. DRAINAGE AREA. -- 7.81 mi2. AC-FT --- ___ ___ ___ --- PERIOD OF RECORD .-- August 1989 to current year (seasonal record only). GAGE.--Water-stage recorder and V-notch sharp-crested weir. Elevation of gage is 5,705 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Apr. 29 to July 26. Records poor. Flow is partially regulated by the City of Aurora, Aurora Reservoir, located approximately 2 mi upstream of gage. EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge (estimate) 250 ${\rm ft}^3/{\rm s}$, May 31, 1991, gage height, 4.76 ft; no flow many days most years. EXTREMES FOR CURRENT YEAR.--Maximum discharge and gage height not determined; no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR YAM JUN JUL AUG SEP .00 .00 .00 .00 ------.00 .00 ------2 ___ ---.00 .00 .00 .00 .00 .00 3 ---___ ---.00 .00 .00 .00 .00 .00 .00 .00 4 ___ ___ ------.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 6 ___ ___ ---------. 00 . 00 0.0 . 00 .00 - 00 7 ------.00 .00 .00 .00 .00 .00 ---------___ 8 ------___ ___ .00 .00 .00 .00 .00 -00 ---___ ------.00 - 00 - 00 - 00 .00 - 00 10 ---.00 .00 .00 .00 .00 .00 11 12 ---___ ------___ ___ .00 - 00 .00 00 .00 ٥٥ ---------------___ .00 .00 .00 .00 .00 .00 ___ ---.00 .00 .00 .00 .00 .00 ------14 ___ ___ _---.00 .00 .00 .00 .00 .00 ---___ ___ 15 .00 .00 .00 .00 .00 .00 16 ___ ___ ---.00 .00 .00 .00 .00 .00 17 18 ___ ___ ------.00 ---___ .00 .00 .00 .00 - 00 ---___ ---------.00 ---.00 .00 .00 .00 .00 .00 .00 .00 .00 .00 ___ 20 ---___ ___ ___ .00 .00 .00 .00 .00 .00 21 .00 .00 .00 .00 .00 .00 22 23 ---------------___ .00 .00 .00 .00 .00 .00 ----------00 - 00 -00 - 00 - 00 - 00 .00 .00 .00 .00 .00 .00 ---___ 25 ___ ---.00 .00 .00 .10 .00 .00 26 .00 .00 .00 .00 .00 .00 27 ___ ___ ___ ___ ---.00 .00 .00 .00 .00 .00 28 ---___ ---.00 ------___ .00 .00 .00 . 00 - 00 29 ___ ------------.00 .00 .00 .00 .00 .00 30 .00 .00 .00 .00 .00 .00 31 ___ _---------___ ___ .00 .00 .00 TOTAL 0.00 0.00 0.10 0.00 0.00 0.00 ___ ------------MEAN ---.000 .000 .000 .003 .000 .000 ---.00 MAX .00 .00 .00 - 10 .00 .00 .00 .00 MIN ___ .00 .00 .00 ### 06719505 CLEAR CREEK AT GOLDEN, CO LOCATION.--Lat $39^{\circ}45^{\circ}11^{\circ}$, long $105^{\circ}14^{\circ}05^{\circ}$, in NE $^{1}/4$ NW $^{1}/4$ sec.33, T.3 S., R.70 W., Jefferson County, Hydrologic Unit 10190004, on left bank 100 ft downstream from U.S. Highway 6 bridge at west edge of Golden, 0.7 mi downstream from headgate of Church ditch, and 13.3 mi downstream from North Clear Creek. DRAINAGE AREA. -- 400 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1974 to current year. Records for station at site 0.8 mi upstream (October 1908 to December 1909, June 1911 to September 1974) are not equivalent due to diversions by Church ditch. Sediment data available April to September 1981. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,695 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 31 to Nov. 11, Nov. 21-28, Dec. 15 to Mar. 2, Mar. 4, 5, and Mar. 9. Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by minor transmountain diversions from Colorado River basin through Berthoud Pass ditch (see elsewhere in this report) and several small reservoirs upstream from station. Diversion by Welch ditch 1.4 mi upstream from station and by Church Ditch 0.7 mi upstream from station for irrigation of about 5,200 acres downstream from station. ### 06719505 CLEAR CREEK AT GOLDEN, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- November 1977 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: March 1981 to
current year. March to September 1981 WATER TEMPERATURE: March 1981 to current year. DISSOLVED OXYGEN: March to September 1981. SUSPENDED-SEDIMENT DISCHARGE: March to September 1981. INSTRUMENTATION .-- Water-quality monitor since March 1981. REMARKS.--Records rated fair. Daily maximum and minimum specific conductance data available in district office. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum mean, 597 microsiemens, Jan. 9, 1983; minimum mean, 38 microsiemens, July 1, 1983. pH: Maximum, 8.7 units, Mar. 27, April 10, 1981; minimum, 6.6 units, July 16, 1981. WATER TEMPERATURE: Maximum, 23.0°C, Aug. 4, 1981; minimum, freezing point on many days during winter months most years. DISSOLVED OXYGEN: DISSOLVED OXYGEN: Maximum, 14.2 mg/L, May 7, 1981; minimum, 5.2 mg/L, July 16, 1981. SEDIMENT CONCENTRATION: Maximum daily, 282 mg/L, May 29, 1981; minimum daily, 3 mg/L, Sept. 21-24, 1981. SEDIMENT LOAD: Maximum daily, 230 tons, June 3, 1981; minimum daily, 0.62 ton, Sept. 23-24, 1981. MEAN EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum mean, 395 microsiemens, Mar. 12, 30; minimum mean, 57 microsiemens, May 21. WATER TEMPERATURES: Maximum, 18.7°C, July 26 and 30; minimum, freezing point on many days during winter months. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP ___ ---___ ___ ---___ ___ ---___ 13 216 249 301 332 340 254 ___ ------___ ___ ---226 330 370 225 ------320 357 358 ---___ ---176 --------- ___ ___ --- ___ # 06719505 CLEAR CREEK AT GOLDEN, CO--Continued TEMPERATURE, WATER (DEG.C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |--|--|---|---|--|---|--|--|---|--|--|--|--| | | OCT | OBER | NOV | EMBER | DEC | EMBER | JAN | UARY | FEE | RUARY | MA | ARCH | | 1
2
3
4
5 | 12.9
13.0
12.6
10.3
6.8 | 9.5
9.3
9.3
4.7
3.2 | .0 | .0 | .0
.0
.0 | .0 | .0 | .0 | |

 |

 | | | 6
7
8
9 | 7.8
9.5
8.9
10.1
9.9 | 3.6
5.3
6.6
6.5
6.3 | 2.5
2.1
2.0
4.8
4.8 | .0
.8
.0
1.8
4.2 | .0 | .0 | .0 | .0 | |

 |

 |

 | | 11
12
13
14
15 | 10.0
10.0
9.7
8.5
9.4 | 6.5
6.8
7.1
5.6
5.8 | 4.8
2.8
2.3
1.9 | 2.3
.8
.7
.1 | .0 | .0 | .0 | .0 | | |

5.4
7.1 | 2.5
1.5 | | 16
17
18
19
20 | 10.4
9.9
8.1
7.7
7.1 | 7.1
7.2
5.5
4.3
4.3 | .5
1.4
1.3
1.1 | .0 | .0 | .0 | .0 | .0 | |

 | 7.2
6.0
4.8
5.8
6.7 | 2.0
2.7
3.2
2.1 | | 21
22
23
24
25 | 7.5
8.2
7.2
6.4
5.4 | 4.4
5.6
5.1
4.7
3.8 | 1.9
1.1
.0
.0 | .0 | .0 | .0 | .0 | .0 | | | 3.1
4.8
5.5
4.8
7.2 | .0
.4
1.5 | | 26
27
28
29
30
31 | 4.8
5.8
4.3
.0
.0 | 2.3
3.0
.0
.0 | .0
1.4
.3
.0 | .0 | .0 | .0 | .0
.0
.0 | .0 | | | 8.1
7.8
6.4
8.4
9.5
6.4 | 3.3
3.9
5.1
3.3
3.5
2.6 | | MONTH | 13.0 | .0 | 4.8 | .0 | .0 | .0 | | | | | | | | | | | | • - | | - " | | | | | | | | | | RIL | | AY | | UNE | J | ULY | AU | GUST | SEPT | EMBER | | 1
2
3
4
5 | | | | | | | J
13.9
13.3
14.4
14.6
15.7 | ULY
11.2
10.7
9.6
11.0
11.3 | AU
16.9
17.8
15.8
17.4
16.0 | 12.8
12.8
13.9
12.9
13.5 | SEPT 13.4 15.6 14.8 16.0 15.4 | 10.5
11.3
10.7
12.3
10.8 | | 2
3
4 | 7.3
7.9
10.8
8.9 | .5
3.4
2.8
5.3 | M.
14.0
12.9
13.0
13.4 | 9.6
10.0
8.6
8.8 | 9.3
12.6
12.1
12.5 | UNE
6.4
6.3
8.7
9.3 | 13.9
13.3
14.4
14.6 | 11.2
10.7
9.6
11.0 | 16.9
17.8
15.8
17.4 | 12.8
12.8
13.9
12.9 | 13.4
15.6
14.8
16.0 | 10.5
11.3
10.7
12.3 | | 2
3
4
5
6
7
8
9 | 7.3
7.9
10.8
8.9
7.2
10.4
10.1
10.8 | .5
3.4
2.8
5.3
5.3
4.7
5.5
4.6
6.0 | M. 14.0
12.9
13.0
13.4
13.1
13.4
12.4
12.0
11.6 | 9.6
10.0
8.6
8.8
9.0
9.2
10.0
9.5
9.2 | 9.3
12.6
12.1
12.5
12.0
13.6
11.7
10.7 | UNE 6.4 6.3 8.7 9.3 8.5 9.0 8.9 8.3 8.4 | 13.9
13.3
14.4
14.6
15.7
17.4
15.7
14.4 | 11.2
10.7
9.6
11.0
11.3
12.4
12.2
12.4
11.6 | 16.9
17.8
15.8
17.4
16.0
15.2
18.2
18.1 | 12.8
12.8
13.9
12.9
13.5
13.0
12.7
14.5
13.8 | 13.4
15.6
14.8
16.0
15.4
14.4
15.3
15.1 | 10.5
11.3
10.7
12.3
10.8
10.4
10.6
10.5
11.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 7.3
7.9
10.8
8.9
7.2
10.4
10.1
10.8
10.1
12.4
10.2
11.8
11.5
10.0 | RIL .5 3.4 2.8 5.3 5.3 4.7 5.5 4.6 6.0 5.1 6.8 6.0 6.6 7.8 | M. 14.0 12.9 13.0 13.4 13.1 13.4 12.4 12.0 11.6 10.6 | 9.6
10.0
8.6
8.8
9.0
9.2
10.0
9.5
9.2
8.8
8.1
9.3
9.1 | 9.3
12.6
12.1
12.5
12.0
13.6
11.7
10.7
11.2
11.9 | UNE 6.4 6.3 8.7 9.3 8.5 9.0 8.9 8.3 8.4 7.5 8.9 8.6 9.5 | 13.9
13.3
14.4
14.6
15.7
17.4
15.7
14.4
16.3
15.4
14.8
15.9
15.7 | 11.2
10.7
9.6
11.0
11.3
12.4
12.2
12.4
11.6
12.9
13.2
12.8
11.9
12.1 | 16.9
17.8
15.8
17.4
16.0
15.2
18.1
18.1
16.6 | 12.8
12.8
13.9
12.9
13.5
13.0
12.7
14.5
13.8
14.5 | 13.4
15.6
14.8
16.0
15.4
14.4
15.3
15.3
15.3
15.3 | 10.5
11.3
10.7
12.3
10.8
10.4
10.6
10.5
11.5
10.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 7.3 7.9 10.8 8.9 7.2 10.4 10.1 10.8 10.1 12.4 10.2 11.8 10.0 9.7 8.6 9.1 9.6 7.5 | RIL .5 3.4 2.8 5.3 5.3 4.7 5.5 4.6 6.0 5.1 6.8 6.0 6.6 7.8 6.4 6.3 4.8 5.0 3.9 | M. 14.0 12.9 13.0 13.4 13.1 13.4 12.4 12.0 11.6 10.6 12.8 11.9 11.4 11.8 12.4 | 9.6
10.0
8.6
8.8
9.0
9.2
10.0
9.5
9.2
8.8
8.1
9.3
9.1
9.4
9.6 | 9.3
12.6
12.1
12.5
12.0
13.6
11.7
10.7
11.2
11.9
11.6
12.9
12.8
12.9
12.6 | UNE 6.4 6.3 8.7 9.3 8.5 9.0 8.9 8.3 8.4 7.5 8.9 8.6 9.2 9.3 8.7 7.5 10.0 | 13.9
13.3
14.4
14.6
15.7
17.4
15.7
14.8
16.3
15.4
14.8
15.9
15.7
15.3
14.6
16.5
16.7 | 11.2
10.7
9.6
11.0
11.3
12.4
12.2
12.4
11.6
12.9
13.2
12.8
11.9
12.1
12.2
11.7
12.2 | 16.9
17.8
15.8
17.4
16.0
15.2
18.1
18.1
16.6
15.1
15.8
17.5
17.8 | 12.8
12.8
13.9
12.9
13.5
13.0
12.7
14.5
13.8
14.5
13.1
12.6
12.2
13.1 | 13.4
15.6
14.8
16.0
15.4
14.4
15.3
15.1
15.3
15.3
15.4
15.6
15.5
14.3
16.1
16.1
15.5
13.6 | 10.5
11.3
10.7
12.3
10.8
10.4
10.6
10.5
11.5
10.6
10.7
11.9
11.5
12.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 7.3 7.9 10.8 8.9 7.2 10.4 10.1 10.8 10.1 11.5 10.0 9.7 8.6 9.1 9.6 7.5 7.7 | RIL .5 3.4 2.8 5.3 5.3 4.7 5.5 4.6 6.0 5.1 6.8 6.0 6.6 7.8 6.4 6.3 4.8 5.0 3.9 3.7 3.6 5.3 5.3 | M. 14.0 12.9 13.0 13.4 13.1 13.4 12.0 11.6 10.6 12.8 11.9 11.4 11.8 12.4 12.5 12.9 12.8 12.6 11.4 11.3 9.9 10.1 11.2 | 9.6
10.0
8.6
8.8
9.0
9.2
10.0
9.5
9.2
8.8
8.1
9.4
9.6
9.5
9.7
9.5
8.5
8.0
7.8
8.3 | 9.3
12.6
12.1
12.5
12.0
13.6
11.7
10.7
11.2
11.9
11.6
12.9
12.8
12.9
12.6
12.1
11.7
13.7
13.2
14.1 | UNE 6.4 6.3 8.7 9.3 8.5 9.0 8.9 8.3 8.4 7.5 8.9 8.6 9.5 9.2 9.3 8.7 7.5 10.0 10.3 | 13.9 13.3 14.4 14.6 15.7 17.4 15.7 14.4 14.8 16.3 15.4 14.8 15.9 15.7 15.3 14.6 16.5 16.7 14.8 25.6 | 11.2
10.7
9.6
11.0
11.3
12.4
11.6
12.9
13.2
12.8
11.9
12.1
12.2
11.7
12.2
11.7
12.2
13.0
12.8
12.3
13.1
12.8 |
16.9
17.8
15.8
17.4
16.0
15.2
18.1
18.1
16.6
15.1
15.8
17.5
17.8
15.8
17.5
17.4 | 12.8
12.8
13.9
12.9
13.5
13.0
12.7
14.5
13.8
14.5
13.1
12.6
12.2
13.1
13.7
13.3
13.7
13.6 | 13.4
15.6
14.8
16.0
15.4
14.4
15.3
15.1
15.3
15.3
15.6
15.5
14.3
16.1
16.1
15.5
13.6
13.3
14.6 | 10.5
11.3
10.7
12.3
10.8
10.6
10.5
11.5
10.6
10.7
11.9
11.5
12.5
12.9
12.0
11.5
10.1
11.5
10.8 | ### 06720500 SOUTH PLATTE RIVER AT HENDERSON, CO LOCATION.--Lat 39°55'19", long 104°52'00", in SE¹/4NE¹/4 sec.34, T.1 S., R.67 W., Adams County, Hydrologic Unit 10190003, on right bank 500 ft upstream from bridge on State Highway 22 and 0.2 mi northwest of Henderson. DRAINAGE AREA. -- 4,713 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1926 to current year. Prior to October 1933, monthly discharge only, published in WSP 1310. REVISED RECORDS.--WSP 1310: 1934-36(M). WSP 1730: Drainage area. WDR CO-88-1: 1986. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,003.12 ft above National Geodetic Vertical Datum of 1929. See WSP 1710 or 1730 for history of changes prior to June 1, 1960. June 1, 1960, to May 10, 1969, water-stage recorder at site 1,200 ft upstream at datum 2.00 ft, higher. May 11 to Oct. 2, 1969, nonrecording gage at site 500 ft downstream at present datum. REMARKS.--Estimated daily discharge: June 9. Records fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals, diversions for irrigation of about 253,000 acres, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCURDED CURIO CERTA DEL CESCONO LINTER VEND COMORDE 1001 MO CERTADER 1000 | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTO
VALUES | BER 1991 T | O SEPTEM | BER 1992 | | | |----------|------------|-------------|------------|---------------|------------|------------|---------------------|-------------|------------|--------------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 259 | 242 | 283 | 301 | 391 | 383 | 737 | 209 | 1080 | 428 | 370 | 281 | | 2 | 244 | 246 | 293 | 303 | 379 | 391 | 634 | 199 | 449 | 599 | 356 | 256 | | 3 | 226 | 229 | 283 | 312 | 375 | 391 | 633 | 199 | 301 | 387 | 359 | 238 | | 4 | 236 | 252 | 283 | 316 | 379 | 1830 | 619 | 211 | 314 | 401 | 376 | 227 | | 5 | 247 | 256 | 289 | 313 | 383 | 763 | 626 | 204 | 308 | 387 | 352 | 211 | | | | | | | | | | | | | | | | 6 | 239 | 246 | 286 | 320 | 375 | 512 | 591 | 194 | 324 | 390 | 371 | 202 | | 7 | 301 | 246 | 290 | 335 | 378 | 482 | 507 | 204 | 407 | 410 | 360 | 203 | | 8
9 | 308 | 236 | 290 | 438 | 381 | 604 | 480 | 278 | 507 | 419
435 | 297
282 | 207 | | 10 | 311
305 | 229 | 296
297 | 451
442 | 386
395 | 1080 | 400
348 | 333
461 | 603
439 | 435 | 270 | 201
202 | | | | 222 | | | | 1110 | | | | | | | | 11 | 320 | 219 | 292 | 460 | 392 | 1010 | 320 | 400 | 442 | 557 | 307 | 195 | | 12 | 276 | 218 | 287 | 442 | 390 | 925 | 344 | 361 | 579 | 672 | 462 | 194 | | 13 | 254 | 234 | 287 | 428 | 380 | 850 | 509 | 321 | 519 | 855 | 411 | 199 | | 14 | 251 | 249 | 286 | 438 | 379 | 770 | 627 | 295 | 526 | 443 | 439 | 250 | | 15 | 246 | 239 | 286 | 433 | 361 | 700 | 405 | 306 | 528 | 496 | 361 | 200 | | 16 | 246 | 259 | 290 | 433 | 373 | 676 | 548 | 374 | 496 | 738 | 365 | 193 | | 17 | 235 | 415 | 290 | 428 | 368 | 646 | 758 | 405 | 458 | 670 | 431 | 195 | | 18 | 238 | 438 | 290 | 424 | 367 | 652 | 566 | 398 | 438 | 450 | 402 | 188 | | 19 | 241 | 474 | 291 | 424 | 367 | 749 | 483 | 329 | 444 | 390 | 391 | 191 | | 20 | 238 | 439 | 297 | 428 | 356 | 646 | 495 | 375 | 652 | 473 | 346 | 194 | | 21 | 246 | 438 | 297 | 438 | 361 | 627 | 472 | 396 | 581 | 710 | 344 | 197 | | 22 | 243 | 403 | 289 | 415 | 363 | 748 | 402 | 550 | 622 | 442 | 339 | 200 | | 23 | 235 | 324 | 298 | 371 | 367 | 664 | 263 | 415 | 512 | 391 | 356 | 192 | | 24 | 255 | 305 | 297 | 375 | 377 | 491 | 244 | 374 | 487 | 604 | 5330 | 179 | | 25 | 234 | 294 | 286 | 379 | 375 | 558 | 232 | 577 | 683 | 458 | 1550 | 188 | | | | | | | | | | | | | | | | 26 | 210 | 290 | 283 | 415 | 368 | 460 | 231 | 476 | 883 | 558 | 449 | 195 | | 27 | 199 | 294 | 301 | 415 | 371 | 465 | 239 | 474 | 677 | 515 | 386 | 194 | | 28
29 | 236
246 | 30B
290 | 297
297 | 399
391 | 379 | 2280 | 229 | 379
331 | 583
576 | 242
275 | 343
326 | 199
197 | | 30 | 239 | 290 | 300 | 379 | 379
 | 935
690 | 298
228 | 275 | 514 | 339 | 310 | 194 | | 31 | 246 | 2 9 0
 | 297 | 383 | | 717 | | 384 | | 395 | 298 | | | | | | | | | | | | | | | | | TOTAL | 7810 | | 9028 | 12229 | 10895 | 23805 | 13468 | 10687 | 15932 | 14957 | 17339 | 6162 | | MEAN | 252 | 294 | 291 | 394 | 376 | 768 | 449 | 345 | 531 | 482 | 559 | 205 | | MAX | 320 | 474 | 301 | 460 | 395 | 2280 | 758 | 577 | 1080 | 855 | 5330 | 281 | | MIN | 199 | 218 | 283 | 301 | 356 | 383 | 228 | 194 | 301 | 242 | 270 | 179 | | AC-FT | 15490 | 17500 17 | 7910 | 24260 | 21610 | 47220 | 26710 | 21200 | 31600 | 29670 | 34390 | 12220 | | STATIST | ICS OF MO | ONTHLY MEAN | DATA FOR | WATER Y | EARS 1976 | - 1992 | , BY WATER | R YEAR (WY) | | | | | | MEAN | 357 | 337 | 300 | 320 | 328 | 396 | 558 | 1208 | 1163 | 762 | 659 | 376 | | MAX | 1835 | 1268 | 554 | 592 | 642 | 842 | 1732 | 3923 | 4173 | 2386 | 2074 | 1141 | | (WY) | 1985 | | 1984 | 1984 | 1984 | 1983 | 1983 | 1980 | 1983 | 1983 | 1984 | 1984 | | MIN | 144 | 173 | 177 | 155 | 156 | 118 | 140 | 324 | 334 | 358 | 279 | 157 | | (WY) | 1978 | 1978 1 | 1976 | 1 9 77 | 1977 | 1982 | 1982 | 1986 | 1981 | 1981 | 1977 | 1977 | | SUMMARY | STATIST | rcs | FOR 19 | 91 CALENI | DAR YEAR | | FOR 1992 W | NATER YEAR | | WATER YE | ARS 1976 | - 1992 | | ANNUAL | TOTAL. | | 1 | 46725 | | | 151136 | | | | | | | ANNUAL | | | - | 402 | | | 413 | | | ^a 565 | | | | | ANNUAL N | MEAN . | | | | | | | | 1379 | | 1983 | | LOWEST | ANNUAL ME | EAN | | | | | | | | L 252 | | 1981 | | HIGHEST | DAILY ME | EAN | | 3530 | Aug 3 | | 5330 | Aug 24 | | 6030 | Jun 2 | 27 1983 | | | DAILY MEA | | | 90 | Mar 16 | | 179 | Sep 24 | | 27 | Apr | 7 1977 | | | | MINIMUM | | 97 | Mar 20 | | 192 | Sep 18 | | 60 | | 13 1982 | | | ANEOUS PE | | | | | | 11400 | Aug 24 | | d ₁₂₃₀₀ | Jun 2 | 27 1983 | | | ANEOUS PE | | | | | | 9.8 | 30 Aug 24 | | ⁶ 7.58 | Jun 2 | 7 1983 | | | RUNOFF (F | | 2 | 91000 | | | 299800 | | | 409300 | | | | | ENT EXCE | | | 772 | | | 629 | | | 1100 | | | | | ENT EXCE | | | 290 | | | 368 | | | 342 | | | | 90 PERC | ENT EXCE | EDS | | 175 | | | 221 | | | 176 | | | a-Average discharge for 48 years (water years 1927-74), 366 ft³/s; 265200 acre-ft/yr, prior to completion of Chatfield Dam. b-Maximum daily discharge for period of record, 13200 ft³/s, May 7, 1973. c-Minimum daily discharge for period of record, 4.4 ft³/s, Apr 1, 1950. d-Maximum discharge and stage for period of record, 33000 ft³/s, May 6, 1973, gage height, 11.67 ft, from rating curve extended above 7200 ft³/s, partly on basis of flow-over-road measurement of peak flow; maximum gage height, 12.93 ft, Jun 17, 1965, site and datum the in use. e-Maximum gage height for statistical period, 9.50 ft, Jun 9, 1987. 0.63 4.6 ## 06720500 SOUTH PLATTE RIVER AT HENDERSON, CO--Continued (National stream-quality accounting network station) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1955 to September 1957, June 1962 to September 1973. Established as NASQAN station in 1988 water year. April 18, 1988, to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | CH
I
C
TIME | NST. C UBIC C FEET D PER A | UCT- (S' | TAND- AT
ARD W | TURE
ATER | BID- I | F
YGEN, 0
DIS- U
OLVED (C | ORM, TO
ECAL, F
.7 KF
M-MF (COOLS./ | PER AS | SS
FAL
S/L | |------------------|---|--|---|--|---|--|---|--|--|------------------| | NOV
19 | 1030 | 320 | 919 | 8.1 · | 7.5 | 12 | 9.5 | 550 | 670 19 | 90 | | FEB
03 | 1040 | 312 1 | 020 | 8.5 | 3.0 | 10 | 9.3 | 420 | 23 | 0 | | MAR
11 | 1100 | 712 | 805 1 | 8.0 | 7.0 | 36 | 9.6 | 580 | 260 19 | 0 | | APR
13 | 1430 | 610 | 850 (| 8.0 10 | 5.5 | 8.5 | 7.7 | 280 : | 310 22 | 20 | | JUN
10 | 1130 | 428 | 777 | 7.6 18 | 3.0 | 1.5 | 7.1 | | | . _ | | AUG
17 | 1315 | 305 | 807 | 7.7 20 |).5 | 2.6 | 7.4 K | 210 | K77 21 | .0 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-A
BONATE
WATER
WH FET
FIELD
MG/L AS
HCO3 | CAR-B
BONATE
WATER
WH FET
FIELD
MG/L AS
CO3 | ALKA-C
LINITY
WAT WH
TOT FET
FIELD
MG/L AS
CACO3 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | | NOV
19
FEB | 58 | 12 | 95 | 3 | 9.1 | 180 | 0 | 152 | 130 | | | 03
MAR | 68 | 14 | 100 | 3 | 10 | 160 | 48 | 197 | 180 | | | 11
APR | 58 | 12 | 79 | 2 | 7.3 | 180 | 0 | 150 | 140 | | | 13
JUN | 65 | 14 | 81 | 2 | 6.8 | 170 | 0 | 142 | 150 | | | 10
AUG | | | | | | 200 | 0 | 159 | | | | 17 | 62 | 13 | 78 | 2 | 7.3 | 200 | 0 | 159 | 140 | | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) |
FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | | | NOV
19 | 86 | 0.8 | 9.7 | 533 | 520 | 0.72 | 461 | 0.11 | 4.4 | | | FEB
03 | 83 | 1.0 | 11 | 583 | 631 | 0.79 | 491 | 0.34 | 4.7 | | | MAR
11 | 81 | 0.8 | 7.8 | 469 | 489 | 0.64 | 902 | 0.07 | 1.7 | | | APR
13 | 65 | 0.9 | 8.6 | 538 | 498 | 0.73 | 886 | 0.36 | 2.9 | | | JUN
10 | | | | | | | | 0.31 | 2.6 | | A-Field dissolved bicarbonate, determined by incremental titration method. B-Field dissolved carbonate, determined by incremental titration method. C-Field total dissolved alkalinity, determined by incremental titration method. K-Based on non-ideal colony count. 481 0.65 396 499 11 1.0 AUG 17... 60 06720500 SOUTH PLATTE RIVER AT HENDERSON, CO--Continued (National stream-quality accounting network station) WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | NOV 19 4.3 3.4 3.4 2.8 6.2 11 2.4 2.1 2.0 FEB 03 4.8 5.9 5.6 3.0 8.9 14 3.6 2.8 2.7 MAR 11 1.6 2.2 2.1 1.1 3.3 5.0 1.2 1.0 0.97 APR 13 2.9 2.6 2.6 1.4 4.0 6.9 1.8 1.6 1.4 JUN 10 2.6 2.6 2.6 1.2 3.8 6.4 1.7 1.8 1.8 AUG 17 4.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 NOV 19 1030 <10 27 | DATE | SOLVED | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | MONIA + | NITRO- | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |--|------|--------|--|---|--|--------------------------------------|-------------------------------------|--|---|---| | 03 4.8 5.9 5.6 3.0 8.9 14 3.6 2.8 2.7 MAR 11 1.6 2.2 2.1 1.1 3.3 5.0 1.2 1.0 0.97 APR 13 2.9 2.6 2.6 2.6 1.4 4.0 6.9 1.8 1.6 1.4 JUN 10 2.6 2.6 2.6 2.6 1.2 3.8 6.4 1.7 1.8 1.8 AUG 17 4.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 AUG 17 A.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 AUG 17 A.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 AUG 19 10 015 015 015 015 015 015 SOLVED | 19 | 4.3 | | 3.4 | 2.8 | 6.2 | 11 | 2.4 | 2.1 | 2.0 | | 11 | | 4.8 | 5.9 | 5.6 | 3.0 | 8.9 | 14 | 3.6 | 2.8 | 2.7 | | 13 2.9 2.6 2.6 1.4 4.0 6.9 1.8 1.6 1.4 1.7 10 10 2.6 2.6 2.6 1.2 3.8 6.4 1.7 1.8 1.8 1.8 1.8 10 2.6 2.6 2.6 1.2 3.8 6.4 1.7 1.8 1.8 1.8 1.8 1.8 1.6 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 | 11 | 1.6 | 2.2 | 2.1 | 1.1 | 3.3 | 5.0 | 1.2 | 1.0 | 0.97 | | 10 2.6 2.6 2.6 1.2 3.8 6.4 1.7 1.8 1.8 1.8 AUG 17 4.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 1.9 1.8 3.8 8.4 2.2 2.0 1.9 1.9 1.8 3.8 8.4 2.2 2.0 1.9 1.9 1.9 1.8 3.8 8.4 2.2 2.0 1.9 1.9 1.9 1.8 3.8 8.4 2.2 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 | | 2.9 | 2.6 | 2.6 | 1.4 | 4.0 | 6.9 | 1.8 | 1.6 | 1.4 | | AUG 17 4.7 2.0 1.9 1.8 3.8 8.4 2.2 2.0 1.9 ALUM-INUM, BARIUM, COBALT, IRON, LITHIUM NESE, DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS-DIS- | | 2.6 | 2.6 | 2.6 | 1.2 | 3.8 | 6.4 | 1.7 | 1.8 | 1.8 | | ALUM- | AUG | | | | | | | | | | | NOW | 17 | 3.7 | 2.0 | 1.9 | 1.0 | 3.0 | 0.3 | 2.2 | 2.0 | 1.5 | | 19 1030 <10 27 <3 60 18 200 FEB | | DATE | TIME | INUM,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NESE,
DIS-
SOLVED
(UG/L | | | 03 1040 10 25 <3 50 22 250 MAR 11 1100 <10 34 <3 30 14 120 APR 13 1430 10 33 <3 38 20 140 JUN 10 1130 AUG 17 1315 <10 31 <3 16 17 130 MOLYB- DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, DISS- DIS | | 19 | 1030 | <10 | 27 | <3 | 60 | 18 | 200 | | | 11 | | 03 | 1040 | 10 | 25 | <3 | 50 | 22 | 250 | | | 13 1430 10 33 <3 38 20 140 JUN 10 1130 AUG 17 1315 <10 31 <3 16 17 130 MOLYB- DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED DATE (UG/L (UG/L (UG/L (UG/L (UG/L (UG/L AS MO) AS NI) AS SE) AS AG) AS SR) AS V) NOV 19 20 4 3 1.0 530 <6 FEB 03 10 4 4 <1.0 590 <6 MAR 11 20 3 2 <1.0 510 <6 APR 13 20 4 2 <1.0 550 <6 JUN 10 AUG | | | 1100 | <10 | 34 | <3 | 30 | 14 | 120 | | | JUN 10 1130 AUG 17 1315 <10 31 <3 16 17 130 MOLYB- SELE- STRON- VANA-DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, DIS- DIS- DIS- DIS- DIS- SOLVED SOLV | | | 1430 | 10 | 33 | <3 | 38 | 20 | 140 | | | AUG 17 1315 <10 31 <3 16 17 130 MOLYB- | | JUN | | | | | | | | | | MOLYB- DENUM, NICKEL, NIUM, SILVER, TIUM, DIUM, DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED (UG/L (UG | | AUG | | | | | | | | | | DENUM, NICKEL, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | | 17 | 1315 | <10 | 31 | <3 | 10 | 17 | 130 | | | 19 20 4 3 1.0 530 <6 FEB 03 10 4 4 <1.0 590 <6 MAR 11 20 3 2 <1.0 510 <6 APR 13 20 4 2 <1.0 550 <6 JUN 10 AUG | | DATE | DEI
D:
SOI
: (UC | NUM, NIC
IS- DI
LVED SO
G/L (U | KEL, N
S-
LVED S
G/L (| IUM, SI
DIS-
OLVED S
UG/L (| LVER, TO DIS- DIS- DIVED SO UG/L (U | CIUM, DI
DIS- D
DLVED SO
UG/L (U | UM,
IS-
LVED
G/L | | | 03 10 4 4 <1.0 590 <6 MAR 11 20 3 2 <1.0 510 <6 APR 13 20 4 2 <1.0 550 <6 JUN 10 AUG | | | ; | 20 | 4 | 3 | 1.0 5 | 30 | <6 | | | MAR 11 20 3 2 <1.0 510 <6 APR 13 20 4 2 <1.0 550 <6 JUN 10 AUG | | | : | 10 | 4 | 4 < | 1.0 5 | 90 | <6 | | | APR 13 20 4 2 <1.0 550 <6 JUN 10 AUG | | MAR | : | 20 | 3 | | | 10 | <6 | | | JUN
10
AUG | | APR | | | _ | | | | _ | | | AUG | | JUN | | | - | _ | | | _ | | | 17 20 4 2 <1.0 510 <6 | | AUG | | | | | | | | | | | | 17 | : | 20 | 4 | 2 < | 1.0 5 | 10 | <6 | | SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |------|------|--|--|--| | NOV | | | | | | 19 | 1030 | 320 | 68 | 58 | | FEB | | | | | | 03 | 1040 | 312 | 45 | 38 | | MAR | | | | | | 11 | 1100 | 712 | 98 | 189 | | APR | | | | | | 13 | 1430 | 610 | | | | JUN | | | | | | 10 | 1130 | 428 | 49 | 57 | | AUG | | | | | | 17 | 1315 | 305 | 45 | 37 | ### 06720820 BIG DRY CREEK AT WESTMINSTER, CO LOCATION.--Lat 39°54'20", long 105°02'04", NE¹/4SE¹/4 sec.6, T.2 S., R.68 W., Adams County, Hydrologic Unit 10190003, on left bank 0.75 mi upstream from bridge on 120th Ave and 5.2 mi downstream from outlet of Standley Lake. DRAINAGE AREA. -- 43.8 m12. PERIOD OF RECORD .-- July 1987 to current year. REVISED RECORDS. -- WDR CO-91-1: Drainage area. GAGE.--Water-stage recorder and concrete and wooden control. Elevation of gage is 5,215 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 27 to Nov. 1, Jan. 15-22, and Jan. 24-30. Records good except for estimated daily discharges, which are poor. Flow affected by storage diversions, ground-water withdrawals and diversions for irrigation and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBI | C FEET PER | | | YEAR OCTOBI | ER 1991 1 | O SEPTEM | 3ER 1992 | | | |---|--
--|--|---|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.7
1.9
1.6
1.7
2.0 | 1.9
1.8
1.6
2.2
3.6 | 1.5
1.5
1.5
1.5 | 2.7
2.2
3.5
3.1
2.2 | 1.8
1.7
1.6
1.5 | 1.1
1.1
1.1
44
21 | 12
19
19
21
19 | 1.8
1.6
1.6
1.6 | 17
4.7
3.8
2.5
6.5 | 39
43
45
45
47 | 23
20
19
20
20 | 18
27
31
36
39 | | 6
7
8
9
10 | 2.0
2.1
2.2
2.0
1.7 | 2.0
1.8
1.5
1.2 | 1.5
1.4
1.1
1.5 | 2.8
3.5
3.3
2.9
2.0 | 1.4
1.5
1.4
1.4 | 4.9
2.7
2.5
19 | 12
6.2
3.6
2.3
2.1 | 1.6
1.5
1.5
2.5
5.3 | 4.3
4.4
28
11
13 | 55
46
27
24
30 | 18
15
19
19
23 | 38
42
37
36
35 | | 11
12
13
14
15 | 1.6
1.5
1.5
1.6
1.5 | 1.3
1.2
1.0
1.0
2.0 | 1.9
2.0
1.9
1.8
2.1 | 2.4
1.8
1.6
1.5 | 1.5
1.4
1.4
1.3 | 21
29
28
25
18 | 2.7
3.2
3.2
12
20 | 11
44
26
29
35 | 20
27
33
36
34 | 30
31
32
31
32 | 28
34
25
18
16 | 34
36
30
26
23 | | 16
17
18
19
20 | 1.5
1.2
1.5
1.5 | 5.3
13
6.6
13
9.8 | 2.0
2.1
1.8
1.7 | 1.6
1.7
1.7
1.8
1.8 | 1.2
1.5
1.6
1.8
2.4 | 18
11
7.9
11
6.3 | 7.2
3.5
3.2
3.5
2.7 | 41
48
48
44
44 | 33
43
52
58
57 | 28
30
24
23
26 | 16
17
17
23
25 | 26
24
11
9.1
7.4 | | 21
22
23
24
25 | 1.8
1.7
1.5
1.7
2.0 | 13
9.4
3.5
2.3
1.9 | .98
1.7
1.9
1.8
1.9 | 1.9
1.9
2.0
2.0 | 2.2
2.4
1.8
1.6
1.4 | 15
30
30
12
9.6 | 25
31
26
26
21 | 45
44
27
26
33 | 48
41
34
27
34 | 35
34
30
33
32 | 26
30
44
120
37 | 6.1
5.0
4.1
3.6
3.3 | | 26
27
28
29
30
31 | 2.2
2.2
2.1
2.1
2.0
2.0 | 2.0
2.3
2.0
1.6
2.0 | 2.1
1.9
2.0
2.1
2.0
2.2 | 2.0
2.0
2.0
2.0
2.0 | 1.2
1.2
1.5
1.3 | 5.0
4.1
58
24
15 | 20
19
12
12
8.8 | 17
16
13
10
6.4 | 40
32
29
29
32 | 35
29
26
25
23 | 18
11
11
9.1
9.3 | 3.1
2.9
2.5
2.2
2.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 57.2
1.85
3.7
1.2
113 | 113.3
3.78
13
1.0
225 | 53.68
1.73
2.2
.98
106 | 67.4
2.17
3.5
1.5
134 | 45.3
1.56
2.4
1.2
90 | 503.3
16.2
58
1.1
998 | 378.2
12.6
31
2.1
750 | 639.0
20.6
48
1.5
1270 | 834.2
27.8
58
2.5
1650 | 1013
32.7
55
23
2010 | 745.4
24.0
120
9.1
1480 | 600.5
20.0
42
2.2
1190 | | | | | | OR WATER YE | EARS 1988 | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.62
9.95
1988
1.55
1989 | 2.65
4.54
1988
1.33
1989 | 1.32
1.73
1992
1.14
1991 | 1.42
2.17
1992
1.00
1988 | 1.44
1.81
1991
1.00
1988 | 6.37
16.2
1992
1.30
1989 | 6.33
12.6
1992
1.52
1989 | 18.5
26.9
1988
9.98
1989 | 41.6
66.4
1988
13.0
1989 | 29.8
53.4
1988
19.5
1990 | 30.9
42.3
1988
24.0
1992 | 16.5
30.4
1991
6.61
1989 | | SUMMARY | STATISTI | cs | FOR : | 1991 CALEND | AR YEAR | I | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1988 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
MINIMUM
AK FLOW
AK STAGE
(C-FT)
DS | | 5537.77
15.2
94
a.62
.66
10980
52
2.2
1.3 | Jun 27
Jan 6
Jan 2 | | 5050.48
13.8
120
.98
1.2
191
3.98
10020
35
4.8
1.5 | Aug 24
Dec 21
Feb 26
Aug 24 | | 13.5
18.2
7.72
127
6.60
.61
273
4.63
9780
42
2.5
1.0 | Jun :
Dec :
Dec :
Jun | 1988
1989
23 1988
21 1989
24 1990
1 1991
1 1991 | a-Also occurred Jan 7. b-Also occurred Dec 22, 1989 and Dec 24-26, 1990. ### 06720990 BIG DRY CREEK AT MOUTH NEAR FORT LUPTON, CO LOCATION.--Lat $40^{\circ}04^{\circ}09^{\circ}$, long $104^{\circ}49^{\circ}52^{\circ}$, in NE $^1/4$ SE $^1/4$ sec.12, T.1 N., R.67 W., Weld County, Hydrologic Unit 10190003, on left bank 1.1 mi south of State Highway 52, 1.0 mi west of State Highway 85, and 25 mi northeast of Denver. DRAINAGE AREA. -- 107 mi2. PERIOD OF RECORD .-- October 1991 to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 4,900 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 8. Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | E, CUBI | C FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | 1991 | то ѕертемве | R 1992 | | | |--|----------------------------------|--|----------------------------------|----------------------------------|----------------------|--|--|----------------------------------|----------------------------|------------------------------------|-----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 33 | 26 | 25 | 21 | 25 | 16 | 43 | 17 | 142 | 23 | 46 | 16 | | 2 | 33 | 26 | 26 | 21 | 25 | 17 | 43 | 21 | 127 | 37 | 42 | 5.9 | | 3 | 33 | 26 | 27 | 21 | 25 | 16 | 48 | 31 | 84 | 39 | 44 | 4.0 | | 4 | 33 | 27 | 27 | 21 | 25 | 29 | 46 | 36 | 71 | 25 | 47 | 2.6 | | 5 | 33 | 28 | 27 | 21 | 24 | 102 | 48 | 41 | 61 | 31 | 37 | 2.3 | | 6 | 33 | 30 | 26 | 21 | 24 | 45 | 43 | 25 | 66 | 34 | 33 | 2.8 | | 7 | 32 | 27 | 26 | 21 | 24 | 31 | 38 | 17 | 69 | 29 | 34 | 4.7 | | 8 | 32 | 24 | 26 | 20 | 24 | 26 | 32 | 21 | 65 | 26 | 27 | 5.2 | | 9 | 32 | 22 | 25 | 21 | 23 | 15 | 28 | 30 | 164 | 23 | 24 | 3.5 | | 10 | 31 | 22 | 25 | 21 | 23 | 69 | 27 | 45 | 57 | 20 | 20 | 6.0 | | 11 | 31 | 22 | 25 | 22 | 23 | 58 | 29 | 48 | 36 | 27 | 21 | 40 | | 12 | 31 | 22 | 24 | 22 | 22 | 65 | 28 | 29 | 36 | 31 | 40 | 63 | | 13 | 31 | 21 | 24 | 22 | 22 | 92 | 24 | 21 | 31 | 48 | 34 | 74 | | 14 | 30 | 21 | 23 | 22 | 22 | 90 | 41 | 17 | 23 | 23 | 18 | 75 | | 15 | 30 | 21 | 23 | 22 | 22 | 70 | 123 | 15 | 26 | 13 | 16 | 67 | | 16 | 30 | 24 | 24 | 22 | 22 | 60 | 123 | 30 | 18 | 24 | 13 | 61 | | 17 | 30 | 33 | 23 | 22 | 21 | 56 | 133 | 39 | 10 | 22 | 14 | 59 | | 18 | 30 | 44 | 23 | 23 | 21 | 50 | 95 | 38 | 8.1 | 16 | 18 | 53 | | 19 | 29 | 38 | 23 | 24 | 21 | 46 | 88 | 28 | 9.1 | 11 | 13 | 44 | | 20 | 29 | 51 | 22 | 24 | 21 | 41 | 85 | 29 | 57 | 11 | 13 | 47 | | 21 | 29 | 46 | 22 | 24 | 20 | 35 | 64 | 43 | 53 | 15 | 17 | 46 | | 22 | 29 | 55 | 22 | 24 | 20 | 47 | 60 | 77 | 42 | 11 | 36 | 44 | | 23 | 29 | 40 | 22 | 24 | 20 | 53 | 66 | 75 | 29 | 19 | 39 | 86 | | 24 | 29 | 32 | 22 | 24 | 19 | 51 | 48 | 62 | 22 | 59 | 170 | 78 | | 25 | 28 | 29 | 21 | 25 | 19 | 36 | 39 | 92 | 27 | 7 6 | 338 | 72 | | 26
27
28
29
30
31 | 28
28
28
28
28
28 | 27
28
29
29
28 | 22
21
21
21
21
21 | 25
25
24
24
24
24 | 18
17
17
17 | 33
30
66
104
57
46 | 41
42
24
22
12 | 94
84
87
84
70
73 | 90
77
67
59
32 | 101
112
48
23
26
46 | 159
93
73
57
36
24 | 59
66
70
73
64 | | TOTAL | 936 | 898 | 730 | 701 | 626 | 1552 | 1583 | 1419 | 1658.2 | 1049 | 1596 | 1294.0 | | MEAN | 30.2 | 29.9 | 23.5 | 22.6 | 21.6 | 50.1 | 52.8 | 45.8 | 55.3 | 33.8 | 51.5 | 43.1 | | MAX | 33 | 55 | 27 | 25 | 25 | 104 | 133 | 94 | 164 | 112 | 338 | 86 | | MIN | 26 | 21 | 21 | 20 | 17 | 15 | 12 | 15 | 8.1 | 11 | 13 | 2.3 | | AC-FT | 1860 | 1780 | 1450 | 1390 | 1240 | 3080 | 3140 | 2810 | 3290 | 2080 | 3170 | 2570 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 1992 | - 1992 | , BY WATER YE | AR (W | Y) | | | | | MEAN | 30.2 | 29.9 | 23.5 | 22.6 | 21.6 | 50.1 | 52.8 | 45.8 | 55.3 | 33.8 | 51.5 | 43.1 | | MAX | 30.2 | 29.9 | 23.5 | 22.6 | 21.6 | 50.1 | | 45.8 | 55.3 | 33.8 | 51.5 | 43.1 | | (WY) | 1992 | 1992 | 1992 | 1992 | 1992 | 1992 | | 1992 | 1992 | 1992 | 1992 | 1992 | | MIN | 30.2 | 29.9 | 23.5 | 22.6 | 21.6 | 50.1 | | 45.8 | 55.3 | 33.8 | 51.5 | 43.1 | | (WY) | 1992 | 1992 | 1992 | 1992 | 1992 | 1992 | | 1992 | 1992 | 1992 | 1992 | 1992 | | SUMMARY | STATISTI | cs | | | FOR 19 | 92 WATE | R YEAR | | | | | | | LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | | 33 | 8.4
8
2.3
3.6
1
7.38
0 | Aug 25
Sep 5
Sep 3
Aug 25
Aug 25 | | | | | | ### 06721500 NORTH ST VRAIN CREEK NEAR ALLENS PARK, CO LOCATION.--Lat. $40^{\circ}13^{\circ}08^{\circ}$, long
$105^{\circ}31^{\circ}40^{\circ}$, in $SW^{1}/4SE^{1}/4$ sec.14, T.3 N., R.73 W., Boulder County, Hydrologic Unit 10190005, on left bank 64 ft upstream from bridge on Colorado Highway 7, 0.8 mi upstream from Horse Creek, and 1.7 mi north of Allens Park. DRAINAGE AREA. -- 32.6 mi2. PERIOD OF RECORD. -- October 1925 to September 1930. October 1986 to current year. REVISIONS.--WDR CO-91-1: 1987, 1988, 1989 (M). GAGE.--Water stage recorder with satellite telemetry. Elevation of gage is 8,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. Oct. 1, 1926 to June 6, 1929, water-stage recorder at present site at different datum. June 6, 1929 to Sept. 30, 1930 at site 300 ft downstream at different datum. REMARKS.--Estimated daily discharges: Oct. 29 to Mar. 26, Mar. 30 to Apr. 1, and June 30 to July 10. Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | • | | DISCHA | RGE, CUBIC | FEET PE | | | YEAR OCTOBER | R 1991 TO | SEPTEMB | ER 1992 | | | |---|--------------------------------------|--|---|---|--------------------------------------|--|--|---|-----------------------------------|--|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
18
17
17
16 | 11
11
11
11 | 8.2
8.6
8.6
8.4
9.0 | 6.8
7.0
7.0
7.0
6.8 | 6.6
6.6
6.4
6.4 | 4.9
4.8
4.7
4.6
4.6 | 9.4
7.0
7.5
8.5
9.3 | 70
72
55
60
69 | 100
97
108
128
132 | 139
135
130
125
122 | 49
47
45
45 | 34
35
30
28
33 | | 6
7
8
9
10 | 16
16
15
14
14 | 12
12
12
11 | 9.0
9.0
8.4
8.2
8.2 | 6.8
6.8
7.0
7.0 | 6.0
6.0
6.2
6.1 | 4.7
4.6
4.6
4.5
4.4 | 9.4
9.1
9.2
9.8
12 | 84
100
89
91
93 | 128
129
134
139
138 | 119
115
110
105
102 | 47
49
46
47
48 | 29
27
26
25
24 | | 11
12
13
14
15 | 14
14
14
14
13 | 12
12
11
11 | 8.2
8.4
8.2
8.0
8.2 | 7.0
6.8
6.6
6.4 | 6.0
6.2
6.1
5.9 | 4.5
4.8
5.0
5.1
5.2 | 14
15
20
24
24 | 78
74
69
73
79 | 172
198
188
182
166 | 100
99
92
85
81 | 50
49
46
43
41 | 23
22
22
19
19 | | 16
17
18
19
20 | 13
12
12
12
12 | 11
10
10
10
9.8 | 8.6
8.4
8.2
8.0
8.4 | 6.4
6.6
6.2
6.2 | 5.6
5.4
5.6
5.7 | 5.4
5.5
5.4
5.4 | 29
26
30
23
20 | 88
94
110
124
134 | 138
120
112
128
154 | 81
80
74
76
80 | 37
37
38
36
33 | 18
22
36
28
26 | | 21
22
23
24
25 | 12
12
11
12
12 | 9.8
9.8
9.4
9.8 | 8.6
8.4
8.0
7.8
7.4 | 6.6
6.6
6.4
6.4 | 5.7
5.6
5.3
5.1
5.0 | 5.5
5.8
5.7
5.8
6.4 | 18
19
18
17 | 170
154
134
150
145 | 166
153
162
167
190 | 79
74
70
67
70 | 31
31
37
49
50 | 24
23
21
20
22 | | 26
27
28
29
30
31 | 12
12
12
11
11 | 9.8
9.8
9.6
9.2 | 7.2
7.2
7.2
7.2
7.2
7.2
7.0 | 6.4
6.5
6.5
6.6 | 4.8
4.7
4.8
5.0 | 6.4
6.6
6.9
7.0
7.4
7.3 | 20
27
42
56
66 | 162
226
166
129
112
102 | 198
164
161
169
148 | 69
63
57
54
52
50 | 44
40
35
32
30
31 | 21
19
18
17
16 | | TOTAL
MEAN
MAX
MIN
AC-FT | 420
13.5
20
10
833 | 316.8
10.6
12
9.2
628 | 251.4
8.11
9.0
7.0
499 | 206.1
6.65
7.0
6.2
409 | 166.7
5.75
6.6
4.7
331 | 168.9
5.45
7.4
4.4
335 | 616.2
20.5
66
7.0
1220 | 3356
108
226
55
6660 | 4469
149
198
97
8860 | 2755
88.9
139
50
5460 | 1288
41.5
50
30
2550 | 727
24.2
36
16
1440 | | STATIST | | ONTHLY ME | AN DATA FO | | | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.2
35.2
1930
10.7
1989 | 12.9
18.5
1930
8.16
1989 | 8.51
11.8
1926
6.69
1989 | 6.82
9.00
1926
5.60
1988 | 5.92
8.00
1926
4.00
1930 | 7.09
9.00
1929
5.45
1992 | 18.0
30.4
1930
8.92
1991 | 96.9
134
1926
70.7
1990 | 216
294
1926
141
1987 | 133
220
1928
76.0
1987 | 68.4
126
1930
34.0
1988 | 33.1
76.3
1929
15.9
1988 | | SUMMARY | STATIST | CS | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE. | ARS 1926 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | EAN EAN AN (MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 17685.0
48.5
366
4.5
4.7
35080
139
11
5.8 | Jun 15
Feb 16
Feb 14 | | 14741.1
40.3
226
4.4
4.6
294
5.84
29240
128
14
5.8 | May 27
Mar 10
Mar 5
May 26
May 26 | | 52.4
67.9
40.0
433
4.0
b ₁ 000
66.17
37940
160
6.0 | Feb
Feb
Jun | 1926
1989
30 1928
1 1930
1 1930
9 1929
4 1988 | a-Also occurred Feb 17-19. b-Maximum discharge, estimated, caused by failure of Copeland dam 0.5 mi upstream, gage height not determined. c-Maximum gage height recorded. ### 06724000 ST VRAIN CREEK AT LYONS, CO LOCATION.--Lat 40°13'05", long 105°15'34", in NW¹/4NW¹/4 sec.20, T.3 N., R.70 W., Boulder County, Hydrologic Unit 10190005, on left bank 75 ft southwest of U.S. Highway 36 (State Highways 7 and 66) at southeast edge of Lyons, 400 ft upstream from St. Vrain Supply Canal, and 0.4 mi downstream from confluence of North and South St. Vrain Creeks. DRAINAGE AREA .-- 212 m12. PERIOD OF RECORD.--Streamflow records, August 1887 to September 1891, June 1895 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "near Lyons" 1901, 1903. Water-quality data available, October 1977 to February 1981. REVISED RECORDS.--WSP 1310: 1898, 1900. WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,292 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 6, 1923, nonrecording gages near present site at different datums. Apr. 6, 1923, to Sept. 30, 1956, water-stage recorder at same site at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Dec. 20-27, June 1, and June 2. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 2,000 acres. Flow partly regulated by small reservoirs upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD. -- Outstanding floods occurred in June 1864 and May 1876. Flood in May or June 1894 reached a stage of 9.13 ft, from information by local resident, discharge, about 9,800 ft³/s. For discussions of these floods, see WSP 997. | | DISCHARG | SE, CUBIC | FEET PER | SECOND, | WATER
MEAN | YEAR OCTOBER | 1991 | TO SEPTEMB | ER 1992 | | | |---|--|--------------------------------------|---|--------------------------------------|--------------------------------------|-------------------------------------|--|------------------------------------|--|------------------------------------|--| | DAY OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 42
2 36
3 30
4 31
5 31 | 20
26
27
27
30 | 18
22
22
25
26 | 21
20
20
18
19 | 17
19
18
17
17 | 12
11
17
31
36 | 86
92
73
80
91 | 159
168
144
124
124 | 159
137
130
175
266 | 290
282
230
184
180 | 82
78
80
115
110 | 56
67
65
60
62 | | 6 29
7 25
8 22
9 21
10 21 | 30
31
48
36
40 | 23
23
26
24
22 | 18
18
17
15
18 | 15
15
16
17
17 | 25
21
27
34
30 | 98
103
101
104
105 | 144
186
206
213
227 | 280
278
290
330
340 | 198
230
254
266
223 | 98
96
89
89
93 | 56
48
42
37
33 | | 11 15
12 15
13 19
14 21
15 23 | 33
33
31
30
34 | 25
25
21
19
24 | 17
19
15
16
13 | 17
16
16
15 | 37
43
50
52
53 | 123
125
119
117
115 | 200
184
163
161
163 | 385
530
500
494
452 | 198
188
185
155
153 |
112
111
107
93
80 | 32
28
28
26
30 | | 16 14
17 14
18 14
19 17
20 19 | 34
39
36
34
29 | 26
20
21
23
25 | 17
17
15
17
16 | 17
16
14
15
16 | 49
50
49
43
39 | 170
172
179
156
141 | 177
203
230
270
294 | 365
290
245
298
345 | 165
177
161
148
189 | 72
85
91
82
68 | 30
30
39
51
48 | | 21 17
22 21
23 17
24 21
25 26 | 31
27
20
21
25 | 24
24
23
17
20 | 11
11
15
13
15 | 15
15
15
15
15 | 42
38
36
36
37 | 125
118
110
101
96 | 326
381
371
346
348 | 390
350
365
380
385 | 181
146
140
125
131 | 62
68
80
125
142 | 39
38
32
31
30 | | 26 20
27 24
28 28
29 25
30 18
31 18 | 28
25
26
24
19 | 20
19
19
24
22
19 | 19
17
17
18
18 | 15
15
14
12 | 43
41
64
78
74
87 | 96
91
95
104
133 | 364
418
324
265
216
183 | 390
330
294
310
270 | 144
126
105
93
90
86 | 111
82
66
54
53
43 | 33
30
28
26
23 | | TOTAL 694 MEAN 22.4 MAX 42 MIN 14 AC-FT 1380 STATISTICS OF MO | 894
29.8
48
19
1770 | 691
22.3
26
17
1370 | 518
16.7
21
11
1030 | 456
15.7
19
12
904 | 1285
41.5
87
11
2550 | | 7282
235
418
124
14440 | 9753
325
530
130
19350 | 5423
175
290
86
10760 | 2717
87.6
142
43
5390 | 1178
39.3
67
23
2340 | | MEAN 38.8
MAX 189
(WY) 1896
MIN 3.64
(WY) 1957 | 24.0
137
1924
4.65
1940 | 16.8
70.0
1903
4.20
1945 | 13.6
59.0
1903
3.35
1932 | 13.1
56.0
1903
2.31
1990 | 19.3
76.0
1903
2.42
1964 | 90.4
347
1926
14.1
1966 | 292
773
1980
94.5
1977 | 521
1096
1969
148
1954 | 291
701
1907
80.6
1934 | 134
299
1899
41.1
1934 | 67.3
263
1938
21.9
1934 | | SUMMARY STATISTI ANNUAL MEAN HIGHEST ANNUAL ME LOWEST ANNUAL ME LOWEST DAILY ME LOWEST DAILY ME ANNUAL SEVEN-DAY INSTANTANEOUS PE INSTANTANEOUS PE ANNUAL RUNOFF (A 10 PERCENT EXCEE 90 PERCENT EXCEE | EAN
AN
AN
N
MINIMUM
AK FLOW
AK STAGE
CFT)
DS | FOR 19 | 991 CALEND 40902.6 112 898 9.6 13 81130 311 31 16 | Jun 5
Mar 19
Mar 18 | | 530
 | Jun 12
Jun 21
Jan 21
Feb 25
Jun 12
Jun 12 | | 127
222
46.3
2120
.00
.31
10500
9.06
92000
380
39
9.0 | Jan 19
Mar 2
Jun 2 | 1992
1907
1954
7 1969
9 1922
4 1957
2 1941
2 1941 | a-Also occurred Jan 21-22 and Mar 2. b-Also occurred Jan 20, 1922 and Jan 12-13, 1950. ### 06725450 ST VRAIN CREEK BELOW LONGMONT, CO LOCATION.--Lat 40°09'30", long 105°00'48", in NW¹/4NW¹/4 sec.9, T.2 N., R.68 W., Weld County, Hydrologic Unit 10190005, on left bank 1,750 ft upstream from mouth of Boulder Creek, 1.8 mi downstream from Spring Gulch, and 4.7 mi southeast of Longmont. DRAINAGE AREA. -- 424 mi2. PERIOD OF RECORD.--October 1976 to September 1982, August 1984 to current year. Water-quality data available, October 1976 to February 1981. GAGE.--Water-stage recorder. Elevation of gage is 4,852 ft, above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream affected by storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | E, CUBIC | FEET PE | R SECOND,
DAILY | WATER
MEAN | YEAR OCTOBER | R 1991 T | O SEPTEMBE | ER 1992 | | | |-------------|-------------------------|-------------|--------------|--------------|--------------------|------------------|---------------|-------------|------------|---------------|------------|-----------------| | DAY | ост | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 131 | 51 | 51 | 42 | 35 | 38 | 62 | 80 | 175 | 226 | 160 | 104 | | 2
3 | 104 | 51 | 51 | 42 | 35 | 38 | 63 | 82 | 143 | 253 | 155 | 101 | | 3
4 | 95
101 | 51
52 | 51
52 | 44
44 | 35
35 | 42
89 | 62
57 | 81
79 | 133
125 | 216
210 | 187
200 | 94
92 | | 5 | 96 | 52 | 53 | 43 | 36 | 67 | 57 | 68 | 123 | 200 | 169 | 93 | | 6 | 86 | 54 | 55 | 45 | 35 | 54 | 56 | 65 | 150 | 207 | 168 | 89 | | 7 | 80 | 54 | 52 | 45 | 34 | 47 | 57 | 72 | 213 | 217 | 174 | 83 | | 8 | 79 | 51 | 47 | 43 | 34 | 56 | 5 6 | 73 | 262 | 223 | 175 | 84 | | . 9 | 70 | 50 | 46 | 42 | 34 | 77 | 53 | 64 | 375 | 226 | 177 | 90 | | 10 | 71 | 59 | 46 | 43 | 34 | 74 | 51 | 69 | 389 | 232 | 172 | 84 | | 11
12 | 68 | 53
49 | 45 | 44 | 35 | 69
79 | 49 | 81
85 | 388 | 250 | 171 | 82 | | 13 | 67
65 | 49
49 | 45
44 | 46
44 | 35
35 | 88 | 51
57 | 89 | 514
492 | 257
249 | 189
184 | 82
77 | | 14 | 66 | 48 | 42 | 43 | 37 | 95 | 88 | 78 | 433 | 219 | 174 | 76 | | 15 | 64 | 54 | 42 | 44 | 37 | 95 | 93 | 78 | 403 | 226 | 168 | 77 | | 16 | 63 | 60 | 44 | 45 | 36 | 95 | 139 | 80 | 292 | 220 | 168 | 75 | | 17 | 60 | 67 | 42 | 41 | 36 | 89 | 127 | 99 | 189 | 231 | 170 | 70 | | 18
19 | 60
61 | 66
69 | 45
50 | 38 | 35
35 | 83
81 | 126 | 106 | 101
84 | 219
198 | 161 | 71
81 | | 20 | 63 | 59 | 44 | 41
38 | 36 | 84 | 121
126 | 98
111 | 81 | 237 | 147
141 | 76 | | 21 | 63 | 61 | 43 | 38 | 38 | 69 | 121 | 122 | 135 | 195 | 147 | 72 | | 22 | 62 | 63 | 42 | 38 | 37 | 71 | 110 | 155 | 145 | 183 | 146 | 70 | | 23 | 56 | 57 | 41 | 38 | 35 | 67 | 92 | 157 | 141 | 186 | 179 | 67 | | 24 | 5 6 | 56 | 41 | 42 | 37 | 68 | 89 | 153 | 170 | 171 | 326 | 68 | | 25 | 56 | 56 | 41 | 39 | 36 | 63 | 78 | 206 | 203 | 173 | 214 | 70 | | 26 | 55 | 55 | 41 | 37 | 35 | 60 | 63 | 211 | 255 | 188 | 152 | 70 | | 27
28 | 54
6 1 | 54
54 | 42
41 | 37
38 | 37
39 | 57
7 8 | 68
62 | 191
178 | 324
255 | 176
171 | 123
116 | 69
70 | | 29 | 59 | 56 | 42 | 38 | 37 | 68 | 61 | 162 | 250 | 161 | 110 | 73 | | 30 | 57 | 53 | 42 | 37 | | 64 | 63 | 154 | 214 | 163 | 107 | 68 | | 31 | 54 | | 43 | 36 | | 62 | | 174 | | 1 65 | 103 | | | TOTAL | 2183 | 1664 | 1406 | 1275 | 1035 | 2167 | 2358 | 3501 | 7157 | 6448 | 5133 | 2378 | | MEAN | 70.4 | 55.5 | 45.4 | 41.1 | 35.7 | 69.9 | 78.6 | 113 | 239 | 208 | 166 | 79.3 | | MAX
MIN | 131
54 | 69
48 | 55
41 | 46
36 | 39
34 | 95
38 | 139
49 | 211
64 | 514
81 | 257
161 | 326
103 | 104
67 | | AC-FT | 4330 | 3300 | 2790 | 2530 | 2050 | 4300 | 4680 | 6940 | 14200 | 12790 | 10180 | 4720 | | TRITTET | ICS OF MO | NTHLY MEAN | DATA FO | D WATER V | /FARS 1976 | - 1992 | . BY WATER Y | FAR (WY) | | | | | | | | | | | | | • | | | | | | | MEAN
MAX | 68.2
159 | 58.2
126 | 51.3
91.5 | 45.0
92.8 | 44.7
94.0 | 52.2
111 | 84.0
259 | 224
1155 | 300
690 | 152
217 | 146
185 | 95.5
152 | | (WY) | 1985 | 1985 | 1985 | 1980 | 1980 | 1980 | 1980 | 1980 | 1979 | 1986 | 1986 | 1982 | | MIN | 45.5 | 34.5 | 30.8 | 25.7 | 27.9 | 28.9 | 27.5 | 35.8 | 63.3 | 100 | 88.9 | 53.7 | | (WY) | 1990 | 1979 | 1979 | 1978 | 1978 | 1982 | 1982 | 1977 | 1981 | 1981 | 1977 | 1977 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | IDAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1976 | - 1992 | | ANNUAL ' | TOTAL | | | 40708 | | | 36705 | | | | | | | ANNUAL | | | | 112 | | | 100 | | | 110 | | | | | ANNUAL ME
ANNUAL ME | | | | | | | | | 235
54.8 | | 1980
1977 | | | DAILY ME. | | | 1020 | Jun 2 | | 514 | Jun 12 | | 1940 | Mav | 1 1980 | | | DAILY MEA | | | 24 | Jan 1 | | a 34 | Feb 7 | | 20 | | 8 1990 | | ANNUAL | SEVEN-DAY | MINIMUM | | 28 | Jan 1 | | 34 | Feb 6 | | 22 | Dec 2 | 6 1990 | | | ANEOUS PE | | | | | | 589 | Jun 12 | | 2380 | | 1 1980 | | INSTANT | ANEOUS PE.
RUNOFF (A | AK STAGE | | 80740 | | | 3.89
72800 | Jun 12 | | 6.37
79750 | May | 1 1980 | | | ENT EXCEE | | | 176 | | | 206 | | | 198 | | | | 50 PERC | ENT EXCEE | DS | | 56 | | | 69 | | | 68 | | | | 90 PERC | ENT EXCEE | DS | | 34 | | | 38 | | | 34 | | | a-Also occurred Feb 8-10. ### 06725500 MIDDLE BOULDER CREEK AT NEDERLAND, CO LOCATION.--Lat $39^{\circ}57^{\circ}42^{\circ}$, long $105^{\circ}30^{\circ}14^{\circ}$, in NE $^{1}/4$ SE $^{1}/4$ sec.13, T.1 S., R.73 W., Boulder County, Hydrologic Unit 10190005, on left bank at Nederland just downstream from North Beaver Creek and 1,000 ft upstream from Barker Reservoir. DRAINAGE AREA .-- 36.2 mi2. PERIOD OF RECORD. -- June 1907 to current year. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS. -- WSP 1730: Drainage area. GAGE.--Water-stage recorder and compound sharp-crested weir. Datum of gage is 8,186.0 ft, Public Service Co. datum. Prior to Mar. 18, 1909, at datum 4.0 ft, lower. Mar. 18, 1909 to Apr. 23, 1952, at datum 2.5 ft, lower REMARKS.--Estimated daily discharges: Nov. 3-4, 23-25, Nov. 30 to Dec. 2, Dec. 14-16, Jan. 2, 13-16, 22-23, Feb. 18-19, and June 22-23. Records good except for estimated daily discharges, which are fair. No diversion above station. Flow regulated at times by Jasper Lake, capacity, 326 acre-ft. North Beaver Creek entered Middle Boulder Creek downstream from station June 1 to Dec. 31,1907, March 1911 to Dec. 31, 1916. COOPERATION .-- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | - | DISCHA | RGE, CUBI | C FEET PE | | | YEAR OCTOBE | R 1991 | TO SEPTEM | BER 1992 | | | |---|--|--|--
--|--------------------------------------|--|--|--|------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
15
14
14 | 11
12
12
12
12 | 7.7
8.1
8.3
7.9
7.8 | 4.5
4.1
4.1
4.1
4.5 | 4.5
4.5
4.3
4.3 | 4.7
4.7
4.5
4.9
5.1 | 8.5
7.5
8.5
11 | 112
110
93
104
110 | 122
108
124
156
160 | 143
128
102
99
108 | 43
42
42
48
45 | 34
37
31
29
31 | | 6
7
8
9
10 | 14
14
13
12 | 13
12
12
12
12 | 7.7
7.3
7.3
7.1
6.9 | 4.5
4.9
4.9
5.1
4.9 | 4.3
4.1
4.3
4.3 | 5.1
5.1
4.5
5.5
5.7 | 17
18
18
22
25 | 124
158
147
145
130 | 151
154
154
149
147 | 118
128
136
130
112 | 43
42
41
40
42 | 28
26
24
20
20 | | 11
12
13
14
15 | 11
10
10
10 | 12
11
10
9.3
9.1 | 6.7
6.3
6.5
6.5 | 5.1
5.3
4.9
4.9 | 3.7
3.7
3.9
3.9
4.1 | 5.3
5.1
5.3
5.3
5.5 | 29
29
35
39
41 | 104
108
114
126
136 | 169
185
194
185
171 | 102
99
101
90
83 | 44
44
41
36
34 | 19
19
19
18
18 | | 16
17
18
19
20 | 9.4
9.3
9.1
9.1
9.5 | 8.9
8.7
8.9
8.9
9.3 | 6.1
5.5
5.3
5.5
5.7 | 4.9
4.9
5.1
5.1
4.9 | 4.1
4.1
4.1
3.7
3.7 | 5.7
5.7
5.7
5.7
5.5 | 46
44
44
38
35 | 143
151
167
174
194 | 147
124
118
101
97 | 82
80
72
72
80 | 34
42
41
37
34 | 18
25
23
21
23 | | 21
22
23
24
25 | 11
13
14
15
15 | 9.5
8.1
8.1
8.1
8.0 | 5.7
5.6
5.5
5.3 | 4.7
4.1
3.9
3.9
3.9 | 3.7
3.5
3.5
3.9
4.3 | 6.7
5.5
5.5
5.7
6.1 | 34
34
33
31
31 | 229
208
194
204
194 | 74
90
149
174
190 | 75
69
65
68
72 | 34
34
37
58
53 | 20
18
16
15
17 | | 26
27
28
29
30
31 | 15
16
15
8.3
10 | 8.1
8.5
8.5
8.7 | 5.3
4.7
4.7
5.1
4.4
4.3 | 3.9
3.9
4.1
4.3
4.5
4.5 | 4.7
4.7
4.9
4.9 | 6.1
6.5
7.3
7.5
8.5
8.1 | 34
40
54
75
97 | 183
220
185
156
145
130 | 199
167
162
165
147 | 66
58
53
50
47
46 | 50
42
35
31
30
30 | 18
17
15
14
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 378.7
12.2
17
8.3
751 | 299.2
9.97
13
7.7
593 | 192.6
6.21
8.3
4.3
382 | 141.3
4.56
5.3
3.9
280 | 120.3
4.15
4.9
3.5
239 | 178.1
5.75
8.5
4.5
353 | 992.5
33.1
97
7.5
1970 | 4698
152
229
93
9320 | 4433
148
199
74
8790 | 2734
88.2
143
46
5420 | 1249
40.3
58
30
2480 | 647
21.6
37
14
1280 | | STATIST | rics of M | ONTHLY ME | AN DATA FO | OR WATER Y | E A RS 1907 | - 1992 | , BY WATER Y | EAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 17.7
47.2
1962
7.74
1989 | 11.5
23.1
1926
5.43
1953 | 7.14
12.6
1962
3.97
1954 | 5.42
8.77
1960
2.00
1937 | 5.05
8.42
1962
2.75
1981 | 6.44
15.4
1910
3.46
1944 | 23.2
57.5
1946
6.67
1944 | 124
251
1958
62.0
1908 | 239
399
1918
68.6
1925 | 133
326
1907
26.4
1934 | 52.5
118
1947
14.0
1934 | 24.7
65.2
1961
10.1
1944 | | SUMMARY | STATIST | ICS | FOR 1 | 1991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1907 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | MEAN TANNUAL M TANNUAL M TOAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 17592.7
48.2
359
44.3
4.5
34900
164
13
4.7 | Jun 2
Feb 10
Feb 5 | | 16063.7
43.9
229
53.5
3.7
269
2.40
31860
146
14 | May 21
Feb 22
Feb 18
May 26
May 26 | | 54.1
83.2
26.2
698
.80
1.3
811
5.37
39200
175
16 | Jan :
Jan :
Jun | 1957
1954
2 1914
14 1908
11 1908
2 1914
2 1914 | a-Also occurred Feb 28 and Dec 31. b-Also occurred Feb 23. c-Datum then in use, by computation of peak flow over compound weir. ### 06726900 BUMMERS GULCH NEAR EL VADO, CO LOCATION.--Lat 40°00'42", long 105°20'53", in NE¹/4NW¹/4 sec.33, T.1 N., R.71 W., Boulder County, Hydrologic Unit 10190005, on left bank, 0.8 mi north of Highway 119 on Sugarloaf Road, 0.1 mi south of service road to Boulder Filtration Plant, 0.65 mi upstream from mouth and, 3.7 mi from Boulder County courthouse. DRAINAGE AREA. -- 3.87 mi2. PERIOD OF RECORD .-- July 1983 to current year. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 6,270 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Jan 1 to Apr. 13, and June 24 to July 23. Records good except for estimated daily discharges which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | GE, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBE VALUES | R 1991 | то ѕертемве | R 1992 | | | |---------------|-----------------------|-----------------|------------|------------|----------------|-----------------|--------------------|------------------|-------------|-------------|------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .32 | .36 | .44 | .34 | .22 | .36 | 1.5 | 1.0 | 1.2 | .42 | .28 | .39 | | 2 | .30 | .36 | .46 | .34 | .21 | .37 | 1.5 | 1.0 | .96 | . 43 | . 27 | .34 | | 3 | .28 | .38 | .46 | .36 | .20 | .35 | 1.4 | 1.0 | .84 | . 45 | .27 | .32 | | 4 | .33 | .39 | .48 | .33 | .19 | .34 | 1.5 | 1.0 | .84 | .47 | .27 | .30 | | 5 | .35 | .39 | .46 | .30 | .21 | .37 | 1.7 | 1.0 | .81 | .49 | .25 | . 29 | | 6
7 | .33
.31 | .38
.35 | .46
.46 | .31
.28 | .23
.22 | .40 | 1.9
2.1 | .93
.94 | .82
.78 | .50
.47 | .24 | .29
.29 | | 8 | .29 | .34 | .46 | .25 | .21 | .42 | 2.1 | . 95 | .80 | . 45 | .23 | .28 | | 9 | .29 | .40 | .46 | .22 | .23 | . 40 | 2.2 | 1.0 | .78 | .47 | .23 | .29 | | 10 | .28 | . 49 | .46 | . 22 | .22 | .42 | 2.3 | 1.0 | .74 | . 45 | .23 | .29 | | 11 | .27 | .41 | .46 | .23 | .21 | .50 | 2.3 | .96 | .70 | .46 | .23 | .29 | | 12 | .27 | . 41 | .46 | .21 | .23 | .60 | 2.2 | . 98 | .75 | .42 | .30 | .28 | | 13 | .27 | . 40 | .43 | .19 | .23 | .80 | 2.2 | .97 | .68 | .44 | .27 | .30 | | 14 | .29 | . 40 | .42 | .20 | .23 | . 98 | 2.1 | .92 | .66 | .44 | .24 | .30 | | 15 | .28 | . 42 | .44 | .19 | .23 | 1.1 | 2.0 | . 90 | .64 | .41 | .23 | .30 | | 16 | .26 | .41 | .44 | .18 | .22 | 1.4 | 2.0 | .81 | .64 | .38 | .23 | .30 | | 17 | .22 | . 45 | .41 | .19 | .22 | 1.3 | 1.8 | .86 | .83 | .39 | .40 | .31 | | 18 | .24 | . 47 | .41 | .19 | .22 | 1.2 | 1.7 | .77 | .83 | .40 | .46 | .33 | | 19
20 | .26 | .47 | .42 | .20 | .24 | 1.1 | 1.4 | . 64 | .82 | .38 | .31 | .33 | | | .27 | . 48 | .42 | .20 | .26 | .99 | 1.3 | . 64 | .84 | .36 | .26 | .35 | | 21 | .27 | .57 | .41 | .19 | .25 | . 90 | 1.3 | .73 | .79 | .37 | .26 | .33 | | 22 | .27 | .52 | .42 | .19 | .24 | .80 | 1.3 | .84 | .76 | . 35 | .27 | .33 | | 23 | .27 | . 40 | .40 | .19 | .23 | .76 | 1.3 | .83 | .73 | .31 | .31 | .33 | | 24
25 | .33 | . 43 | .39
.42 | .20 | .24
.23 | .72
.70 | 1.3 | .74
.99 | .54
.43 | .42
.57 | 1.5
.89 | .35
.36 | | | .33 | .47 | | .19 | | | 1.2 | | | | | | | 26 | .34 | . 48 | .40 | .19 | .28 | .72 | 1.2 | .94 | .45 | . 47 | .71 | .36 | | 27 | .36 | .49 | .39 | .19 | .32 | .78 | 1.1 | 1.0 | .46 | .35 | .56 | .36 | | 28 | .38 | .49 | .39 | . 20 | .34 | .96 | 1.1 | . 98 | .47 | .29 | .48 | .36 | | 29
30 | .36 | .46 | .39 | .19 | .35 | 1.3
1.5 | 1.1
1.0 | .81 | .48 | .30
.29 | .44 | .36
.42 | | 31 | .39
.38 | .40 | .39
.37 | .21
.23 | | 1.6 | 1.0 | .87
1.1 | .45 | .27 | .43 | | | | | | | | | | | | | | | | | TOTAL | 9.39 | | 13.28 | 7.10 | 6.91 | 24.58 | 49.1 | 28.10 | 21.52 | 12.67 | 11.69 | 9.73 | | MEAN | .30 | . 43 | .43 | . 23 | .24 | .79 | 1.64 | . 91 | .72 | .41 | .38 | .32 | | MAX
MIN | .39
.22 | .57
.34 | .48
.37 | .36 | .35
.19 | 1.6 | 2.3
1.0 | 1.1
.64 | 1.2
.43 | .57
.27 | 1.5
.23 | .42
.28 | | AC-FT | 19 | 26 | 26 | .18
14 | 14 | .34
49 | 97 | 56 | 43 | 25 | 23 | 19 | | | | | | | | | | | | 23 | | 1.5 | | STATIST | ICS OF MC | ONTHLY MEAN | DATA FO | R WATER YE | EARS 1984 | | 2, BY WATER Y | YEAR (WY | , | | | | | MEAN | .34 | .34 | .31 | .28 | .30 | .50 | 1.28 | 1.13 | .72 | .39 | .26 | . 21 | | MAX | .98 | . 65 | .43 | . 47 | .45 | .79 | 2.64 | 3.68 | 1.44 | 1.02 | .56 | .40 | | (WY) | 1984 | 1985 | 1992 | 1985 | 1984 | 1992 | 1984 | 1984 | 1987 | 1987 | 1991 | 1987 | | MIN | .087 | .14 | .14 | .21 | .20 | .35 | .34 | .35 | .24 | .019 | .032 | .069 | | (WY) | 1990 | 1990 | 1990 | 1989 | 1990 | 1991 | 1991 | 1989 | 1989 | 1989 | 1989 | 1988 | | SUMMARY | STATIST | [CS | FOR 1 | 991 CALENI | DAR YEAR | | FOR 1992 WAT | TER YEAR | . 1 | WATER Y | EARS 1984 | - 1992 | | ANNUAL | | | | 169.41 | | | 206.94 | | | | | | | ANNUAL | | £15.5.37 | | .46 | | | . 57 | | | .5 | 1 | 1004 | | |
ANNUAL N | | | | | | | | | .91 | 5 | 1984
1989 | | | ANNUAL ME
DAILY ME | | | a2.6 | Jun 2 | | b _{2.3} | Apr 10 | | 7.2 | J
Ann 2 | 5 1984 | | | DAILY MEA | | | ć.19 | Jun 2 | | .18 | Jan 16 | | 7.2
d.00 | Tul 2 | 6 1989 | | | | AN
(MINIMUM | | .19 | Jan 3
Jan 1 | | .19 | Jan 16
Jan 13 | | .0: | | 2 1989 | | | ANEOUS PE | | | .20 | Jan 1 | | 3.1 | Aug 24 | | 26 | | 1 1990 | | | ANEOUS PE | | | | | | 2.73 | Aug 24 | | 3.3 | | 1 1990 | | | RUNOFF (A | | | 336 | | | 410 | , | | 366 | -3 - | | | 10 PERC | ENT EXCE | EDS | | .79 | | | 1.1 | | | 1.1 | | | | | ENT EXCE | | | .36 | | | .40 | | | .3: | | | | 90 PERC | ENT EXCE | EDS | | .26 | | | .23 | | | .1: | 3 | | | | | | | | | | | | | | | | a-Also occurred Jun 3. b-Also occurred Apr 11. c-Also occurred Jan 4-6. d-Also occurred Jul 28, 1989. #### 06727000 BOULDER CREEK NEAR ORODELL, CO LOCATION.--Lat 40°00'23", long 105°19'49", in NE¹/4SW¹/4 sec.34, T.1 N., R.71 W., Boulder County, Hydrologic Unit 10190005, on left bank along State Highway 119, 0.7 mi southwest of old Orodell, 1.1 mi upstream from Fourmile Creek, and 2.9 mi southwest of courthouse in Boulder. DRAINAGE AREA. -- 102 mi2. PERIOD OF RECORD.—August to October 1887, April to October 1888, October 1906 to November 1914, March 1916 to current year. Monthly discharge only for some periods, published in WSP 1310. Figures of daily discharge for Feb. 3-10, 17-25, 1912, published in WSP 326, have been found to be unreliable and should not be used. Published as North Boulder Creek, Colorado 1887-88 and as "at Orodell" March 1907 to December 1916. REVISED RECORDS.--WSP 1310: 1941(M). WSP 1560: 1914(M). WSP 1730: Drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,826 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Sept. 1,1907, nonrecording gage, and Sept. 1, 1907 to May 11, 1917, water-stage recorder, at sites 1.1 mi downstream, just upstream from Fourmile Creek, at different datums. REMARKS.--Estimated daily discharges: Nov. 28 to Dec. 3, May 11, 13, 16, 17, and May 22. Records good except for estimated daily discharges, which are fair. Flow regulated by Barker Reservoir, capacity, 11,500 acre-ft. Records good except Low flow during nonirrigation season regulated by Orodell powerplant 1,500 ft upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD .-- Outstanding floods are known to have occcurred in June 1864, May 1876, June 1894, and June 1914, stages and discharges unknown. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 24 3.8 4.8 125 78 3.8 17 8.8 13 77 8.7 3.0 13 25 8.7 27 5.2 3.9 TOTAL 479.7 423.8 1116.7 469.7 680.8 13.7 69.1 MEAN 37.2 15.5 22.0 54.6 33.6 17.4 16.2 MAX 8.7 8.7 3.0 MIN 3.8 AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1907 - 1992, BY WATER YEAR (WY) MEAN 27.5 26.3 28.5 26.4 25.6 29.3 51.8 91.4 46.1 83.4 96.0 MAX 83.8 62.4 60.4 84.2 (WY) 65.1 5.84 5.33 5.91 3.84 34.9 12.4 60.1 (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1907 - 1992 20175.7 ANNUAL TOTAL 24233.7 86.3 ANNUAL MEAN 55.1 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 38.9 HIGHEST DAILY MEAN a_{8.7} Jun 18 May 22 b_{1.0} Jun 7 1921 LOWEST DAILY MEAN Jan 29 1933 Nov 15 3.0 Jan 18 ANNUAL SEVEN-DAY MINIMUM Feb 16 1933 Jan 24 Dec 29 ^C2500 Jun INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE May 21 6 1921 2.98 4.31 May 21 Jun 6 1921 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a-Also occurred Dec 25. b-Also occurred Feb 1-3, 16-24, 1933. c-From rating curve extended above 1200 ft³/s. ### 06727500 FOURMILE CREEK AT ORODELL, CO LOCATION.--Lat 40°01'08", long 105°19'32", in NW¹/4SE¹/4 sec.27, T.1 N., R.71 W., Boulder County, Hydrologic Unit 10190005, on right bank 30 ft downstream from private bridge, 0.3 mi upstream from Highway 119 and mouth, and 2.5 mi west of courthouse in Boulder. PERIOD OF RECORD. -- April 1947 to September 1953, April 1978 to September 1982 (peak stage and discharge only), July 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 5,760 ft above National Geodetic Vertical Datum of 1929, from topographic map. April 1, 1947 to September 30, 1953, water-stage recorder 500 feet downstream; April 1, 1978 to September 1982, crest-stage gage 200 feet downstream, at different datums. REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 5, Nov. 10-22, Nov. 24 to Dec. 1, Dec. 4-6, 15, Dec. 25 to Feb. 19, Mar. 4-16, and July 1-23. Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER Y | EAR OCTOBE
VALUES | R 1991 T | O SEPTE | MBER 1992 | | | |--|--|-------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|--|--|--------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.4
1.3
1.2
1.4 | 1.5
1.4
1.4
1.5 | 2.1
2.2
2.2
2.2
2.3 | .90
.90
.90
.90 | 1.0
1.0
1.0
1.0 | 2.0
2.0
2.0
3.8
3.6 | 12
12
11
13
14 | 17
17
16
14 | 9.9
8.4
7.2
6.7 | 2.8
2.7
2.5
2.5
2.5 | .74
.77
.73
.77
.78 | 1.6
1.1
.88
.84 | | 6
7
8
9
10 | 1.8
1.7
1.5
1.4 | 1.7
1.7
1.7
1.7 | 2.2
2.3
2.3
2.4
2.3 | .90
.90
.90
.90 | 1.1
1.1
1.1
1.1 | 4.0
4.2
4.4
4.6
4.2 | 16
18
18
18 | 12
12
13
14 | 7.5
7.9
8.4
8.0
7.5 | 2.3
2.3
1.9
1.9 | .73
.73
.73
.73
.73 | .84
.84
.83
.78 | | 11
12
13
14
15 | 1.4
1.4
1.4
1.4 | 1.8
1.8
1.9
1.9 | 2.2
2.2
2.1
2.2
2.3 | .90
.90
.90
.90 | 1.2
1.2
1.2
1.2 | 4.3
5.4
6.8
8.2
9.0 | 20
22
23
26
29 | 13
13
12
11 | 7.1
7.1
6.3
6.3 | 1.5
1.3
1.3
1.1 | .73
.74
.80
.73 | .78
.78
.78
.78 | | 16
17
18
19
20 | 1.3
1.2
1.3
1.4 | 1.9
1.9
1.9
1.8 | 2.3
2.1
2.1
2.0
1.7 | .85
.85
.85
.85 | 1.3
1.4
1.6
1.8
1.9 | 9.2
8.7
7.6
7.0
6.3 | 44
53
52
43
34 | 10
11
11
11
11 | 5.9
5.7
5.4
5.1
4.8 | 1.0
1.0
1.0
.90 | .73
.74
.94
.83
.73 | .78
.78
.78
.79
.80 | | 21
22
23
24
25 | 1.5
1.4
1.3
1.6
1.8 | 1.8
1.8
1.8
1.9
2.0 | 1.8
1.8
1.6
1.3 | .80
.80
.85
.85 | 1.7
1.7
1.8
1.9 | 5.8
5.7
5.4
5.4
5.3 | 27
23
19
18
16 | 12
13
12
11 | 4.4
4.3
4.1
3.8
3.9 | .85
.85
.85
1.4
1.8 | .73
.73
.76
3.9
3.1 | .80
.78
.78
.78 | | 26
27
28
29
30
31 | 1.8
1.8
1.7
1.6 | 2.0
2.0
2.0
2.0
2.0 | .95
.95
.95
.95
.95 | .90
.90
.90
1.0
1.0 | 1.9
1.9
1.9 | 5.5
5.8
9.2
11
12 | 13
13
13
14
16 | 11
12
11
10
9.8 | 4.3
4.0
3.6
3.5
3.1 | 1.8
1.2
.78
.78
.78 | 2.3
1.6
1.2
.94
1.0 | .78
.82
.81
.78
.78 | | TOTAL
MEAN
MAX
MIN
AC-FT | 46.5
1.50
1.9
1.2
92 | 53.9
1.80
2.0
1.4
107 | 56.85
1.83
2.4
.95
113 | 27.65
.89
1.0
.80
55 | 41.0
1.41
1.9
1.0 | 191.4
6.17
13
2.0
380 | 669
22.3
53
11
1330 | 378.8
12.2
17
9.8
751 | 177.1
5.90
9.9
3.1
351 | 46.06
1.49
2.8
.77
91 | 32.50
1.05
3.9
.73
64 | 25.11
.84
1.6
.78
50 | | STATIST | ICS OF MO | NTHLY MEA | AN DATA FO | R WATER Y | EARS 1948 | - 1992, | BY WATER Y | (EAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.52
4.59
1985
.59
1989 | 1.73
5.95
1985
.55
1989 | 1.23
2.14
1985
.58
1990 | 1.21
2.10
1985
.52
1951 | 1.40
2.77
1985
.54
1989 | 2.78
6.17
1992
.83
1951 | 13.2
33.2
1986
2.97
1991 | 24.7
49.9
1984
8.58
1950 | 21.6
62.6
1949
5.90
1992 | 4.10
9.95
1949
1.49
1992 | 1.84
4.54
1983
.47
1948 | 1.28
4.35
1949
.10
1948 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | OAR YEAR | F | OR 1992 WAT | ER YEAR | | WATER YE | EARS 1948 | - 1992 | | ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 2163.53
5.93
97
.73
.82
4290
15
1.8
.97 | | |
1745.87
4.77
53
a.73
.73
58
3.20
3460
13
1.8
.78 | Apr 17
Aug 3
Aug 6
Apr 18
Apr 18 | | 6.37
9.27
2.67
192
5.00
c,d ₂₅₆
93.66
4620
19 | Jun
Sep
Sep
Jun
Jun | 1952
1989
7 1949
1 1948
1 1948
6 1949
6 1949 | a-Also occurred Aug 6-11, 14-16, and 20-22. b-Also occurred Sep 2-7, 15-18, 1948, and Sep 5-11, 1988. c-Site and datum then in use. d-Also occurred Jun 1, 1991, gage height, 4.38 ft, present site and datum. e-Maximum gage height, 4.62 ft, Jun 9, 1989, backwater from debris. ### 06729500 SOUTH BOULDER CREEK NEAR ELDORADO SPRINGS, CO LOCATION.--Lat 39°55'52", long 105°17'43", in SE¹/4 sec.26, T.1 S., R.71 W., Boulder County, Hydrologic Unit 10190005, on left bank 0.2 mi downstream from South Draw, 1.0 mi west of Eldorado Springs, 1.8 mi downstream from South Boulder diversion canal, 5.0 mi south of Boulder, and 6.7 mi downstream from Gross DRAINAGE AREA. -- 109 mi2. PERIOD OF RECORD.——April 1888 to October 1892, May 1895 to September 1901, August 1904 to current year. No winter records for water years 1889-92, 1900. Monthly discharge only for some periods, published in WSP 1310. Prior to January 1911, published as "at" or "near Marshall"; January 1911 to December 1913 as "at Eldorado Springs." Records for periods June 1900 to September 1901, August 1904 to September 1908, and October 1909 to September 1911, are not adjusted for diversions by Community ditch and South Boulder and Coal Creek ditch; all other records contain flow in these ditches. Statistical summary computed for 1957 to current year. REVISED RECORDS.--WSP 856: 1937(M). WSP 1310: 1937. WSP 1440: 1896. WSP 1710: Drainage area. WSP 1730: 1959-60. GAGE.--Water-stage recorder with satellite telemetry. Elevation o WSP 1710 or 1730 for history of changes prior to May 10, 1940. Elevation of gage is 6,080 ft, from topographic map. See REMARKS.--Estimated daily discharges: Oct. 28-29, Nov. 1-3, 23-24, and Nov. 29 to Mar. 13. Records good except for estimated daily discharges, which are fair. Many small diversions upstream from station for irrigation. Water is imported upstream from Gross Reservoir from Colorado River basin through Moffat water tunnel. Flow regulated since May 1, 1955, by Gross Reservoir, capacity, 43,060 acre-ft, 6.7 mi upstream from station. City of Denver diverts water 1.8 mi upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | -1- | DISCHA | RGE, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTEM | 3ER 1992 | | | |--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|------------------------------------|--|-------------------------------------|--| | DAY | ост | NOV | DEC | JAN | FEB | Y MEAN
MAR | VALUES
APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
17
17
17
17 | 5.6
5.6
5.5
6.4
6.6 | 10
10
8.0
7.0
6.5 | 4.5
4.5
4.5
4.5
4.5 | 4.0
4.0
4.0
4.0
4.0 | 8.0
8.0
8.0
8.0 | 39
47
48
53
53 | 95
106
106
106
134 | 197
167
153
149
148 | 139
115
108
108
93 | 37
33
33
33
33 | 30
30
30
30
30
29 | | 6
7
8
9
10 | 17
18
19
16
15 | 6.2
6.0
5.3
5.1
6.1 | 6.5
6.5
6.5
6.5
6.5 | 4.5
4.5
4.5
4.5 | 4.0
5.5
6.0
6.0 | 12
18
21
23
25 | 54
61
76
86
86 | 168
170
179
190
189 | 150
149
150
176
202 | 81
81
88
93
92 | 33
31
31
32
30 | 29
30
26
23
23 | | 11
12
13
14
15 | 16
16
16
16
15 | 5.2
4.6
4.2
12
26 | 6.5
6.5
6.5
6.5 | 4.5
4.5
4.5
4.5 | 6.0
7.0
8.0
8.0 | 27
29
31
34
33 | 86
86
91
97
97 | 192
192
193
195
196 | 201
203
213
223
217 | 92
92
82
66
62 | 29
29
28
28
27 | 23
23
23
23
20 | | 16
17
18
19
20 | 15
11
8.5
7.7
7.1 | 26
26
26
25
25 | 6.5
7.0
7.0
7.0
7.0 | 4.0
4.0
4.0
4.0 | 8.0
8.0
8.0
8.0 | 34
34
33
32
31 | 98
102
108
107
106 | 195
195
198
198
203 | 191
169
158
146
155 | 60
60
60
60 | 27
27
24
22
21 | 13
14
14
14
14 | | 21
22
23
24
25 | 6.8
6.0
5.5
5.3
8.5 | 26
25
25
25
25 | 6.5
6.5
6.5
6.5 | 4.0
4.0
4.0
4.0 | 8.0
8.0
8.0
8.0 | 31
31
30
28
26 | 104
103
102
101
100 | 228
287
325
327
308 | 172
174
166
159
160 | 61
58
58
53
50 | 20
20
20
29
39 | 14
13
14
19
14 | | 26
27
28
29
30
31 | 5.2
4.6
5.2
5.2
5.1
5.0 | 19
10
10
10
10 | 6.5
6.0
6.0
5.0
4.5 | 4.0
4.0
4.0
4.0
4.0 | 8.0
8.0
8.0 | 24
25
33
37
35 | 100
90
82
81
81 | 272
257
253
231
216
210 | 159
159
161
165
162 | 50
49
49
47
46
41 | 52
55
55
54
55
43 | 15
15
14
13
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 361.7
11.7
19
4.6
717 | 423.4
14.1
26
4.2
840 | 208.0
6.71
10
4.5
413 | 131.5
4.24
4.5
4.0
261 | 196.5
6.78
8.0
4.0
390 | 792.0
25.5
37
8.0
1570 | 2525
84.2
108
39
5010 | 6314
204
327
95
12520 | 5154
172
223
146
10220 | 2254
72.7
139
41
4470 | 1030
33.2
55
20
2040 | 606
20.2
30
13
1200 | | | | | | | | | , BY WATER Y | | | 100 | | 26.0 | | MEAN
MAX
(WY)
MIN
(WY) | 19.7
55.0
1962
5.40
1989 | 15.7
42.9
1970
5.82
1967 | 10.9
23.3
1958
2.83
1991 | 9.05
21.0
1962
2.50
1967 | 11.1
31.2
1961
4.50
1965 | 16.1
31.9
1983
7.27
1958 | 47.0
97.6
1960
14.8
1963 | 144
273
1969
68.2
1983 | 259
428
1969
119
1966 | 130
388
1957
42.3
1963 | 46.2
154
1965
20.0
1981 | 26.0
77.9
1961
8.85
1964 | | | STATIST | ICS | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YEA | ARS 1957 | - 1992 | | LOWEST | MEAN
'ANNUAL I
ANNUAL M | EAN | | 20572.6 56.4 | T | | 19996.1
54.6 | Warr 24 | | a _{61.3}
96.4
36.4
b ₁₁₂₀ | Man | 1957
1981 | | LOWEST
ANNUAL
INSTANT | ANEOUS P | | | 355
2.5
2.5 | Jun 2
Jan 10
Jan 10 | | 327
4.0
4.0
346
3.00 | May 24
Jan 16
Jan 16
May 24
May 24 | | f ₁₆₉₀ 5.50 | Mar 2
Dec 1
May | 7 1969
7 1967
0 1982
7 1969
7 1969 | | ANNUAL
10 PERC
50 PERC | RUNOFF (
ENT EXCE
ENT EXCE
ENT EXCE | AC-FT)
EDS
EDS | | 40810
222
20
5.3 | | | 39660
169
25
4.5 | | | 44400
195
22
6.5 | 1 | . 2303 | a-Unadjusted for storage and diversions. b-Maximum daily discharge for period of record, 1390 ft³/s, Jun 19, 1951. c-Also occurred Jan 11-18. d-Also occurred Jan 17 to Feb 6. e-Minimum daily discharge for period of record, no flow, Oct 15, 1932. f-Maximum discharge and stage for period of record, 7390 ft³/s, Sep 2, 1938, gage height, 9.24 ft, from floodmarks, site and datum then in use, from rating curve extended above 600 ft³/s, on basis of slope-area measurement of peak flow. ### 06730200 BOULDER CREEK AT NORTH 75TH STREET NEAR BOULDER, CO LOCATION.--Lat $40^{\circ}03^{\circ}06^{\circ}$, long $105^{\circ}10^{\circ}42^{\circ}$, in NE $^{1}/48W^{1}/4$ sec.13, T.2 N., R.68 W., Boulder County, Hydrologic Unit 1019005, on left bank, 50 ft upstream from bridge on North 75th Street, 0.2 mi downstream from Boulder feeder ditch, and 6 mi northeast of Boulder. DRAINAGE AREA. -- 304 mi2. PERIOD OF RECORD .-- October 1986 to current year. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is 5,106 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1-4, 27-30, Nov. 1, 2, 14-16, and Nov. 27-30. Records good except for estimated daily discharges, which are poor. Flow is partially regulated by Barker Reervoir, and affected by Boulder feeder ditch, Boulder sewage treatment plant, and Public Service power plant. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER | R 1991 T | O SEPTEMBE | R 1992 | | | |---|----------------------------------|---|----------------------------------|--|---------------------------|----------------------------------|---|---|---------------------------------|---|----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 50 | 58 | 58 | 36 | 34 | 32 | 76 | 80 | 88 | 180 | 167 | 48 | | 2 | 50 | 65 | 70 | 37 | 30 | 32 | 72 | 75 | 72 | 188 | 188 | 49 | | 3 | 45 | 71 | 64 | 38 |
35 | 28 | 71 | 70 | 65 | 198 | 192 | 50 | | 4 | 45 | 87 | 74 | 29 | 37 | 150 | 69 | 71 | 63 | 243 | 196 | 51 | | 5 | 39 | 67 | 55 | 45 | 34 | 65 | 68 | 79 | 72 | 232 | 191 | 57 | | 6 | 33 | 71 | 55 | 54 | 33 | 50 | 91 | 125 | 81 | 214 | 185 | 57 | | 7 | 34 | 90 | 47 | 39 | 36 | 44 | 87 | 177 | 100 | 188 | 175 | 53 | | 8 | 33 | 78 | 48 | 45 | 34 | 77 | 79 | 184 | 117 | 177 | 160 | 54 | | 9 | 32 | 86 | 39 | 36 | 35 | 83 | 63 | 171 | 114 | 280 | 158 | 53 | | 10 | 32 | 127 | 39 | 41 | 34 | 75 | 61 | 165 | 126 | 280 | 163 | 51 | | 11 | 34 | 84 | 47 | 44 | 35 | 85 | 59 | 156 | 117 | 269 | 168 | 53 | | 12 | 33 | 112 | 46 | 64 | 37 | 95 | 64 | 130 | 113 | 257 | 175 | 57 | | 13 | 31 | 109 | 58 | 40 | 40 | 98 | 61 | 127 | 106 | 268 | 178 | 58 | | 14 | 32 | 100 | 49 | 57 | 32 | 98 | 66 | 125 | 111 | 260 | 176 | 59 | | 15 | 32 | 80 | 48 | 41 | 36 | 89 | 85 | 125 | 114 | 220 | 169 | 55 | | 16 | 29 | 55 | 48 | 44 | 36 | 90 | 129 | 123 | 104 | 213 | 158 | 54 | | 17 | 33 | 58 | 45 | 46 | 40 | 80 | 127 | 127 | 109 | 198 | 152 | 53 | | 18 | 32 | 67 | 44 | 41 | 33 | 79 | 138 | 130 | 96 | 180 | 132 | 53 | | 19 | 33 | 105 | 47 | 40 | 37 | 78 | 126 | 138 | 97 | 174 | 121 | 53 | | 20 | 31 | 77 | 55 | 47 | 34 | 67 | 109 | 149 | 91 | 187 | 103 | 50 | | 21 | 33 | 97 | 38 | 50 | 33 | 58 | 96 | 176 | 112 | 159 | 101 | 49 | | 22 | 33 | 76 | 48 | 44 | 32 | 62 | 81 | 216 | 127 | 136 | 106 | 50 | | 23 | 34 | 76 | 40 | 47 | 31 | 62 | 75 | 187 | 132 | 123 | 110 | 47 | | 24 | 37 | 78 | 40 | 44 | 30 | 59 | 77 | 191 | 139 | 116 | 255 | 44 | | 25 | 37 | 76 | 35 | 36 | 32 | 52 | 79 | 212 | 183 | 132 | 136 | 48 | | 26
27
28
29
30
31 | 34
32
32
30
30
52 | 73
75
60
50
55 | 36
41
36
38
38
43 | 30
26
29
31
31
31 | 32
27
40
35 | 51
54
93
76
76
85 | 75
76
80
80
84 | 168
158
109
91
78
83 | 258
242
228
228
209 | 168
162
144
134
139
144 | 88
60
52
48
45
48 | 47
44
45
42
39 | | TOTAL | 1097 | 2363 | 1469 | 1263 | 994 | 2223 | 2504 | 4196 | 3814 | 5963 | 4356 | 1523 | | MEAN | 35.4 | 78.8 | 47.4 | 40.7 | 34.3 | 71.7 | 83.5 | 135 | 127 | 192 | 141 | 50.8 | | MAX | 52 | 127 | 74 | 64 | 40 | 150 | 138 | 216 | 258 | 280 | 255 | 59 | | MIN | 29 | 50 | 35 | 26 | 27 | 28 | 59 | 70 | 63 | 116 | 45 | 39 | | AC-FT | 2180 | 4690 | 2910 | 2510 | 1970 | 4410 | 4970 | 8320 | 7570 | 11830 | 8640 | 3020 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | R WATER YE | ARS 1987 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN | 41.2 | 56.3 | 50.7 | 48.9 | 45.0 | 52.1 | 77.4 | 141 | 188 | 188 | 125 | 65.9 | | MAX | 53.9 | 78.8 | 74.9 | 68.3 | 59.0 | 76.8 | 145 | 187 | 248 | 231 | 169 | 86.1 | | (WY) | 1988 | 1992 | 1989 | 1987 | 1987 | 1987 | 1987 | 1987 | 1991 | 1989 | 1988 | 1989 | | MIN | 31.5 | 48.9 | 36.1 | 37.6 | 34.3 | 31.2 | 37.4 | 114 | 127 | 154 | 95.5 | 50.8 | | (WY) | 1987 | 1989 | 1988 | 1988 | 1992 | 1989 | 1989 | 1991 | 1992 | 1988 | 1991 | 1992 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1987 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 32029
87.8
659
21
28
63530
205
50
33 | Jun 2
Apr 24
Apr 23 | | 31765
86.8
280
26
30
371
5.94
63010
177
66
33 | Jul 9
Jan 27
Jan 26
Aug 24
Aug 24 | | 90.2
102
85.5
887
20
23
1090
46.72
65360
195
61
33 | Dec 2
Dec 2
Jun | 1987
1989
9 1987
6 1987
3 1987
1 1991
1 1991 | a-Maximum gage height, 6.76 ft, Jun 9, 1987. ### 06730500 BOULDER CREEK AT MOUTH NEAR LONGMONT, CO LOCATION.--Lat 40°09'08", long 105°00'52", in NW¹/4SW¹/4 sec.9, T.2 N., R.68 W., Weld County, Hydrologic Unit 10190005, on left bank 0.6 mi upstream from mouth, 1.0 mi downstream from State Highway 254, and 4.8 mi southeast of Longmont. DRAINAGE AREA. -- 439 mi2. PERIOD OF RECORD.--March 1927 to September 1949, May 1951 to September 1955, October 1978 to September 1990, October 1991 to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 4,860 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 10, 1939, at site 0.8 mi upstream at different datum. June 10, 1939, to Sept. 30, 1949, at site 1.0 mi upstream, at different datum. May 1, 1951, to Sept. 30, 1955, at site 1.4 mi upstream, at different datum. REMARKS.--Estimated daily discharge: Oct. 1. Records fair except for estimated daily discharge, which is poor. Natural flow of stream affected by transmountain, transbasin, and storage diversions, diversions for irrigation, water-treatment plants, and return flows from irrigated areas. | | | DISCHAR | GE, CUBIC | FEET P | ER SECOND, | WATER
Y MEAN | YEAR OCTOR | BER 1991 | TO SEPTEM | BER 1992 | | | |--|------------------------------------|---|--------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--|--------------------------------------|------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 35
36
33
34
36 | 42
67
74
80
73 | 92
103
85
86
86 | 52
54
55
46
48 | 51
50
43
59
49 | 46
46
41
150
157 | 131
120
117
115
110 | 77
58
59
47
37 | 59
52
42
61
71 | 9.5
3.3
3.0
1.6 | 7.8
7.4
9.6
9.3
9.5 | 30
23
24
26
31 | | 6
7
8
9
10 | 33
37
43
49
50 | 55
56
53
64
87 | 78
74
70
68
64 | 68
57
54
65
56 | 49
50
47
47
48 | 83
72
78
155
123 | 115
138
113
115
89 | 49
103
127
69
49 | 54
100
139
202
211 | 34
6.9
3.5
23
32 | 7.1
8.5
9.3
9.0 | 37
36
29
25
27 | | 11
12
13
14
15 | 32
29
28
31
30 | 83
87
74
97
91 | 70
71
72
68
68 | 46
43
68
72
71 | 48
50
49
49
47 | 143
164
201
234
183 | 97
74
82
69
86 | 45
9.8
4.4
3.9
6.2 | 213
214
204
186
189 | 9.5
5.4
9.4
7.1
6.3 | 11
5.8
7.9
6.4
7.6 | 33
30
35
38
39 | | 16
17
18
19
20 | 31
29
31
35
34 | 68
85
90
125
112 | 71
65
62
60
56 | 57
40
39
37
37 | 46
47
49
47
46 | 178
153
129
128
115 | 140
153
155
154
138 | 9.8
12
28
32
22 | 174
169
110
44
36 | 9.5
5.7
3.7
3.4
6.2 | 6.4
8.7
6.8
4.8
5.6 | 39
44
41
47
44 | | 21
22
23
24
25 | 36
37
34
32
33 | 102
109
94
93
96 | 56
55
55
54
52 | 36
34
42
50
50 | 46
44
45
46
50 | 99
106
100
107
103 | 129
101
88
86
84 | 25
65
73
66
123 | 34
40
42
33
31 | 4.6
5.3
4.0
1.4
1.7 | 6.6
7.8
10
276
274 | 40
39
39
40
38 | | 26
27
28
29
30
31 | 35
36
37
38
37
56 | 93
97
84
81
86 | 48
52
52
52
50
51 | 50
43
54
57
52
52 | 50
43
51
49 | 96
92
152
170
127
142 | 86
93
101
93
88 | 96
85
47
35
33 | 83
85
65
63
32 | 2.6
4.0
3.8
4.1
5.7
6.4 | 86
30
23
18
23
29 | 44
40
42
48
45 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1107
35.7
56
28
2200 | 2498
83.3
125
42
4950 | 2046
66.0
103
48
4060 | 1585
51.1
72
34
3140 | 1395
48.1
59
43
2770 | 3873
125
234
41
7680 | 3260
109
155
69
6470 | 1531.1
49.4
127
3.9
3040 | 3038
101
214
31
6030 | 237.6
7.66
34
1.4
471 | 942.9
30.4
276
4.8
1870 | 1093
36.4
48
23
2170 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | R WATER | YEARS 1927 | - 1992 | , BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 27.6
127
1985
.70
1955 | 36.9
95.2
1985
.48
1955 | 44.3
93.8
1939
1.16
1940 | 49.4
104
1980
2.94
1935 | 48.5
120
1980
2.75
1935 | 49.4
148
1983
2.58
1935 | 94.7
581
1942
1.15
1954 | 175
1101
1942
1.06
1955 | 171
976
1947
1.22
1954 | 39.2
367
1983
1.09
1954 | 21.5
143
1979
.55
1954 | 22.2
440
1938
.54
1954 | | SUMMARY | STATISTIC | cs | | | FOR 19 | 92 WATE | R YEAR | | | WATER YE | EARS 1927 | - 1992 | | LOWEST ANIUAL INSTANTANNUAL ANNUAL 10 PERC 50 PERC | | AN AN I MINIMUM AK FLOW AK STAGE C-FT) OS | | | 27
60
4484
12
4 | 1.8
6
1.4
3.1
9
2.92 | Aug 24
Jul 24
Jul 23
Jul 23
Aug 24
Aug 24 | | | 65.2
220
3.93
2300
0.00
4410
47260
126
28 | Sep
Dec
Apr :
Sep | 1983
1954
3 1938
9 1934
11 1935
3 1938
3 1938 | a-No flow at times many years. b-Site and datum then in use, from rating curve extended above $340~{\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow. ### 06731000 ST. VRAIN CREEK AT MOUTH, NEAR PLATTEVILLE, CO LOCATION.--Lat 40°15'29", long 104°52'45", in SE¹/4NW¹/4 sec.3, T.3 N., R.67 W., Weld County, Hydrologic Unit 10190005, on right bank 140 ft downstream from bridge on county road, 1.3 mi upstream
from mouth, and 4.2 mi northwest of Platteville. DRAINAGE AREA .-- 976 mi2. PERIOD OF RECORD. -- July 1904 to December 1906, April to December 1915, March 1927 to current year. Prior to October 1933, monthly discharge only, published in WSP 1310. REVISED RECORDS.--WSP 956: 1938(M). WSP 1440: 1934, 1935(M). WSP 1730: 1958, drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,740 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1730 for history of changes prior to Apr. 25, 1960. REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 177,000 acres. Flow partly regulated by many small reservoirs upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHAR | GE, CUBIC | FEET PE | | | YEAR OCTOBE VALUES | R 1991 1 | TO SEPTEM | BER 1992 | | | |---|--|--|--|--|------------------------------------|--|---|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 189
161
148
145
157 | 129
140
140
148
157 | 165
168
172
171 | 123
118
125
114
112 | 123
121
115
122
117 | 113
110
110
194
328 | 267
251
241
233
218 | 201
199
194
179
159 | 307
280
236
224
227 | 295
308
281
262
258 | 263
253
254
331
300 | 246
229
222
217
212 | | 6
7
8
9
10 | 146
140
141
133
138 | 157
155
147
148
166 | 168
165
156
150
147 | 132
132
132
129
127 | 118
119
116
114
112 | 195
164
168
253
276 | 227
248
231
225
202 | 138
168
207
172
159 | 229
287
403
697
621 | 268
220
240
243
289 | 295
298
296
297
278 | 211
204
191
187
182 | | 11
12
13
14 | 117
113
103
105
103 | 166
165
155
165
169 | 151
152
149
142
141 | 132
131
129
133
110 | 113
114
116
118
115 | 265
308
369
443
407 | 198
181
190
224
244 | 178
153
137
128
124 | 588
632
667
617
617 | 291
308
307
288
275 | 281
313
318
296
288 | 182
179
180
171
169 | | 16
17
18
19
20 | 103
96
96
101
102 | 156
178
193
239
222 | 144
144
142
148
139 | 129
156
153
137
158 | 113
112
116
112
114 | 400
358
321
304
292 | 322
383
370
362
352 | 136
147
177
179
170 | 528
416
290
202
181 | 295
305
296
280
323 | 287
291
311
294
270 | 149
149
142
148
157 | | 21
22
23
24
25 | 105
103
99
102
100 | 208
221
199
194
192 | 135
135
133
131
129 | 157
155
126
126
125 | 112
115
115
112
119 | 259
252
246
244
240 | 352
317
272
251
231 | 171
229
259
256
304 | 224
255
251
253
364 | 333
307
299
295
315 | 262
281
327
610
797 | 138
139
147
148
139 | | 26
27
28
29
30
31 | 104
115
113
125
123
129 | 191
191
180
173
172 | 123
125
126
126
121
121 | 121
115
124
129
124
125 | 117
113
112
117 | 225
213
270
327
266
264 | 213
199
205
190
179 | 388
347
320
275
244
242 | 472
509
454
438
379 | 339
342
321
285
279
283 | 440
311
262
242
243
246 | 139
140
132
143
142 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3755
121
189
96
7450 | 5216
174
239
129
10350 | 4490
145
172
121
8910 | 4039
130
158
110
8010 | 3352
116
123
112
6650 | 8184
264
443
110
16230 | 7578
253
383
179
15030 | 6340
205
388
124
12580 | 11848
395
697
181
23500 | 9030
291
342
220
17910 | 9835
317
797
242
19510 | 5134
171
246
132
10180 | | | ICS OF MO | NTHLY MEAN | N DATA FO | R WATER Y | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 134
397
1985
25.5
1935 | 128
320
1970
31.2
1935 | 118
255
1970
27.9
1935 | 111
223
1980
24.4
1935 | 118
298
1962
30.2
1935 | 120
326
1983
28.3
1935 | 181
1100
1942
25.1
1935 | 459
2362
1980
43.8
1955 | 576
2619
1949
56.7
1954 | 255
954
1983
50.4
1934 | 197
653
1965
41.0
1940 | 158
1062
1938
22.7
1934 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1927 | - 1992 | | LOWEST A
HIGHEST
LOWEST I
ANNUAL I
INSTANTA
ANNUAL I
10 PERCI
50 PERCI | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | : | 75384
207
1490
61
68
149500
356
146
87 | Jun 2
May 15
Apr 24 | | 78801
215
797
a 96
100
1020
3.88
156300
327
180
115 | Aug 25
Oct 17
Oct 17
Aug 25
Aug 25 | | 214
569
555.1
6700
12
15
151300
8.93
154900
350
129
56 | Apr
Apr
Sep | 1983
1932
10 1957
23 1935
17 1935
3 1938
3 1938 | a-Also occurred Oct 18. b-Site and datum then in use, from rating curve extended above $4700 \text{ ft}^3/\text{s}$. #### 06733000 BIG THOMPSON RIVER AT ESTES PARK, CO LOCATION.--Lat 40°22'42", long 105°30'48", in NW1/4NW1/4 sec.30, T.5 N., R.72 W., Larimer County, Hydrologic Unit 10190006, on right bank in Estes Park, 600 ft downstream from bridge on State Highways 7 and 66, 900 ft downstream from Black Canyon Creek, and 0.3 mi northwest of Estes powerplant. Station is upstream from Lake Estes. DRAINAGE AREA. -- 137 mi2. PERIOD OF RECORD.--October 1946 to current year. Prior to October 1947, published as Thompson River at Estes Park. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume with overflow weirs. Datum of gage is 7,492.5 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to May 18, 1949, at site 740 ft downstream at different datum. May 18, 1949 to Mar. 22, 1951, at site 60 ft upstream at datum 1.2 ft, higher. REMARKS.--Estimated daily discharges: Oct. 29 to Nov. 22, and Dec. 23 to Mar. 12. Records good except for estimated daily discharges, which are fair. Diversion from Colorado River basin passed this station from Aug. 10, 1947 to Aug. 2, 1950. Small power developments and small diversions for irrigation and municipal use above station. Diversions upstream from station from Wind River to Lake Estes (bypassing this station), no diversions during current year. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | Surve | =у. | | | | | | | | | | | | |--|-------------------------------------|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|------------------------------------|---|------------------------------------|--| | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER VALUES | R 1991 T | о ѕертемв | ER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 40
37
34
34
34 | 17
18
20
22
21 | 16
17
17
18
18 | 10
10
10
10 | 10
10
10
10 | 12
12
12
12
12 | 17
17
18
22
24 | 152
163
129
141
157 | 219
201
222
267
286 | 307
278
232
203
202 | 117
110
108
109
103 | 62
67
60
57
59 | | 6
7
8
9 | 33
32
31
30
30 | 20
20
19
18
17 | 17
16
16
15
15 | 10
10
10
10 | 10
10
10
10 | 12
13
13
13 | 23
22
23
25
30 | 176
220
198
226
249 | 291
298
309
307
305 | 219
244
267
268
235 | 101
106
101
102
102 | 55
51
48
44
44 | | 11
12
13
14
15 | 29
28
26
25
25 | 15
14
12
12
12 | 15
14
13
11
12 | 10
10
10
10 | 10
10
10
10 | 14
14
14
13
13 | 36
39
49
57
59 | 174
165
157
153
179 | 355
362
391
391
370 | 215
222
211
190
176 | 102
103
95
88
83 | 41
39
38
37
37 | | 16
17
18
19
20
| 24
22
21
22
22 | 14
14
15
16
17 | 12
11
11
12
12 | 10
10
10
10 | 10
10
10
10 | 13
13
13
12
12 | 77
69
7 8
63
53 | 206
227
249
282
335 | 295
247
230
270
341 | 176
188
164
158
174 | 81
87
81
76
70 | 38
41
44
45
45 | | 21
22
23
24
25 | 23
22
21
24
25 | 18
19
14
20
24 | 11
11
11
11 | 10
10
10
10 | 10
10
10
10 | 12
13
13
13
13 | 45
47
45
40
38 | 436
423
354
405
427 | 361
353
357
357
416 | 193
173
160
165
191 | 68
69
75
94
108 | 45
45
42
40
42 | | 26
27
28
29
30
31 | 26
26
26
18
16 | 22
22
21
20
16 | 11
11
11
11
11 | 10
10
10
10
10 | 10
11
11
11
 | 13
14
18
18
19 | 41
53
76
112
143 | 385
430
357
290
269
242 | 457
361
334
348
323 | 189
161
144
135
128
123 | 111
91
74
64
61
59 | 41
38
35
34
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | 822
26.5
40
16
1630 | 529
17.6
24
12
1050 | 409
13.2
18
11
811 | 310
10.0
10
10
615 | 293
10.1
11
10
581 | 421
13.6
19
12
835 | 1441
48.0
143
17
2860 | 7956
257
436
129
15780 | 9624
321
457
201
19090 | 6091
196
307
123
12080 | 2799
90.3
117
59
5550 | 1346
44.9
67
32
2670 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 42.9
112
1962
22.2
1989 | 52.7
1962
15.6 | 16.9
35.1
1948
9.68
1977 | 12.3
25.1
1948
4.89
1977 | 11.9
22.7
1962
5.77
1977 | 14.6
25.5
1986
8.39
1977 | 40.6
103
1962
18.7
1991 | 243
479
1958
112
1968 | 559
947
1949
191
1954 | 327
739
1957
112
1977 | 145
273
1983
66.7
1954 | 68.5
143
1961
37.4
1988 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALENI | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1947 | - 1992 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | 37456.3
103
905
8.6
9.1
74290
333 | Jun 2
Mar 15
Mar 11 | | 32041
87.5
457
10
10
531
3.98
63550
272 | Jun 26
Jan 1
Jan 1
Jun 26
Jun 26 | | 126
189
63.3
1520
53.0
3.2
5500
6.89
91290
386 | Jan 1
Jan 1
Jul 1 | 1949
1954
7 1965
3 1977
0 1977
5 1982
7 1965 | | | ENT EXCEE | | | 22
10 | | | 30
10 | | | 37
11 | | | a-Many days. b-Also occurred Jan 14-16. c-Caused by failure of Lawn Lake Dam, gage height, indeterminate; maximum natural discharge, 1660 ft³/s, Jun 18, 1949, gage height, 3.16 ft, site and datum then in use. ### 06734900 OLYMPUS TUNNEL AT LAKE ESTES, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}22'30"$, long $105^{\circ}29'13"$, in $SE^{1}/4NW^{1}/4$ sec.29, T.5 N., R.72 W., Larimer County, Hydrologic Unit 10190006, at tunnel entrance at south end of Olympus Dam on Lake Estes, 1.9 mi east of Estes Park. PERIOD OF RECORD. -- September 1970 to current year. REMARKS.--Tunnel is part of Colorado-Big Thompson project. Field data collected prior to 1974 water year available in district office. Records of discharge are estimated values. A complete taxonomic identification with cell counts for phytoplankton available in district office. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | WA | ATER-QUA | LITY DA | ΓA, WA | TER YEA | R OCTOR | ER 19 | 91 TO S | EPTEMB | ER 1992 | | | | |-------------------|--------------|--|--|--|---|---|--|---|---|--|---|--|--|---| | DATE | TIME | DIS
CHARG
INST
CUBI
FEE
PER
SECO | E, SPE
. CIF
C CON
T DUC
ANC | IC
 -
 T- (S
 E | PH
TAND-
ARD
NITS) | TEMPER
ATURE
WATER
(DEG C | DI
SOL | EN,
S-
VED
/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALC
DIS-
SOL'
(MG,
AS | IUM S
- I
VED SC
/L (N | AGNE-
SIUM,
DIS-
DLVED
MG/L
S MG) | SODIUM
DIS-
SOLVED
(MG/L
AS NA | SORP-
TION
RATIO | | NOV 20 | 1315 | 55 | 0 50 |) | 7.1 | 3.0 | 9. | 6 | 20 | 6. | 2 1 | 1.2 | 2.2 | 0.2 | | MAR
25 | 1345 | 30. | 2 63 | } | 8.0 | 3.0 | 10. | 4 | 26 | 7. | 3 1 | 1.5 | 2.9 | 0.2 | | JUL
14 | 1415 | 41 | 0 22 | ! | 7.5 | 14.5 | 7. | 7 | 8 | 2.3 | 3 (| 5.5 | 1.2 | 0.2 | | DATE | s
(| OTAS-
SIUM, :
DIS-
OLVED
MG/L
S K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFAT
DIS-
SOLVE
(MG/L
AS SO4 | E RI
DI
D SO
(M | DE,
S-
DLVED
G/L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILI
DIS
SOI
(MG
AS | CA, RE
- AT
VED D | LIDS,
SIDUE
180
EG. C
DIS-
OLVED
MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOL:
- D:
. SOI
(TO | IS- | COLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | | NOV
20 | | 0.7 | 22 | 2.4 | 0 | .6 | 0.1 | 4. | 1 | 47 | 31 | 0. | .06 | 69.8 | | MAR
25 | | 0.8 | 27 | 3.4 | 1 | .2 | 0.2 | 6. | 0 | 31 | 41 | 0. | .04 | 25.3 | | JUL
14 | | 0.3 | 9 | 1.7 | 0 | .4 | <0.1 | 3. | 7 | 18 | 16 | 0 | .02 | 19.9 | | DATE | NI
S
(| ITRO- GEN, TRITE DIS- I OLVED MG/L S N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO
GEN,
NO2+NO
DIS-
SOLVE
(MG/L
AS N) | NI
3 G
AMM
D TO
(M | TRO-
EN, A
ONIA
TAL
G/L | NITRO-
GEN,
MMONIA
DIS-
SOLVED
(MG/L
AS N) | NIT
GEN,
MONI
ORGA
TOT
(MG | A + P
NIC PH
AL T
/L (| HOS-
ORUS
OTAL
MG/L
S P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHO
OR:
DI: | THO,
S-
VED
/L | | | NOV
20
MAR | < | 0.01 | <0.05 | 0.08 | <0 | .01 | 0.02 | 0.4 | 0 | 0.03 | <0.01 | <0.0 | 01 | | | 25
JUL | | 0.01 | 0.08 | 0.09 | | | 0.03 | <0.2 | | 0.03 | 0.01 | 0.0 | | | | 14 | ` | 0.01 | <0.05 | <0.05 | U | .05 | 0.05 | <0.2 | Ü | 0.01 | <0.01 | <0.0 | J 1 | | | נ | DATE | TIM | BARI
DIS
SOLV
E (UG | UM, L
- D
ED S
/L (| ERYL-
IUM,
IS-
OLVED
UG/L
S BE) | BORON
DIS-
SOLVE
(UG/L
AS B) | DI
D SOL
(UG | S-
VED
/L | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBAI
DIS-
SOLVE
(UG/
AS (| DI
D SC
L (U | PPER,
S-
DLVED
JG/L
G CU) | IRON,
DIS-
SOLVE
(UG/L
AS FE | D | | NOV | | 101 | | | .o. r | -10 | | • | 45 | 42 | | | 2.2 | | | 20.
MAR
25. | | 1319 | | | <0.5 | <10
<10 | | | <5
<5 | <3
<3 | | :10
:10 | 33
67 | | | JUL 14. | | 1419 | | | <0.5
<0.5 | <10 | | | <5 | <3 | | 10 | 75 | | | | | | • | | | 120 | | •• | | | | | | | | r | DATE | LEAD,
DIS-
SOLVI
(UG/1
AS PI | - DI
ED SOL
L (UG | IUM N
S-
VED S
/L (| ANGA-
ESE,
DIS-
DLVED
UG/L
S MN) | MOLYB
DENUM
DIS-
SOLVE
(UG/L
AS MO | , NICK
DIS
D SOL
(UG | VED
/L | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRO
TIU
DIS
SOLV
(UG/
AS | JM, DI
S- E
YED SC
'L (U | NA-
IUM,
DIS-
DLVED
IG/L
S V) | ZINC,
DIS-
SOLVE
(UG/L
AS ZN | D | | NOV
20. | | <10 | < | 4 | 3 | <10 | <1 | 3 | <1.0 | 34 | ı | <6 | 3 | | | MAR
25. | | <10 | < | 4 | 4 | <10 | <1 | 0 | 1.0 | 47 | , | <6 | 4 | | | JUL
14. | | <10 | < | 4 | 3 | <10 | <1 | C | 1.0 | 13 | 3 | <6 | <3 | | ### 06735500 BIG THOMPSON RIVER NEAR ESTES PARK, CO LOCATION.--Lat 40°22'35", long 105°29'06", in NE¹/4NE¹/4 sec.29, T.5 N., R.72 W., Larimer County, Hydrologic Unit 10190006, on right bank 100 ft upstream from Dry Gulch, 600 ft downstream from Olympus Dam, and 2.0 mi east of Estes Park. DRAINAGE AREA.--155 mi². Area at site used Jan. 29, 1934 to Mar. 21, 1951, 162 mi². PERIOD OF RECORD.--July 1930 to current year. Prior to October 1933, monthly discharges only, published in WSP 1310. Published as Thompson River near Estes Park 1934-47. REVISED RECORDS. -- WDR CO-76-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Datum of gage is 7,422.5 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Prior to Jan. 29, 1934, nonrecording gage on highway bridge 1.5 mi downstream at different datum. Jan. 29, 1934 to Mar. 21, 1951, water-stage recorder at site 0.4 mi downstream at datum 10.5 ft, lower. REMARKS.--No estimated daily discharges. Records good. Low flow regulated by Lake Estes since Nov. 30, 1948. Diversion from Colorado River basin to Big Thompson River basin upstream from station through Alva B. Adams tunnel began Aug. 10, 1947 (see station 09013000 in Volume 2 for diversion during current year); since Apr. 15, 1953, this imported water has been diverted from Lake Estes through Olympus tunnel bypassing this station. Since May 17,
1955, part of the natural flow of Big Thompson River (221,500 acre-ft during current year) has also been diverted through Olympus tunnel and returned to the river downstream from the station at mouth of canyon, near Drake. Small power developments and small diversions for irrigation and municipal use upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge observed, 2,800 $\rm ft^3/s$, June 20, 1933, gage height, 4.0 ft, site and datum then in use, from rating curve extended above 460 $\rm ft^3/s$; no flow, Aug. 1 to Sept. 30, 1976 (all flow into Lake Estes diverted through Olympus tunnel after flood of July 31, 1976). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 164 ft³/s, June 18, gage height, 1.92 ft; minimum daily, 18 ft³/s, Jan. 3, 11, and 23. | | | DISCHARGE, | CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 1991 | TO SEPTEMBER | 1992 | | | |-------|------|------------|-------|----------|------|------|------------------------|------|--------------|------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | - AUG | SEP | | 1 | 50 | 26 | 23 | 19 | 19 | 21 | 26 | 104 | 126 | 127 | 121 | 35 | | 2 | 44 | 26 | 23 | 19 | 19 | 20 | 26 | 105 | 126 | 125 | 120 | 69 | | 3 | 36 | 25 | 24 | 18 | 19 | 21 | 26 | 105 | 126 | 126 | 113 | 70 | | 4 | 35 | 26 | 27 | 20 | 19 | 21 | 27 | 106 | 127 | 126 | 112 | 64 | | 5 | 43 | 26 | 28 | 19 | 19 | 20 | 26 | 105 | 128 | 127 | 112 | 69 | | 6 | 41 | 19 | 29 | 19 | 19 | 20 | 26 | 105 | 126 | 127 | 113 | 62 | | 7 | 28 | 25 | 28 | 19 | 19 | 20 | 26 | 60 | 126 | 127 | 107 | 73 | | 8 | 50 | 24 | 29 | 20 | 19 | 20 | 27 | 105 | 126 | 126 | 101 | 55 | | 9 | 49 | 19 | 29 | 20 | 19 | 20 | 26 | 104 | 126 | 127 | 98 | 61 | | 10 | 39 | 25 | 29 | 19 | 19 | 21 | 27 | 105 | 126 | 127 | 98 | 50 | | 11 | 46 | 25 | 28 | 18 | 20 | 20 | 27 | 105 | 126 | 127 | 112 | 53 | | 12 | 47 | 25 | 28 | 20 | 19 | 20 | 28 | 105 | 126 | 126 | 122 | 66 | | 13 | 60 | 25 | 28 | 20 | 19 | 21 | 27 | 101 | 126 | 127 | 116 | 54 | | 14 | 60 | 25 | 28 | 20 | 20 | 22 | 27 | 105 | 127 | 126 | 114 | 50 | | 15 | 57 | 24 | 29 | 20 | 20 | 21 | 26 | 109 | 125 | 126 | 95 | 48 | | 16 | 60 | 25 | 29 | 20 | 20 | 22 | 50 | 129 | 126 | 128 | 89 | 39 | | 17 | 58 | 24 | 28 | 20 | 20 | 24 | 53 | 130 | 126 | 126 | 90 | 41 | | 18 | 43 | 25 | 28 | 19 | 20 | 27 | 53 | 130 | 126 | 126 | 97 | 42 | | 19 | 47 | 26 | 29 | 20 | 20 | 27 | 53 | 130 | 127 | 125 | 98 | 44 | | 20 | 58 | 25 | 29 | 19 | 20 | 26 | 53 | 131 | 127 | 125 | 80 | 44 | | 21 | 46 | 24 | 28 | 19 | 20 | 27 | 53 | 130 | 127 | 124 | 80 | 46 | | 22 | 44 | 24 | 29 | 19 | 20 | 27 | 53 | 131 | 126 | 123 | 69 | 46 | | 23 | 47 | 23 | 28 | 18 | 20 | 27 | 53 | 130 | 126 | 124 | 91 | 43 | | 24 | 47 | 20 | 29 | 19 | 20 | 26 | 54 | 130 | 125 | 123 | 85 | 43 | | 25 | 50 | 24 | 28 | 20 | 21 | 27 | 53 | 131 | 127 | 123 | 99 | 40 | | 26 | 55 | 24 | 29 | 20 | 20 | 26 | 47 | 130 | 126 | 123 | 100 | 40 | | 27 | 51 | 25 | 29 | 20 | 21 | 27 | 53 | 132 | 126 | 121 | 99 | 39 | | 28 | 31 | 25 | 29 | 20 | 20 | 27 | 53 | 131 | 127 | 122 | 97 | 37 | | 29 | 32 | 24 | 29 | 20 | 20 | 27 | 53 | 130 | 126 | 121 | 80 | 35 | | 30 | 27 | 23 | 23 | 19 | | 27 | 52 | 126 | 127 | 120 | 62 | 35 | | 31 | 18 | | 19 | 19 | | 27 | | 126 | | 121 | 54 | | | TOTAL | 1399 | | 853 | 601 | 570 | 729 | | 3606 | | 3872 | 3024 | 1493 | | MEAN | 45.1 | | 7.5 | 19.4 | 19.7 | 23.5 | 39.5 | 116 | 126 | 125 | 97.5 | 49.8 | | MAX | 60 | 26 | 29 | 20 | 21 | 27 | 54 | 132 | 128 | 128 | 122 | 73 | | MIN | 18 | 19 | 19 | 18 | 19 | 20 | 26 | 60 | 125 | 120 | 54 | 35 | | AC-FT | 2770 | 1440 1 | 690 | 1190 | 1130 | 1450 | 2350 | 7150 | 7510 | 7680 | 6000 | 2960 | CAL YR 1991 TOTAL 21239.5 MEAN 58.2 MAX 550 MIN 8.3 AC-FT 42130 WTR YR 1992 TOTAL 21845 MEAN 59.7 MAX 132 MIN 18 AC-FT 43330 ### 06737500 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO LOCATION.--Lat $40^{\circ}36'00"$, long $105^{\circ}10'06"$, in $NW^1/4SW^1/4$ sec.6, T.7 N., R.69 W., Larimer County, Hydrologic Unit 10190007, on right bank near abutment of Horsetooth Dam on tributaries to Cache la Poudre River, 4.8 mi west of city hall in Fort Collins. ### RESERVOIR ELEVATIONS AND CONTENTS RECORDS PERIOD OF RECORD. -- April 1951 to current year. GAGE.--Nonrecording gage read at irregular intervals from 1 to 10 days. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earth and rockfill dike and dams closing openings in subsequent valleys between hogbacks; storage began Jan. 10, 1951; dams completed July 21, 1949. Usable capacity, 143,500 acre-ft above elevations 5,320 ft, invert of channel from Spring Canyon Dam, 5,310 ft, invert of channel from Dixon Canyon Dam, 5,270 ft, trashrack sill of outlet at Soldier Canyon Dam, and below maximum water-surface elevation, 5,430 ft, 6 ft below crest of Satanka Dike. Dead storage, 7,003 acre ft. Figures given represent usable contents. Water is diverted from Colorado River basin through Alva B. Adams tunnel for supplemental irrigation supply to Cache la Poudre River. Water-quality sampling at three sites in reservoir. COOPERATION. -- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 141,600 acre-ft, July 2, 1970, elevation, 5,429.02 ft; minimum observed, 9 acre-ft, Nov. 16-30, 1977, elevation, 5,270.25 ft; no storage prior to Apr. 18, 1951. EXTREMES FOR CURRENT YEAR.--Maximum contents, observed, 134,700 acre-ft, July 4, elevation, 5,422.43 ft; minimum, observed, 82,730 acre-ft, Oct. 31, elevation, 5,392.27 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents (acre-feet) | Change in contents (acre-feet) | |--|--|---|--| | Sept. 30. | 5,395.33
5,392.27
5,395.88
5,400.45 | 87,460
82,730
88,320
95,640 | -4,730
+5,590
+7,320 | | CAL YR 1991 | - | - | -1,310 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 5,406.61
5,412.43
5,419.71
5,420.86
5,416.49
5,422.17
5,412.90
5,405.99
5,403.46 | 105,900
116,100
129,500
131,700
123,500
134,200
117,000
104,900
100,600 | +10,260
+10,200
+13,400
+2,200
-8,200
+10,700
-17,200
-12,100
-4,300 | | WTR YR 1992 | | | +13,140 | ## 06737500 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- September 1969 to current year. REMARKS.--Samples collected at various depths near north end of reservoir near Soldier Canyon Dam. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | |-----------|--------------|----------------------------------|---|--------------------------------|--------------------------------------|-------------------------------------| | MAY | | | | | | | | 12 | 0908 | 0.1
5.0 | 77
77 | 8.0
8.0 | 13.5
13.5 | 8.4
8.4 | | 12
12 | 0910
0912 | 10.0 | 77 | 8.0 | 13.5 | 8.4 | | 12 | 0914 | 20.0 | 7 7 | 8.0 | 13.5 | 8.4 | | 12 | 0916 | 25.0 | 7 7 | 8.0 | 13.0 | 8.4 | | 12 | 0918
0920 | 30.0
40.0 | 77
77 | 7.9
7.8 | 10.5
9.0 | 8.8
8.8 | | 12
12 | 0920 | 50.0 | 77
78 | 7.7 | 8.0 | 8.7 | | 12 | 0924 | 60.0 | 77 | 7.6 | 8.0 | 8.5 | | 12 | 0926 | 70.0 | 77 | 7.6 | 7.5 | 8.5 | | 12
12 | 0928
0930 | 80.0
90.0 | 75
77 | 7.6
7.5 | 7.5
7.5 | 8.4
8.4 | | 12 | 0932 | 100 | 7 8 | 7.4 | 7.0 | 8.3 | | 12 | 0934 | 110 | 77 | 7.4 | 7.0 | 8,2 | | 12 | 0936 | 120 | 77 | 7.4 | 7.0 | 8.2 | | JUL
09 | 0915 | 0.1 | 67 | 8.3 | 22.5 | 7.2 | | 09 | 0916 | 5.0 | 67 | 8.3 | 20.0 | 7.3 | | 09 | 0917 | 10.0 | 67 | 8.2 | 20.0 | 7.3 | | 09 | 0918 | 15.0 | 67 | 8.2 | 20.0 | 7.2
7.1 | | 09
09 | 0919
0920 | 20.0
25.0 | 67
67 | 8.1
7.8 | 20.0
18.5 | 6.7 | | 09 | 0921 | 30.0 | 67 | 7.6 | 14.5 | 6.4 | | 09 | 0922 | 40.0 | 67 | 7.4 | 12.0 | 6.2 | | 09 | 0923 | 50.0 | 67 | 7.3
7.3 | 10.5
9.5 | 6.2
6.3 | | 09
09 | 0924
0925 | 60.0
70.0 | 72
73 | 7.3 | 9.0 | 6.3 | | 09 | 0926 | 80.0 | 74 | 7.3 | 9.0 | 6.3 | | 09 | 0927 | 90.0 | 74 | 7.3 | 8.5 | 6.3 | | 09
09 | 0928
0929 | 100
110 | 75
75 | 7.2
7.2 | 8.5
8.0 | 6.4
6.4 | | 09 | 0930 | 120 | 75
75 | 7.2 | 8.0 | 6.4 | | 09 | 0931 | 125 | 75 | 7.2 | 8.0 | 6.3 | | SEP | | | | | | 2.0 | | 10
10 | 0933
0934 | 0.1
5.0 | 70
70 | 7.9
7.9 | 18.0
18.0 | 7.2
7.2 | | 10 | 0935 | 10.0 | 69 | 7.8 | 18.0 | 7.2 | | 10 | 0936 | 15.0 | 69 | 7.8 | 18.0 | 7.2 | | 10 | 0937 | 20.0 | 68 | 7.8 | 18.0 | 7.1 | | 10
10 | 0938
0939 | 25.0
30.0 | 69
70 | 7.8
7.7 | 18.0
18.0 | 7.1
7.0 | | 10 | 0940 | 40.0 | 70
70 | 7.3 | 17.0 | 4.6 | | 10 | 0941 | 50.0 | 70 | 7.2 | 14.0 | 3.3 | | 10 | 0942 | 60.0 | 70 | 7.2 | 12.0 | 4.0 | | 10 | 0943
0944 | 70.0
80.0 | 70
71 | 7.2
7.2 | 11.0
10.0 | 4.0
3.9 | | 10 | 0945 | 90.0 | 72 | 7.2 | 10.0 | 4.1 | | 10 | 0946 | 100 | 72 | 7.2 | 9.5 | 4.3 | | 10 | 0947 | 110 | 73 | 7.2 | 9.5
9.0 | 4.1
3.6 | | 10 | 0948 | 120 | 73 | 7.2 | 9.0 | 3.6 | | | | | | | | | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------|------|----------------------------------|---|--------------------------------|--------------------------------------|--|-------------------------------------|--|---|--|--| | MAY | | | | | | | | | | | | | 12 | 1000 | 0.1 | 77 | 8.0 | 13.5 | 95.0 | 8.4 | K<1 | 31 | 10 | 1.5 | | 12 | 1015 | 120 | 7 7 | 7.4 | 7.0 | | 8.2 | | 31 | 10 | 1.5 | | JUL | | | | | | | | | | | | | 09 | 0950 | 0.1 | 67 | 8.3 | 22.5 | 144 | 7.2 | K<1 | 28 | 9.0 | 1.4 | | 09 | 1010 | 125 | 75 | 7.2 | 8.0 | | 6.3 | | 34 | 11 | 1.6 | | SEP | | | | | | | | | | | | | 10 | 1000 | 0.1 | 70 | 7.9 | 18.0 | 119 | 7.2 | K<1 | 28 | 9.2 | 1.3 | | 10 | 1030 | 120 | 73 | 7.2 | 9.0 | | 3.6 | | 31 | 10 | 1.5 | $K ext{-Based}$ on non-ideal colony count. 06737500 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | MAY 12 2.4 0.2 0.7 33 3.4 0.3 0.2 0.7 58 39 12 2.4 0.2 0.7 29 3.1 0.2 0.6 54 39 09 2.6 0.2 0.7 29 3.3 0.2 0.1 1.3 34 36 09 2.6 0.2 0.9 33 3.3 0.2 0.2 0.1 1.3 34 36 09 2.6 0.2 0.7 33 3.3 0.2 0.1 1.3 34 36 09 2.6 0.2 0.7 33 3.3 0.2 0.1 1.3 34 36 09 2.6 0.2 0.7 33 3.3 0.2 0.1 1.3 34 36 10 2.2 0.2 0.6 30 3.0 0.2 0.1 1.3 34 36 10 2.2 0.2 0.6 30 3.0 0.2 0.1 0.8 39 36 10 2.2 0.2 0.2 0.6 30 3.0 0.2 0.1 0.8 39 36 10 2.2 0.2 0.2 0.7 33 3.3 0.3 0.3 0.1 0.0 0.8 39 36 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 0.0 0.4 0.1 0.8 NITRO- GEN, GEN, GEN, MITRO- GEN, GEN, AMMONIA MONIA + PHOSIS PHORUS | DATE | SO:
SO:
E (I | DIUM,
IS-
LVED
MG/L
S NA) | A
SOR | ON | S
D
SO | TAS-
IUM,
IS-
LVED
G/L
K) | LIN
L
(M
A | KA-
ITY
AB
G/L
S
CO3) | D)
S(
(N | LFATI
IS-
OLVEI
MG/L
SO4) | E
D | CHLO-
RIDE,
DIS-
SOLVE
(MG/I
AS CI | :D | FLUO-
RIDE,
DIS-
SOLVE
(MG/I
AS F) | D | ILICA
DIS-
SOLVE
(MG/I
AS
SIO2) | A
D | OLIDS
ESIDU
T 180
DEG.
DIS-
SOLVE
(MG/I | JÉ SU
O CO
C TU
-
ED S | DLIDS, JM OF DNSTI- JENTS, DIS- SOLVED (MG/L) | |--|-----------|--------------------|---------------------------------------|--|--------------------------------|--------------------------------|--|------------------------------|--------------------------------------|------------------------------|---------------------------------------|----------------------------------|---|---------------------|---|---------------------------|--|--------------------------|---|------------------------------------|---| | JUL 09 2.4 0.2 0.7 29 3.1 0.2 <0.1 1.3 34 36 09 2.6 0.2 0.9 33 3.1 0.2 <0.1 1.1 3 34 36 10 2.2 0.2 0.6 0.2 0.7 33 3.3 0.2 <0.1 1.1 40 41 10 2.2 0.2 0.6 0.7 33 3.3 0.2 <0.1 1.1 40 41 10 2.3 0.2 0.7 33 3.3 0.3 0.2 <0.1 1.1 40 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.2 0.2 0.6 60 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 33 3.3 0.3 0.3 0.1 2.0 47 41 10 2.3 0.2 0.7 0.7 33 3.3 0.3 0.3 0.3 0.1 2.0 87 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 12 | SEP 10 | JUL
09 | | 2.4 | 0 | . 2 | 0 | .7 | 2 | 9 | 3 | 3.1 | | 0.2 | | <0.1 | | 1.3 | | 34 | | 36 | | NITRO | SEP | | | | | | | | | | | | | | | | | | 39 | | | | CEN, NITRO CEN, NITRO CEN, NITRO CEN, AMMONIA DIS DI | 10 | | 2.3 | 0 | .2 | 0 | .7 | 3 | 3 | 3 | 3.3 | | 0.3 | | 0.1 | | 2.0 | | 47 | | 41 | | 12 | | | O
TIN
I
SC
(1) | GEN,
TRITE
DIS-
DLVED
MG/L | GE
NO2+
DI
SOL
(MG | N,
NO3
S- A
VED
/L | GE:
MMO:
TOT:
(MG | N,
NIA
AL
/L | GEN
AMMON
DIS
SOLV
(MG) | N,
NIA
S-
VED
/L | GEN,
MONI
ORGA
TOT
(MC | AM-
ANIC
ANIC
AL
G/L | PHC
PHC
TC
(M) | RUS
TAL
IG/L | PHO
D
SO
(M | RUS
IS-
LVED
G/L | PHO
OR
DI
SOL
(MG | RUS
THO,
S-
VED | PI
PI
CHE
FLU | YTO-
ANK-
ON
OMO
JOROM | PHYTO-
PLANK-
TON
CHROMO
FLUOROM | | 09 <0.01 <0.05 0.03 0.02 <0.20 <0.01 <0.01 <0.01 2.5 0.4 0.9 0.9 <0.01 <0.05 0.06 0.03 <0.20 0.02 <0.01 <0.01 <0.01 | 1 | 2 | | | | | | | | | | | | | | | | | 2 | | | | 10 <0.01 | 0 | 9 | | | | | | | | | | | | | | | | | 2 | | | | BARIUM, DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | 1 | .0 | | | | | | | | | | | | | | | | | 2 | 2.4 | <0.1 | | 12 1000 17 <0.5 <10 <1.0 <5 <3 <10 6 12 1015 17 <0.5 <10 <1.0 <5 <3 <10 6 12 1015 17 <0.5 <10 <1.0 <5 <3 <10 6 JUL 09 0950 16 <0.5 <10 <1.0 <5 <3 <10 13 09 1010 18 <0.5 <10 <1.0 <5 <3 <10 9 SEP 10 1000 19 <0.5 20 <1.0 <5 <3 <10 9 SEP 10 1030 17 <0.5 <10 <1.0 <5 <3 <10 9 MANGA- MOLYB- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | | Di | ATE | TI | | DIS-
SOLVEI
(UG/1 | 2 | LIUM
DIS-
SOLV
(UG/ | ,
ED
L | DIS
SOLV
(UG/ | S-
/ED
/L | D
SO
(U | IS-
LVED
G/L | M
D1
S0
U) | UM,
S-
DLVED
JG/L | DI:
SOL'
(U) | S-
VED
G/L | DI
SO
(U | S-
LVED
G/L | D1
SOI
(U0 | S-
LVED
S/L | | JUL 09 0950 16 <0.5 <10 <1.0 <5 <3 <10 13 09 1010 18 <0.5 <10 <1.0 <5 <3 <10 13 SEP 10 1000 19 <0.5 20 <1.0 <5 <3 <10 9 MANGA- MOLYB- DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | | 12. | 10 1000 19 <0.5 20 <1.0 <5 <3 <10 6 10 1030 17 <0.5 <10 <1.0 <5 <3 <10 9 MANGA- MOLYB- STRON- VANA- TUM, DIUM, | | 09.
09. | | 09 | 50 | | | <0.5 | | | | | | | | | | | | 1 | | | LEAD, | | 10. | 12 <10 <4 2 <10 <10 ^a <0.2 45 <6 <3 12 <10 <4 7 <10 <10 ^a <0.2 44 <6 9 JUL 09 <10 <4 <1 <10 <10 ^a <0.2 39 <6 16 09 <10 <4 4 <10 <10 ^a <0.2 46 <6 8 SEP | | Di | ATE | DI
SOL
(UG | S-
VED
/L | DIS
SOLV
(UG) | S-
/ED
/L | NESE
DIS
SOLV
(UG/ | ED
L | DENU
DIS
SOLV
(UG/ | JM,
S-
/ED
/L | DI
SO
(U | S-
LVED
G/L | SC
(U | DIS-
DLVED
JG/L | D:
SO:
(U) | IUM,
IS-
LVED
G/L | DI
D
SO
(U | UM,
IS-
LVED
G/L | DI
SOI
(UC | S-
LVED
S/L | | JUL
09 <10 <4 <1 <10 <10 ^a <0.2 39 <6 16
09 <10 <4 4 <10 <10 ^a <0.2 46 <6 8
SEP
10 <10 <4 <1 <10 <10 ^a <0.2 38 <6 6 | | 12. | | | | | | | | | | | | a < 0
a < 0 |).2
).2 | | | | | | | | 10 <10 <4 <1 <10 <10 ^a <0.2 38 <6 6 | | 09. | | | | | | | | | | | | a < 0 | . 2 | | | | | | | | | | 10. | | | | | | | | | | | | a < 0
a < 0 | 1.2 | | | | | | | a-Analysis based on preliminary method. 403147105083800 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1983 to current year. REMARKS.--Samples collected at various depths near south end of reservoir near Spring Canyon Dam. water-quality data,
water year october 1991 to september 1992 $$\operatorname{\mathtt{SPE-}}$$ | DAS | re | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | | |--|---|--|---|--|---|--|---|-----------------------------| | MAY 12 | | 1118
1120
1122
1124
1126
1130
1132
1134
1136
1138
1142
1144
1146
1148
1150
1152 | 0.1
5.0
10.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100
110
120
130
140
150 | 79
79
79
79
77
77
77
79
80
80
80
80
80
79
79 | 8.0
8.0
7.9
7.7
7.6
7.5
7.5
7.5
7.5
7.7
7.4
7.4 | 14.0
14.0
13.5
12.0
10.0
8.0
7.5
7.5
7.5
7.5
7.0
7.0
7.0
7.0
7.0 | 8.5
8.5
8.5
8.6
8.5
8.4
8.4
8.3
8.3
8.2
8.1
8.0
7.9 | | | 09
09
09
09
09
09
09
09
09
09
09
09
09
09
09
09 | | 1030
1031
1032
1033
1034
1035
1036
1037
1038
1040
1041
1042
1043
1044
1045
1046
1047 | 0.1
5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
110
120
130
140
150 | 66
66
66
66
66
67
72
73
74
75
75
75 | 8.1
8.2
8.1
7.6
7.4
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2
7.2 | 21.0
20.5
20.5
19.0
18.0
17.5
16.5
13.5
10.0
9.0
8.5
8.5
8.0
8.0
8.0 | 7.3
7.3
7.1
6.7
6.5
6.4
5.9
6.0
6.1
6.1
6.1
6.9
5.9 | | | 10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10 | | 1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130 | 0.1
5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
110 | 68
68
68
68
68
68
69
70
70
72
74
75 | 7.7
7.6
7.6
7.6
7.5
7.5
7.2
7.2
7.2
7.2
7.1 | 18.0
18.0
17.5
17.5
17.5
17.5
17.5
15.5
10.0
9.0
8.5
8.5 | 7.1
7.1
7.0
7.0
6.9
6.9
3.7
3.6
3.5
3.5
3.5 | | | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAN
ARD
UNIT | WATER | (SEC | K) SOLY | S- UM-
VED (COL | M, HARD-
AL, NESS
TOTAL
MF (MG/L
S./ AS | CAI
DI
SC
(N
AS | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN) | OXYGEN,
DIS-
SOLVED
(MG/L) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------|------|----------------------------------|---|--------------------------------|--------------------------------------|--|-------------------------------------|---|---|--|--| | MAY | | | | | | | | | | | | | 12 | 1200 | 0.1 | 79 | 8.0 | 14.0 | 84.0 | 8.5 | <1 | 30 | 9.4 | 1.5 | | 12 | 1215 | 150 | 79 | 7.4 | 6.5 | | 7.8 | | 34 | 11 | 1.6 | | JUL | | | | | | | | | | | | | 09 | 1110 | 0.1 | 66 | 8.1 | 21.0 | 102 | 7.3 | K2 | 29 | 9.3 | 1.4 | | 09 | 1120 | 150 | 76 | 7.2 | 8.0 | | 5.2 | | 32 | 10 | 1.6 | | SEP | | | | | | | | | | | | | 10 | 1150 | 0.1 | 68 | 7.7 | 18.0 | | 7.1 | | 28 | 9.2 | 1.3 | | 10 | 1230 | 117 | 75 | 7.1 | 8.5 | 110 | 1.8 | <1 | 32 | 10 | 1.6 | | | | | | | | | | | | | | K-Based on non-ideal colony count. 403147105083800 HORSETOOTH RESERVOIR NEAR FORT COLLINS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | ***** | DI GOILDII | | | K OCTOBE | . 1331 10 | | | | | |--------------------------|---|---|--|--|---|--|--|--|--|--|---| | DATE | SODIUI
DIS-
SOLVE
(MG/
AS N | SORP
D TIO
L RATIO | - SIUN
- DIS-
N SOLVE | (, LINIT)
- LAB
D (MG/I
L AS | SULFA
DIS-
SOLV
(MG/ | DIS-
ED SOLV
L (MG/ | RIDE DIS VED SOLV | DIS- SOLVE MG/L L AS | AT 180
D DEG.
DIS-
SOLVE | E SUM OF CONSTIC TUENTS, DISC D SOLVEI | ·
-
) | | 12
12
JUL | 2.5
2.5 | 0.2
0.2 | 0.6
0.7 | 32
33 | 3.4
3.6 | | | | 4 4
4 8 | 38
41 | | | 09
09
SEP | 2.4
2.7 | 0.2
0.2 | 0.9
0.8 | 29
33 | 3.0
3.3 | | | | 50
43 | 36
40 | | | 10 | 2.1
2.3 | 0.2 | 0.6
0.7 | 31
35 | 3.0
3.3 | | | | 33
48 | 36
42 | | | Γ |)
РАТЕ | GEN,
NITRITE NO
DIS-
SOLVED S
(MG/L | D2+NO3
DIS- AM
SOLVED T
(MG/L (|
IITRO-
GEN, AM
MONIA
COTAL S | GEN, G
MONIA M
DIS- O
OLVED
MG/L | TOTAL
(MG/L | PHOS- PHORUS TOTAL (MG/L | PHOS- PH
HORUS O
DIS- D
SOLVED SO
(MG/L (M | ORUS P RTHO, P IS- LVED CH G/L FL | HYTO- PF
LANK- PI
TON T
ROMO CHF
UOROM FLU | OR-B
IYTO-
ANK-
ON
OMO
IOROM | | MAY
12.
12. | | | | | | 0.20
0.20 | | | .01 | 3.1 | 0.1 | | JUL
09.
09.
SEP | | <0.01
0.01 | | | | 0.20
0.20 | | | .01
.01 | 2.1 | 0.2 | | 10.
10. | | <0.01
<0.01 | | | | 0.20
0.20 | <0.01
0.04 | | .01 | 1.5 < | 0.1 | | r | DATE | TIME | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | DIS-
SOLVED
(UG/L | BORON
DIS- | DIS-
D SOLVE | DIS-
D SOLVE
(UG/L | COBALT, DIS- D SOLVED (UG/L | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | | | 1AY
12
12 | 1200
1215 | 16
17 | <0.5
<0.5 | <10
<10 | <1.0
<1.0 | | <3
<3 | <10
<10 | 9
14 | | | | 09
09
EP | 1110
1120 | 17
18 | <0.5
<0.5 | <10
<10 | <1.0
<1.0 | | <3
<3 | <10
<10 | 21
16 | | | ~ | 10 | 1150
1230 | 18
18 | <0.5
<0.5 | <10
<10 | <1.0
<1.0 | | <3
<3 | <10
<10 | 9
15 | | | | DATE | LEAD,
DIS-
SOLVEI
(UG/L
AS PB) | (UG/L | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | | | 12
12 | <10
<10 | <4
<4 | 1
24 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 43
46 | <6
<6 | <3
42 | | | | O9 | <10
<10 | < 4
< 4 | <1
71 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 39
45 | <6
<6 | 29
6 | | | S | 10
10 | <10
<10 | <4
<4 | 8
230 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 38
45 | <6
<6 | 4
7 | | a-Analysis based on preliminary method. ### 06738000 BIG THOMPSON RIVER AT MOUTH OF CANYON, NEAR DRAKE, CO LOCATION.--Lat 40°25'18", long 105°13'34", in SW¹/4SW¹/4 sec.3, T.5 N., R.70 W., Larimer County, Hydrologic Unit 10190006, on right bank at mouth of canyon, 400 ft upstream from Handy Ditch diversion dam, and 6.0 mi east of Drake. DRAINAGE AREA. -- 305 m12. PERIOD OF RECORD.--August 1887 to September 1892, May 1895 to September 1903, October 1926 to September 1933 (no winter records prior to October 1932, except water years 1927-28), April 1938 to September 1949, March 1951 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as Big Thompson Creek at Arkins 1887-92, Big Thompson Creek near Arkins 1901-3, and as Thompson River at mouth of canyon, near Drake 1927-30, 1938-47. REVISED RECORDS.--WSP 1310: 1891, 1927. WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,305.47 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Oct. 1, 1949, to Sept. 18, 1977, at present site, datum 8.00 ft lower, Sept. 19, 1977 to July 27, 1980, at present site, datum 7.37 ft, lower. See WSP 1710 or 1730 for history of changes prior to Oct. 1, 1949. REMARKS.--Estimated daily discharges: Dec. 2 to Mar. 2. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation. Diversions from Colorado River basin to Big Thompson River basin upstream from station through Alva B. Adams tunnel began Aug. 10, 1947 (see station 09013000 in Volume 2 for diversion during current year); since Apr. 15, 1953, this imported water has been diverted from Lake Estes through Olympus tunnel bypassing this station. Part of the natural flow of the Big Thompson River has also been diverted through Olympus tunnel since May 17, 1955, 221,500 acre-ft diverted during current year; and Dille tunnel since Apr. 20, 1959, 17,980 acre-ft, diverted during current year, and returned to the river just downstream from this station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 31,200 ft³/s, July 31, 1976, gage height, 19.86 ft, from floodmarks, from slope-area measurements of peak flow; no flow at times in 1976 (all flow above station diverted through Olympus and Dille tunnels after flood of July 31, 1976), 1979-80 (all flow above station diverted through Dille tunnel). EXTREMES FOR CURRENT YEAR.--Maximum discharge, 386 ft³/s, May 16, gage height, 3.12 ft; minimum daily, 20 ft³/s, Nov. 23. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | | | DAIL | Y MEAN VA | LUES | | | | | | |--------|------|------|------------|------|------|-----------|------------|------------|------|------|------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 52 | 37 | 22 | 28 | 26 | 27 | 48 | 83 | 104 | 146 | 93 | 51 | | 2 | 49 | 35 | 23 | 28 | 26 | 28 | 49 | 73 | 95 | 126 | 98 | 79 | | 2
3 | 45 | 41 | 29 | 27 | 26 | 33 | 48 | 56 | 77 | 104 | 92 | 90 | | 4 | 55 | 55 | 53 | 29 | 26 | 45 | 51 | 55 | 75 | 93 | 86 | 86 | | 5 | 62 | 60 | 60 | 28 | 26 | 43 | 49 | 55 | 79 | 91 | 90 | 87 | | 6 | 63 | 49 | 59 | 28 | 26 | 39 | 56 | 55 | 76 | 93 | 84 | 85 | | 7 | 60 | 41 | 43 | 28 | 26 | 36 | 50 | 63 | 74 | 94 | 81 | 86 | | 8 | 67 | 43 | 45 | 29 | 26 | 39 | 5 4 | 5 9 | 75 | 111 | 75 | 79 | | 9 | 72 | 42 | 42 | 29 | 26 | 38 | 53 | 56 | 64 | 107 | 71 | 73 | | 10 | 67 | 43 | 42 | 28 | 26 | 36 | 56 | 64 | 63 | 103 | 71 | 70 | | 11 | 63 | 42 | 40 | 27 | 26 | 37 | 61 | 78 | 69 | 110 | 78 | 66 | | 12 | 65 | 39 | 40 | 29 | 25 | 44 | 61 | 72 | 71 | 113 | 84 | 72 | | 13 | 60 | 39 | 40 | 29 | 25 | 45 | 64 | 66 | 62 | 107 | 82 | 70 | | 14 | 56 | 39 | 40 | 29 | 26 | 45 | 64 | 124 | 74 | 100 | 78 | 65 | | 15 | 54 | 39 | 40 | 29 | 26 | 44 | 70 | 142 | 181 | 99 | 76 | 62 | | 16 | 53 | 38 | 40 | 29 | 26 | 44 | 99 | 200 | 105 | 98 | 78 | 60 | | 17 | 52 | 37 | 39 | 28 | 26 | 43 | 98 | 188 | 69 | 91 | 85 | 5 6 | | 18 | 43 | 39 | 3 8 | 27 | 26 | 47 | 83 | 109 | 66 | 83 | 87 | 55 | | 19 | 36 | 40 | 39 | 28 | 26 | 44 | 77 | 70 | 65 | 82 | 93 | 58 | | 20 | 38 | 34 | 39 | 27 | 26 | 42 | 71 | 78 | 111 | 88 | 92 | 59 | | 21 | 38 | 41 | 38 | 27 | 26 | 42 | 61 | 152 | 169 | 80 | 64 | 57 | | 22 | 37 | 32 | 38 | 27 | 26 | 41 | 53 | 184 | 117 | 83 | 56 | 57 | | 23 | 37 | 20 | 39 | 26 | 26 | 42 | 49 | 195 | 88 | 80 | 65 | 54 | | 24 | 37 | 30 | 38 | 27 | 26 | 41 | 88 | 207 | 99 | 85 | 79 | 52 | | 25 | 38 | 46 | 38 | 28 | 27 | 38 | 104 | 218 | 111 | 91 | 132 | 51 | | 26 | 40 | 48 | 37 | 28 | 26 | 39 | 97 | 209 | 161 | 91 | 147 | 50 | | 27 | 42 | 41 | 38 | 28 | 27 | 39 | 96 | 214 | 222 | 84 | 80 | 49 | | 28 | 52 | 38 | 38 | 28 | 27 | 50 | 102 | 166 | 202 | 82 | 105 | 48 | | 29 | 44 | 33 | 38 | 28 | 27 | 51 | 60 | 151 | 183 | 88 | 104 | 47 | | 30 | 37 | 26 | 33 | 26 | | 50 | 57 | 113 | 172 | 89 | 89 | 46 | | 31 | 30 | | 29 | 26 | | 51 | | 107 | | 92 | 83 | | | TOTAL | 1544 | 1187 | 1217 | 863 | 756 | 1283 | 2029 | 3662 | 3179 | 2984 | 2678 | 1920 | | MEAN | 49.8 | 39.6 | 39.3 | 27.8 | 26.1 | 41.4 | 67.6 | 118 | 106 | 96.3 | 86.4 | 64.0 | | MAX | 72 | 60 | 60 | 29 | 27 | 51 | 104 | 218 | 222 | 146 | 147 | 90 | | MIN | 30 | 20 | 22 | 26 | 25 | 27 | 48 | 5 5 | 62 | 80 | 56 | 46 | | AC-FT | 3060 | 2350 | 2410 | 1710 | 1500 | 2540 | 4020 | 7260 | 6310 | 5920 | 5310 | 3810 | CAL YR 1991 TOTAL 24543 MEAN 67.2 MAX 765 MIN 14 AC-FT 48680 WTR YR 1992 TOTAL 23302 MEAN 63.7 MAX 222 MIN 20 AC-FT 46220 ### 06739210 BIG THOMPSON RIVER ABOVE BUCKHORN CREEK NEAR LOVELAND, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}25^{\circ}02$ ", long $105^{\circ}11^{\circ}23$ ", in $NW^{1}/4SW^{1}/4NW^{1}/4$ sec.12, T.5 N., R.70 W., Larimer County, Hydrologic Unit 10190006, 160 ft south of Highway 34, 1 mi upstream from Buckhorn Creek. DRAINAGE AREA. -- 314 mi². PERIOD OF RECORD. -- May 1987 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |---|---|--|--|---|--|---|---|--|---|--|---| | OCT
07 | 1445 | 25 | 94 | 8.9 | 14.5 | 9.0 | 31 | 9.6 | 1.8 | | 30 | | NOV 20 | 1440 | 1.6 | 324 | 8.4 | 7.5 | 11.7 | 150 | 42 | 11 | ~- | 121 | | DEC | | | | | | - | | | 12 | | 127 | | 10
JAN | 1115 | 1.1 | 324 | 8.5 | 2.5 | 12.4 | 170 | 48 | | 6.8 | | | 28
MAR | 1322 | 0.82 | 385 | 8.4 | 3.5 | 13.6 | 190 | 52 | 14 | ~- | 135 | | 05
APR | 1015 | 0.95 | 384 | 8.2 | 5.0 | 10.9 | 180 | 49 | 15 | | 142 | | 01
MAY | 1515 | 47 | 93
| 8.6 | 8.5 | 10.4 | 46 | 10 | 5.1 | ~- | 32 | | 13
JUN | 1015 | 104 | 48 | 8.1 | 10.0 | 9.3 | 18 | 5.5 | 1.1 | | 18 | | 17
30
JUL | 1400
1145 | 246
363 | 30
27 | 7.7
7.7 | 14.0
14.5 | 8.4
7.9 | 11
 | 3.2 | 0.70 | | 11 | | 15 | 0945 | 111 | 34 | 7.7 | 16.0 | 8.1 | | | | | | | AUG
26 | 1515 | 121 ' | 52 | 7.9 | 17.5 | 7.9 | | | | | | | SEP
17 | 1345 | 28 | 68 | | 17.0 | 8.7 | 25 | 7.5 | 1.6 | | 24 | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | PHORUS
DIS-
SOLVED
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | | OCT
07
NOV | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
07
NOV
20
DEC | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
07
NOV
20
DEC
10
JAN | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
07
NOV
20
DEC
10
JAN
28 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01 | | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 0.02 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01 | | | OCT
07
NOV
20
DEC
10
JAN
28
MAR
05 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01 | | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.23
0.33
0.27
0.38 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 0.02 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01 | | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 MAY 13 JUN 17 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.23
0.33
0.27
0.38
0.10 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 0.02 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01
0.02 | | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 MAY 13 JUN 17 30 JUL 15 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.23 0.33 0.27 0.38 0.10 0.10 0.09 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 0.02 0.03 0.02 0.03 0.02 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01
0.02
0.04
<0.01 | | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 MAY 13 JUN 17 30 JUL | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED (MG/L
AS N) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.23 0.33 0.27 0.38 0.10 0.10 0.09 0.08 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.03 0.02 0.03 0.02 0.03 0.02 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

0.02

<0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.03
<0.01
0.02
0.04
<0.01 | | 06739210 BIG THOMPSON RIVER ABOVE BUCKHORN CREEK NEAR LOVELAND, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |--|--|---|--|---|--|--|---|--|--|---| | ОСТ
07
NOV | 1445 | | | <1 | | | | 9 | 3 | 380 | | 20
DEC | 1440 | | | <1 | | | | 4 | 3 | 80 | | 10
JAN | 1115 | 20 | <1 | <1 | <1.0 | <1 | <1 | | <1 | 110 | | 28
MAR | 1322 | | | <1 | | | | <1 | <1 | 60 | | 05
APR | 1015 | | | <1 | | | | <1 | 2 | 100 | | 01
MAY | 1515 | | | <1 | | | | <1 | 1 | 190 | | 13
JUN | 1015 | | | <1 | | | | 7 | 2 | 630 | | 17
30 | 1400
1145 | | | <1 | | | | 3 | 2 | 260 | | JUL
15 | 0945 | | | | | | | | | | | AUG | | | | | | | | | | | | 26
SEP | 1515 | | | | | | | | | | | 17 | 1345 | | | <1 | | | | 3 | 2 | 120 | | | LEAD, | | MANGA-
NESE, | MERCURY | | | SELE- | SILVER, | | | | DATE | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | TOTAL RECOV- ERABLE (UG/L AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | MERCURY DIS- SOLVED (UG/L AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07 | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | RECOV-
ERABLE
(UG/L |
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | OCT
07
NOV
20 | RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07
NOV
20
DEC
10 | RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07
NOV
20
DEC
10
JAN
28 | RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG)
<1
<1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07
NOV
20
DEC
10
JAN
28
MAR
05 | RECOV-
ERABLE
(UG/L
AS PB)
4
2
<1 | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG)
<1
<1
<1 | DIS-
SOLVED
(UG/L
As AG)
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07
NOV
20
DEC
10
JAN
28
MAR
05
APR
01 | RECOV-
ERABLE
(UG/L
AS PB)
4
2
<1 | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG)
<1
<1
<1
<1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 MAY 13 | RECOV-
ERABLE
(UG/L
AS PB)
4
2
<1
<1 | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L AS AG) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 07 NOV 20 DEC 10 JAN 28 MAR 05 APR 01 MAY 13 JUN 17 30 | RECOV-
ERABLE
(UG/L
AS PB) 4 2 <1 <1 8 <1 | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG) <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
07
NOV
20
DEC
10
JAN
28
MAR
05
APR
01
MAY
13
JUN | RECOV-
ERABLE
(UG/L
AS PB) 4 2 <1 <1 8 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. # 06741480 BIG THOMPSON RIVER ABOVE LOVELAND, CO # WATER-QUALITY RECORDS LOCATION.--Lat 40°24'02", long 105°07'20", in SW¹/4NE¹/4 sec.16, T.5 N., R.69 W., Larimer County, Hydrologic Unit 10190006, at Wilson Avenue bridge 9 mi upstream from Greeley-Loveland Ditch and 2.5 mi west of Loveland. DRAINAGE AREA. -- 525 mi², approximately. PERIOD OF RECORD. -- June 1979 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |--|---|--|--|---|--|---|---|---|--|--|---| | OCT
08 | 1342 | 6.7 | 1080 | 8.4 | 18.0 | 13.2 | 560 | 160 | 38 | | 155 | | NOV 21 | 1015 | 2.8 | 1000 | 8.0 | 6.0 | 10.4 | 520 | 150 | 35 | | 156 | | DEC
10 | 1345 | 2.4 | 1090 | 8.2 | 4.5 | 12.7 | 5 60 | 160 | 39 | 28 | 118 | | JAN
28 | 1520 | 10 | 930 | 8.3 | 5.0 | 13.0 | 480 | 1.40 | 31 | | 174 | | MAR
05 | 1200 | 7.9 | 848 | 8.3 | 6.0 | 11.4 | 450 | 130 | 30 | | 157 | | APR
02 | 1600 | 4.3 | 908 | 8.1 | 12.0 | 11.6 | 430 | 120 | 31 | | 125 | | MAY
13
JUN | 1245 | 160 | 125 | 8.2 | 11.0 | 9.1 | 68 | 21 | 3.7 | | 38 | | 16 | 1515 | 198 | 99 | 7.5 | 16.5 | | 41 | 12 | 2.6 | | 24 | | 30 | 1345 | 207 | 80 | 8.0 | 17.5 | 8.0
8.0 | 41 | 12 | 2.0 | | 24
 | | JUL | 1313 | 207 | | 0.0 | 17.5 | 0.0 | | | | | | | 15
AUG | 1215 | 136 | 249 | 8.3 | 21.0 | 7.7 | | | | | | | 26
SEP | 1630 | 17 | 382 | 9.0 | 20.5 | 9.0 | | | | | | | 17 | 1530 | 26 | 3 55 | 9.2 | 17.0 | 9.6 | 150 | 45 | 10 | | 59 | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
08 | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | PHORUS
DIS-
SOLVED
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | | OCT
08
NOV
21 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
08
NOV
21
DEC
10 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
08
NOV
21
DEC
10
JAN
28 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | |
OCT
08
NOV
21
DEC
10
JAN
28
MAR
05
APR
02 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.38
0.29 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.03
0.01
<0.01 | | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05
APR
02
MAY
13 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.38
0.29
0.42 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 | PHORUS DIS- SOLVED (MG/L AS P) < < < < | PHORUS
ORTHO,
SOLVED
(MG/L
AS P) 0.03 0.01 <0.01 | | | OCT 08 NOV 21 DEC 10 JAN 28 MAR 05 APR 02 MAY 13 JUN | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.38
0.29
0.42
0.37
0.19 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 0.03 0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.03
0.01
<0.01
<0.01 | | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05
APR
02
MAY
13
JUN | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED (MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.38 0.29 0.42 0.37 0.19 0.11 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 0.03 0.03 0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.03
0.01
<0.01
<0.01
<0.01 | | | OCT | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.38 0.29 0.42 0.37 0.19 0.11 0.12 0.10 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 0.03 0.03 0.03 0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 < <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.03
0.01
<0.01
<0.01
<0.01
<0.01 | | | OCT | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED (MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.38 0.29 0.42 0.37 0.19 0.11 0.12 0.10 0.08 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) 0.03 0.01 <0.01 0.01 <0.01 <0.01 0.01 | | | OCT | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) 0.38 0.29 0.42 0.37 0.19 0.11 0.12 0.10 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.03 0.04 0.03 0.03 0.03 0.03 0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 < <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.03
0.01
<0.01
<0.01
<0.01
<0.01 | | 06741480 BIG THOMPSON RIVER ABOVE LOVELAND, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |--|--|---|---|---|--|--|---|--|--|---| | OCT
08 | 1342 | | | <1 | | | | 5 | 1 | 100 | | NOV
21 | 1015 | | | <1 | | | | <1 | <1 | 100 | | DEC
10 | 1345 | 20 | <1 | <1 | <1.0 | <1 | 1 | | <1 | 100 | | JAN
28 | 1520 | | | <1 | | | | <1 | <1 | 50 | | MAR
05 | 1200 | | | <1 | | | | 2 | <1 | 90 | | APR
02 | 1600 | | | <1 | | | ~ | 2 | <1 | 150 | | MAY
13 | 1245 | | | <1 | | | | 3 | 2 | 830 | | JUN | | | | | | | | | | | | 16
30 | 1515
1345 | | | 1 | | | | - 4
 | _ _ | 320 | | JUL
15 | 1215 | | | | | | | | | | | AUG
26 | 1630 | | | | | | | | | | | SEP
17 | 1530 | | | <1 | | | | 2 | 2 | 90 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | SILVER
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | OCT
08
NOV | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER
DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC | TOTAL RECOV- ERABLE (UG/L AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER
DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
10
JAN | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
2
3 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER
DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
10
JAN
28 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
<1
<1
<1 | SILVER
DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) | SILVER
DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05
APR
02
MAY | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 <1 |
DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | SILVER DIS- SOLVED (UG/L AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 10 JAN 28 MAR 05 APR 02 MAY 13 JUN | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | SILVER DIS- SOLVED (UG/L AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
10
JAN
28
MAR
05
APR
02
MAY
13
JUN
16
30 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | SILVER DIS- SOLVED (UG/L AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- RERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | SILVER DIS- SOLVED (UG/L AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL RECOV- ERABLE (UG/L AS PB) 2 3 1 1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | SILVER DIS- SOLVED (UG/L AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. #### 06741510 BIG THOMPSON RIVER AT LOVELAND, CO LOCATION.--Lat $40^{\circ}22^{\circ}43^{\circ}$, long $105^{\circ}03^{\circ}38^{\circ}$, in SE $^{1}/4$ SE $^{1}/4$ sec. 24, T.5 N., R.69 W., Larimer County, Hydrologic Unit 10190006, on right bank 690 ft downstream from county road bridge C-13, 1.7 mi south of sugar refinery in Loveland, and 1.9 mi downstream from Farmers Ditch diversion. DRAINAGE AREA. -- 535 mi2. # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1979 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,906 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 19, 20, and Nov. 26 to Feb. 29. Records poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions for irrigation, and return flow from irrigated areas. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER
MEAN | YEAR OCTOBER
VALUES | 1991 | TO SEPTEME | BER 1992 | | | |---|--|--|--|---|--------------------------------|----------------------------------|--|--|----------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
13
11
11 | 8.7
8.3
7.9
7.5
7.2 | 7.6
7.6
7.6
7.6
7.6 | 7.4
7.4
7.4
7.4
7.4 | 11
11
11
11 | 12
12
12
24
13 | 22
7.6
5.0
5.4
5.0 | 18
21
18
25
69 | 33
27
35
46
49 | 35
34
30
23
21 | 32
35
26
60
108 | 49
62
67
50
45 | | 6
7
8
9 | 12
13
11
8.8 | 7.6
7.8
7.1
6.4
6.1 | 7.2
6.8
6.4
6.0
5.8 | 7.7
7.8
7.8
7.8
8.0 | 11
11
11
11
11 | 12
13
15
19 | 5.0
5.1
5.0
4.8
4.9 | 80
6 8
78
82
70 | 47
40
52
41
51 | 22
25
22
17
30 | 117
189
261
241
235 | 64
62
34
18
18 | | 11
12
13
14
15 | 10
9.5
8.1
9.0
8.9 | 3.8
3.6
93
206
198 | 5.8
5.8
6.0
6.4
6.4 | 8.2
8.4
8.4
8.6
8.8 | 11
12
12
12
12 | 21
25
27
28
27 | 4.0
3.0
3.1
4.4
4.4 | 62
56
60
63
53 | 63
72
65
70
75 | 50
48
35
36
40 | 221
227
217
207
152 | 14
9.5
10
12
12 | | 16
17
18
19
20 | 9.2
8.6
11
12
12 | 194
98
9.2
3.8
3.5 | 6.4
6.4
6.6
6.8 | 9.3
9.6
9.6
9.6 | 12
12
12
12
12 | 28
18
28
25
19 | 14
6.4
8.0
9.8
12 | 60
52
52
60
60 | 62
65
72
77
– 60 | 42
41
30
44
52 | 83
104
99
94
88 | 20
27
16
45
57 | | 21
22
23
24
25 | 11
11
10
11 | 4.9
7.9
7.7
7.7 | 6.9
7.0
7.0
7.0 | 10
10
10
10 | 12
12
12
12
12 | 21
24
22
17
17 | 11
11
14
18
21 | 51
91
148
121
92 | 25
19
20
19
20 | 42
47
41
39
53 | 90
82
91
131
80 | 35
47
33
14
6.7 | | 26
27
28
29
30
31 | 10
9.7
9.2
8.7
9.8
8.8 | 7.8
7.8
7.8
7.8
7.7 | 7.0
7.0
7.0
7.2
7.3
7.3 | 10
10
10
10
10 | 12
12
12
12 | 20
16
33
22
19
20 | 23
23
22
23
18 | 62
49
41
40
49
59 | 27
30
23
22
27 | 49
42
44
46
46
39 | 34
12
9.7
9.7
38
67 | 3.7
3.1
3.1
3.1
3.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 328.3
10.6
18
8.1
651 | 962.3
32.1
206
3.5
1910 | 210.9
6.80
7.6
5.8
418 | 276.6
8.92
10
7.4
549 | 337
11.6
12
11
668 | 628
20.3
33
12
1250 | 322.9
10.8
23
3.0
640 | 1910
61.6
148
18
3790 | 1334
44.5
77
19
2650 | 1165
37.6
53
17
2310 | 3440.4
111
261
9.7
6820 | 843.2
28.1
67
3.0
1670 | | STATIST
MEAN | CICS OF MO | ONTHLY MEAN
20.4 | N DATA FO | R WATER Y | EARS 1979
14.0 | - 1992
13.7 | , BY WATER YE | EAR (WY
286 |)
273 | 119 | 91.1 | 38.4 | | MAX
(WY)
MIN
(WY) | 66.0
1990
6.15
1988 | 95.8
1985
3.96
1982 | 36.4
1985
3.69
1991 | 62.8
1980
2.68
1991 | 59.9
1980
2.50
1990 | 1980
1980
3.22
1991 | 292
1980
4.49
1981 | 2078
1980
4.07
1981 | 1493
1983
25.0
1982 | 351
1983
29.9
1987 | 153
1981
48.0
1990 | 83.9
1982
16.6
1990 | | SUMMARY | STATIST | ıcs | FOR 1 | 991 CALEN | DAR YEAR | 1 | FOR 1992 WATE | ER YEAR | | WATER Y | EARS 1979 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANUAL MANUAL MANUAL MAILY MEA SEVEN-DAMEA ANEOUS PA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 11886.9
32.6
426
2.0
2.3
23580
87
8.7
3.0 | Jun 2
Jan 29
Jan 23 | | 261
32.1
261
3.0
4.1
274
24.08
23320
72
13
6.4 | Aug 8
Apr 12
Apr 9
Aug 7
Aug 7 | | 321
28.4
4240
.8.8
6970
d10.10 | May
0 May
9 May | 1980
1990
1 1980.
11 1981
10 1981
30 1980
30 1980 | b-Also occurred Sep 30. c-Maximum gage height, 4.16 ft, May 14, backwater from beaver dam. d-From high-water mark. # 06741510 BIG THOMPSON RIVER AT LOVELAND, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1979 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |---|---|--|--|---|--|---|---|---|--|--|---| | OCT
09 | 0917 | 9.3 | 1230 | 8.2
| 11.0 | 8.3 | 560 | 140 | 50 | | 169 | | NOV
21 | 1230 | 5.0 | 1430 | 8.0 | 7.5 | 12.0 | 640 | 140 | 70 | | 190 | | DEC
11
JAN | 1120 | 5.8 | 1410 | 8.0 | 3.0 | 13.0 | 650 | 160 | 61 | 69 | 112 | | 29
MAR | 1120 | 9.9 | 1150 | 8.2 | 2.0 | 13.0 | 590 | 160 | 47 | | 182 | | 05
APR | 1400 | 12 | 1100 | 8.3 | 8.5 | 11.8 | 560 | 150 | 46 | | 165 | | 02
MAY | 1415 | 7.7 | 1580 | 8.3 | 11.0 | 12.5 | 710 | 160 | 75 | | 174 | | 14
JUN | 1200 | 129 | 239 | 8.2 | 11.5 | 9.0 | 80 | 22 | 6.1 | | 44 | | 16
JUL | 1245 | 65 | 237 | 7.8 | 15.5 | 8.8 | 84 | 21 | 7.6 | | 35 | | 01
16 | 1110
1130 | 28
40 | 281
861 | 8.3
8.4 | 16.0
18.0 | 8.5
8.5 | | | | | | | AUG
27 | 1100 | 14 | 1060 | 8.4 | 15.5 | 9.4 | | | | | | | SEP
18 | 1030 | 13 | 905 | 8.3 | 13.0 | 10.5 | 410 | 99 | 39 | | 127 | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
09 | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | PHORUS
DIS-
SOLVED
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | | OCT
09
NOV
21 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
09
NOV
21
DEC
11 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
09
NOV
21
DEC
11
JAN
29 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG, C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.37
0.40 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.04 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.02
<0.01 | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02
MAY
14 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.37
0.40
0.34 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)

0.04
0.03
0.02 | PHORUS DIS- SOLVED (MG/L AS P) 0.02 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.02
<0.01
<0.01 | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG, C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 0.01 0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.37
0.40
0.34
0.45 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)

0.04
0.03
0.02
0.03 | PHORUS DIS- SOLVED (MG/L AS P) 0.02 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.02
<0.01
<0.01 | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02
MAY
14
JUN
16 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG, C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)

<0.01
<0.01
<0.01
0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.37
0.40
0.34
0.45 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)

0.04
0.03
0.02
0.03
0.03 | PHORUS DIS- SOLVED (MG/L AS P) 0.02 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.02
<0.01
<0.01
<0.01 | | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02
MAY
14
JUN
16
JUN
16 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG, C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) <0.01 <0.01 <0.01 0.01 <0.01 <0.01 0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)

0.37
0.40
0.34
0.45
0.43
0.14
0.11 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) 0.04 0.03 0.02 0.03 0.03 0.03 0.02 | PHORUS DIS- SOLVED (MG/L AS P) 0.02 0.05 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)

0.02
0.02
<0.01
<0.01
<0.01
<0.01 | | 06741510 BIG THOMPSON RIVER AT LOVELAND, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |--|--|---|--|---|--|--|---|--|--|---| | OCT
09
NOV | 0917 | | | <1 | | | | 3 | 1 | 550 | | 21 | 1230 | | | <1 | | | | <1 | 1 | 120 | | DEC
11 | 1120 | 30 | <1 | <1 | <1 | <1 | <1 | | <1 | 110 | | JAN
29 | 1120 | | | <1 | | | | <1 | <1 | 90 | | MAR
05 | 1400 | | | <1 | | | | 4 | <1 | 120 | | APR
02
MAY | 1415 | | | <1 | | | | <1 | 1 | 180 | | 14
JUN | 1200 | | | <1 | | | | 6 | 1 | 2800 | | 16
JUL | 1245 | | | <1 | | | | 2 | 2 | 330 | | 01
16 | 1110
1130 | | | | | | | | | | | AUG
27 | 1100 | | | | | | | | | - | | SEP
18 | 1030 | | | <1 | | | | 1 | 1 | 160 | | | LEAD,
TOTAL | LEAD, | MANGA-
NESE,
TOTAL | MERCURY
TOTAL | MERCURY | NICKEL, | SELE-
NIUM, | SILVER,
TOTAL | SILVER, | ZINC, | | DATE | RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | RECOV-
ERABLE
(UG/L
AS MN) | RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS SE) | RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | (UG/L | | OCT
09 | ERABLE
(UG/L | SOLVED
(UG/L | ERABLE
(UG/L | ERABLE
(UG/L | SOLVED
(UG/L |
SOLVED
(UG/L | SOLVED
(UG/L | ERABLE
(UG/L | SOL V ED
(UG/L | SOLVED
(UG/L | | OCT
09
NOV
21 | ERABLE
(UG/L
AS PB) | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN) | ERABLE
(UG/L
AS HG) | SOLVED
(UG/L | SOLVED
(UG/L
AS NI) | SOLVED
(UG/L
AS SE) | ERABLE
(UG/L
AS AG) | SOLVED
(UG/L
AS AG)
a<0.2 | SOLVED
(UG/L
AS ZN) | | OCT
09
NOV
21
DEC
11 | ERABLE
(UG/L
AS PB) | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN) | ERABLE
(UG/L
AS HG) | SOLVED
(UG/L | SOLVED
(UG/L
AS NI) | SOLVED
(UG/L
AS SE) | ERABLE
(UG/L
AS AG) | SOLVED
(UG/L
AS AG) | SOLVED
(UG/L
AS 2N) | | OCT
09
NOV
21
DEC
11
JAN
29 | ERABLE
(UG/L
AS PB)
2
3 | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN) | ERABLE
(UG/L
AS HG) | SOLVED
(UG/L
AS HG) | SOLVED
(UG/L
AS NI) | SOLVED
(UG/L
AS SE) | ERABLE
(UG/L
AS AG)
<1
<1 | SOLVED
(UG/L
AS AG)
a<0.2 | SOLVED
(UG/L
AS 2N) | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05 | ERABLE
(UG/L
AS PB)
2
3
<1 | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN) | ERABLE (UG/L AS HG) <0.10 | SOLVED
(UG/L
AS HG)

<0.1 | SOLVED
(UG/L
AS NI)

2 | SOLVED
(UG/L
AS SE) | ERABLE (UG/L AS AG) <1 <1 <1 | SOLVED
(UG/L
AS AG)
a<0.2
a<0.2 | SOLVED
(UG/L
AS ZN) | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02 | ERABLE (UG/L AS PB) 2 3 <1 <1 | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN) | ERABLE (UG/L AS HG) < <0.10 | SOLVED (UG/L AS HG) <0.1 | SOLVED
(UG/L
AS NI) | SOLVED (UG/L AS SE) | ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 | SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2 | SOLVED (UG/L AS 2N) | | OCT 09 NOV 21 DEC 11 JAN 29 MAR 05 APR 02 MAY 14 | ERABLE (UG/L AS PB) 2 3 <1 <1 <1 | SOLVED
(UG/L
AS PB) | ERABLE
(UG/L
AS MN)

50
 | ERABLE (UG/L AS HG) <0.10 | SOLVED (UG/L AS HG) <0.1 | SOLVED
(UG/L
AS NI) | SOLVED
(UG/L
AS SE) | ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | SOLVED
(UG/L
AS 2N) | | OCT
09
NOV
21
DEC
11
JAN
29
MAR
05
APR
02
MAY
14
JUN
16 | ERABLE (UG/L AS PB) 2 3 <1 <1 <1 <1 <1 | SOLVED
(UG/L
AS PB) | ERABLE (UG/L AS MN) 50 | ERABLE (UG/L AS HG) <0.10 | SOLVED (UG/L AS HG) <0.1 | SOLVED (UG/L AS NI) | SOLVED (UG/L AS SE) 3 | <pre>ERABLE (UG/L AS AG) <1 <1</pre> | SOLVEE
(UG/L
As AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | SOLVED (UG/L AS ZN) 6 | | OCT 09 NOV 21 DEC 11 JAN 29 MAR 05 APR 02 MAY 14 JUN 16 JUL 01 | ERABLE (UG/L AS PB) 2 3 <1 <1 <1 <1 <1 <1 <5 | SOLVED (UG/L AS PB) | ERABLE (UG/L AS MN) 50 | ERABLE (UG/L AS HG) <0.10 | SOLVED (UG/L AS HG) <0.1 | SOLVED (UG/L AS NI) | SOLVED (UG/L AS SE) | ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | SOLVED
(UG/L
As AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | SOLVED (UG/L AS ZN) 6 | | OCT 09 NOV 21 DEC 11 JAN 29 MAR 05 APR 02 MAY 14 JUN 16 JUL | ERABLE (UG/L AS PB) 2 3 <1 <1 <1 <1 <1 <1 <1 <1 | SOLVED (UG/L AS PB) | ERABLE (UG/L AS MN) | ERABLE (UG/L AS HG) <0.10 | SOLVED (UG/L AS HG) <0.1 | SOLVED (UG/L AS NI) 2 | SOLVED (UG/L AS SE) 3 3 | <pre>ERABLE (UG/L AS AG) <1 <</pre> | SOLVEE
(UG/L)
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | SOLVED (UG/L AS ZN) 6 | a-Analysis based on preliminary method. # 06741520 BIG THOMPSON RIVER BELOW LOVELAND, CO # WATER-QUALITY RECORDS LOCATION.--Lat 40°23'00", long 105°01'45", in NW¹/4SE¹/4 sec.20, T.5 N., R.68 W., Larimer County, Hydrologic Unit 10190006, at county road 9 E bridge, about 0.3 mi upstream from outlet ditch and 2.0 mi southeast of Loveland. DRAINAGE AREA. -- 540 mi², approximately. PERIOD OF RECORD. -- June 1979 to current year. # WATER-QUALITY DATA WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |------------------|---|--|--|---|--|---|---|---|--|---|---| | OCT
08 | 0840 | 17 | 1240 | 7.8 | 13.5 | 6.0 | 220 | 12 | 47 | | 160 | | NOV
21 | 1515 | 18 | 1200 | 7.8 | 13.0 | 12.6 | 410 | 90 | 45 | | 131 | | DEC
11 | 0830 | 11 | 1290 | 7.5 | 4.5 | 8.2 | 540 | 130 | 52 | 89 | 162 | | JAN
29 | 0845 | 16 | 1160 | 7.8 | 2.5 | 10.1 | 520 | 130 | 47 | | 164 | | MAR
05 | 1545 | 24 | 1120 | 8.2 | 12.0 | 16.4 | 450 | 110 | 42 | | 138 | | APR
03 | 0945 | 12 | 1580 | 8.0 | 10.0 | 13.6 | 630 | 140 | 69 | | 174 | | MAY
14 | 0900 | 70 | 412 | 7.8 | 10.5 | 8.9 | 160 | 39 | 15 | | 64 | | JUN
17
JUL | 0950 | 68 | 424 | 8.4 | 13.5 | 11.2 | 96 | 12 | 16 | | 59 | | 01 | 0930 | 55 | 515 | 8.0 | 16.5 | 7.7 | | | | | | | 15
AUG | 1415 | 71 | 887 | 8.5 | 21.0 | 10.2 | | | | | | | 27
SEP | 1230 | 31 | 1200 | 8.4 | 19.5 | 10.3 | | | | | | | 17 | 1130 | 30 | 1130 | 8.5 | 16.5 | 11.2 | 440 | 94 | 51 | | 133 | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
08 | | | | | | | | | | | | | NOV 21 | | | | | | 0.17 | 10 | 0.07 | | 3.7 | | | DEC 11 | 510 | 30 | 0.6 | 5.8 | 808 | 0.27 | | 1.2 | 2.3 | 1.1 | | | JAN
29 | | | | | | 0.04 | 4.3 | 0.06 | | 1.3 | | | MAR
05 | | | | | | 0.24 | | 0.24 | | 2.0 | | | APR 03 | | | | | | 0.04 | | 0.05 | | 1.9 | | | MAY | | | | | | | | | | | | | 14
JUN | | | | | | 0.09 | 1.1 | 0.25 | | 0.42 | | | | | | | | | 0.05 | 1 5 | 0 00 | | 0.43 | | | 17
JUL | | | | | | 0.05 | 1.5 | 0.03 | | 0.47 | | | JUL
01
15 |
 | == |
 |
 |
 | 0.05
0.03
0.02 | 1.5
1.5
2.7 | 0.03
0.03
0.04 | 0.59
1.0 | 0.47
0.56
0.90 | | | JUL
01 | | | | | | 0.03 | 1.5 | 0.03 | 0.59 | 0.56 | | ٠ 06741520 BIG THOMPSON RIVER BELOW LOVELAND, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |--|---|---|---|---|---|--|---|--|--|---| | OCT
08
NOV | 0840 | | | <1 | | | | 6 | 2 | 110 | | 21
DEC | 1515 | | | <1 | | ~- | | 4 | 2 | 170 | | 11
JAN | 0830 | 30 | <1 | <1 | <1.0 | <1 | <1 | | 2 | 140 | | 29
MAR | 0845 | | | <1 | | | | 1 | 1 | 130 | | 05
APR | 1545 | | | <1 | | | | <1 | 1 | 170 | | 03
MAY | 0945 | | | <1 | | | | 2 | 2 | 190 | | 14
JUN | 0900 | | | <1 | | | | 2 | 1 | 340 | | 17
JUL | 0950 | | | <1 | ~- | | | 2 | 1 | 170 | | 01
15 | 0930
1415 | | | | | | | | | | | AUG
27 | 1230 | | | | | | | | | | | SEP
17 | 1130 | | | <1 | ~- | | | 2 | 2 | 180 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08 | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L |
NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | OCT
08
NOV
21 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L | | OCT
08
NOV
21
DEC | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
11
JAN
29 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
11
JAN
29
MAR
05 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
10
<1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) < < < | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
21
DEC
11
JAN
29
MAR
05
APR
03 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a < 0.2
a < 0.2
a < 0.2
a < 0.2
a < 0.2
a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 11 JAN 29 MAR 05 APR 03 MAY 14 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 11 JAN 29 MAR 05 APR 03 MAY 14 JUN 17 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 1 2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a < 0.2
a < 0.2
a < 0.2
a < 0.2
a < 0.2
a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 11 JAN 29 MAR 05 APR 03 MAY 14 JUN 17 JUL 01 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 1 <1 2 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 11 JAN 29 MAR 05 APR 03 MAY 14 JUN 17 JUL | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 1 <1 2 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG)

<0.1

 | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a < 0.2
a 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 21 DEC 11 JAN 29 MAR 05 APR 03 MAY 14 JUN 17 JUL 01 15 AUG | TOTAL RECOV- ERABLE (UG/L AS PB) 3 10 <1 1 <1 2 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG)

<0.1

 | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG)
a < 0.2
a 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. # 06741530 BIG THOMPSON RIVER AT I-25, NEAR LOVELAND, CO # WATER-QUALITY RECORDS LOCATION.--Lat 40°23'51", long 104°59'32", in NW¹/4SW¹/4 sec.15, T.5 N., R.68 W., Larimer County, Hydrologic Unit 10190006, at bridge on Big Thompson River on north bound lane of service road, east of interstate Highway (I-25), 1.5 mi downstream from Hillsboro Ditch, and 4.5 mi east of Loveland. DRAINAGE AREA. -- 571 mi2. PERIOD OF RECORD. -- April 28, 1987, to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |---|---------------------------------|--|---|--|--|--|--|--|-----------------------------------|---|---| | 08 | 1104 | 19 | 1320 | 8.2 | 15.0 | 10.0 | 520 | 120 | 54 | | 188 | | NOV
22 | 0840 | 15 | 1400 | 7.9 | 4.0 | 9.2 | 560 | 120 | 63 | | 198 | | DEC
11 | 1400 | 22 | 1360 | 8.3 | 5.0 | 14.9 | 570 | 130 | 59 | 96 | 209 | | JAN
29 | 1340 | 24 | 1230 | 8.5 | 5.0 | 16.0 | 550 | 130 | 54 | | 198 | | MAR
06 | 0930 | 25 | 1360 | 8.1 | 6.5 | 11.1 | 610 | 140 | 62 | | 207 | | APR
02
MAY | 1030 | 21 | 1680 | 8.1 | 9.0 | 15.0 | 700 | 150 | 79 | | 220 | | 13
JUN | 1450 | 32 | 555 | 8.5 | 15.5 | 8.9 | 230 | 53 | 23 | | 82 | | 17 | 1145 | 7.6 | 865 | 8.8 | 16.0 | 14.5 | 350 | 73 | 40 | | 125 | | 30
JUL | 1545 | 19 | 792 | 9.3 | 26.0 | 14.2 | | | | | | | 16
AUG | 0945 | 39 | 854 | 8.1 | 17.5 | 7.9 | | | | | | | 27 | 0900 | 36 | 1220 | 8.2 | 14.0 | 7.6 | | | | | | | SEP
17 | 0900 | 2.8 | 1590 | 8.1 | 14.5 | 7.0 | 770 | 160 | 89 | | 279 | | | SULFATE
DIS- | CHLO-
RIDE,
DIS- | FLUO-
RIDE,
DIS- | SILICA,
DIS-
SOLVED | SOLIDS,
RESIDUE
AT 180
DEG. C | NITRO-
GEN,
NITRITE
DIS- | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED | GEN,
AMMONIA
DIS- | PHOS-
PHORUS
DIS-
SOLVED | PHOS-
PHORUS
ORTHO,
DIS- | , | | DATE | SOLVED
(MG/L
AS SO4) | SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | (MG/L
As
sio2) | DIS-
SOLVED
(MG/L) | SOLVED
(MG/L
AS N) | (MG/L
AS N) | SOLVED
(MG/L
AS N) | (MG/L
AS P) | SOLVED
(MG/L
AS P) | | | ост | (MG/L
AS SO4) | (MG/L | (MG/L
AS F) | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
As N) | (MG/L
AS P) | (MG/L
AS P) | | | OCT
08
NOV | (MG/L | (MG/L | (MG/L
AS F) | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS P) | (MG/L
AS P) | | | OCT
08 | (MG/L
AS SO4) | (MG/L | (MG/L
AS F) | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
As N) | (MG/L
AS P) | (MG/L
AS P) | | | OCT
08
NOV
22 | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F) | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS N) | (MG/L
AS P) | (MG/L
AS P) | | | OCT
08
NOV
22
DEC
11
JAN
29 | (MG/L
AS SO4) | (MG/L
AS CL) | (MG/L
AS F)
 | AS
SIO2) | SOLVED
(MG/L) | (MG/L
AS N)

0.06 | (MG/L
AS N)

6.9 | (MG/L
AS N)

0.08 | (MG/L
AS P) | (MG/L
AS P)

<0.01 | | | OCT
08
NOV
22
DEC
11
JAN
29
MAR
06 | (MG/L
AS SO4)

520 | (MG/L
AS CL)

27 | (MG/L
AS F)

0.6 | AS
SIO2)

5.8 | SOLVED
(MG/L)

888 | (MG/L
AS N)

0.06
0.21 | (MG/L
AS N)

6.9 | (MG/L
AS N)

0.08
0.69 | (MG/L
AS P)

1.8 | (MG/L
AS P)

<0.01
1.7 | | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 | (MG/L
AS
SO4)

520 | (MG/L
AS CL)

27 | (MG/L
AS F)

0.6 | AS
SIO2)

5.8 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03 | (MG/L
AS N)

6.9

4.4 | (MG/L
AS N)

0.08
0.69
0.05 | (MG/L
AS P)

1.8 | (MG/L
AS P)

<0.01
1.7 | | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 | (MG/L
AS SO4) | (MG/L
AS CL)

27
 | (MG/L
AS F)

0.6 | AS
SIO2)

5.8 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03 | (MG/L
AS N)

6.9

4.4
4.0 | (MG/L
AS N)

0.08
0.69
0.05
0.08 | (MG/L
AS P) | (MG/L
AS P)

<0.01
1.7
1.2 | | | OCT
08
NOV
22
DEC
11
JAN
29
MAR
06
APR
02
MAY
13
17 | (MG/L
AS SO4) | (MG/L
AS CL)

27

 | (MG/L
AS F)

0.6

 | AS
STO2)

5.8

 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03
0.07
0.04
0.13 | (MG/L
AS N) 6.9 4.4 4.0 4.7 1.7 | (MG/L
AS N)

0.08
0.69
0.05
0.08
0.04
0.26 | (MG/L
AS P) | (MG/L
AS P)

<0.01
1.7
1.2
1.1
1.4
0.64 | | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN 17 30 JUL | (MG/L
AS SO4) | (MG/L
AS CL)

27

 | (MG/L
AS F) | AS
SIO2)

5.8

 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03
0.07
0.04
0.13 | (MG/L
AS N)

6.9

4.4
4.0
4.7
1.7
1.1
0.76 | (MG/L
AS N)

0.08
0.69
0.05
0.08
0.04
0.26
0.03
0.02 | (MG/L
AS P) | (MG/L
AS P)

<0.01
1.7
1.2
1.1
1.4
0.64
0.36
0.26 | | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN 17 30 | (MG/L
AS SO4) | (MG/L
AS CL)

27

 | (MG/L
AS F)

0.6

 | AS
STO2)

5.8

 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03
0.07
0.04
0.13 | (MG/L
AS N) 6.9 4.4 4.0 4.7 1.7 | (MG/L
AS N)

0.08
0.69
0.05
0.08
0.04
0.26 | (MG/L
AS P) | (MG/L
AS P)

<0.01
1.7
1.2
1.1
1.4
0.64 | | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN 17 30 JUL 16 | (MG/L
AS SO4) | (MG/L
AS CL)

27

 | (MG/L
AS F) | AS
SIO2)

5.8

 | SOLVED
(MG/L) | (MG/L
AS N)

0.06
0.21
0.03
0.07
0.04
0.13 | (MG/L
AS N)

6.9

4.4
4.0
4.7
1.7
1.1
0.76 | (MG/L
AS N)

0.08
0.69
0.05
0.08
0.04
0.26
0.03
0.02 | (MG/L
AS P) | (MG/L
AS P)

<0.01
1.7
1.2
1.1
1.4
0.64
0.36
0.26 | | 06741530 BIG THOMPSON RIVER AT I-25, NEAR LOVELAND, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |---|---|---|---|---|---|--|---|--|---|---| | OCT
08 | 1104 | | | <1 | | | | 3 | 1 | 150 | | NOV 22 | 0840 | | | <1 | | | | <1 | 1 | 160 | | DEC | | | | | | | | | | | | 11
JAN | 1400 | 30 | <1 | <1 | <1.0 | <1 | <1 | | 1 | 180 | | 29
MAR | 1340 | | | <1 | | | | 2 | 1 | 650 | | 06
APR | 0930 | | | <1 | | | | 2 | 1 | 180 | | 02
MAY | 1030 | | | <1 | | | | 1 | 2 | 190 | | 13 | 1450 | | | <1 | | | | 2 | 1 | 480 | | JUN
17 | 1145 | | | <1 | | | | 2 | 1 | 120 | | 30
JUL | 1545 | | | | | | | | | | | 16
AUG | 0945 | | | | | | | | | | | 27
SEP | 0900 | | | | | | | | | | | 17 | 0900 | | | <1 | | | | 2 | 1 | 190 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
22
DEC | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
22
DEC
11 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
22
DEC
11
JAN
29 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
08
NOV
22
DEC
11
JAN
29
MAR
06 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 2 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- REABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG)

<0.1 | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 2 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL - RECOV ERABLE (UG/L AS AG) <1 | DIS-
SOLVED
(UG/L
AS AG)
a < 0.2
a 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN 17 30 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 2 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR
02 MAY 13 JUN 17 30 JUL 16 | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 2 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- PRABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 08 NOV 22 DEC 11 JAN 29 MAR 06 APR 02 MAY 13 JUN 17 30 JUL | TOTAL RECOV- ERABLE (UG/L AS PB) 3 4 2 2 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- PRABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. #### 06742500 CARTER LAKE NEAR BERTHOUD, CO LOCATION.--Lat 40°19'28", long 105°12'41", in SE¹/4 sec.10, T.4 N., R.70 W., Larimer County, Hydrologic Unit 10190006, in hoist house 293 ft from right abutment of Carter Lake Dam on Dry Creek, 7.0 mi west of Berthoud, and 8.9 mi upstream from mouth. Water-quality sampling site near center of reservoir. #### RESERVOIR ELEVATIONS AND CONTENTS RECORDS PERIOD OF RECORD. -- March 1954 to current year. GAGE.--Nonrecording gage read at irregular intervals from 1 to 13 days. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by an earth and rockfill dam and dikes enlarging the natural basin of Carter Lake. Storage began in February 1954. Usable capacity, 113,500 acre-ft between elevations 5,618.00 ft, trashrack sill at outlet, and 5,763.00 ft, maximum water surface, 6 ft below crest of dam. Dead storage, 3,306 acre-ft. Figures given represent usable contents. Water diverted from Colorado River basin through Alva B. Adams tunnel is pumped from Flatiron Reservoir into Carter Lake for supplemental irrigation supply to Little Thompson River and St. Vrain and Boulder Creek basins. Water above elevation 5,620 ft may be released for return to Flatiron Reservoir where pump turbines can operate in reverse to generate power and water can be used for irrigation in Big Thompson or Cache la Poudre River basins. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 109,100 acre-ft, Apr. 27-29, 1971, elevation, 5,759.12 ft; minimum observed since appreciable storage was attained, 960 acre-ft, Oct. 25, 1954, elevation, 5,621.40 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 109,000 acre-ft, Mar. 29, elevation, 5,759.07 ft; minimum contents, 44,520 acre-ft, Sept. 30, elevation, 5,694.92 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents (acre-feet) | Change in contents
(acre-feet) | |--|--|--|--| | Sept. 30. . Oct. 31. . Nov. 30. . Dec. 31. . | 5,706.91
5,706.20
5,722.63
5,738.95 | 55,070
54,420
70,050
86,820 | -
-650
+15,630
+16,770 | | CAL YR 1991 | | | +16,470 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 5,751.27
5,758.67
5,758.98
5,758.18
5,742.71
5,720.94
5,701.77
5,694.92 | 100,200
108,500
108,900
108,000
98,450
90,830
68,380
50,450
44,520 | +13,380
+ 8,300
+400
-900
-9,550
-7,620
-22,450
-17,930
-5,930 | | WTR YR 1992 | | | -10,550 | # 06742500 CARTER LAKE NEAR BERTHOUD, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1970 to current year. REMARKS.--Samples collected at various depths near south end of reservoir. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Di | ATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | | | | |--------------|--|--|---|---|--|--|---|---|--|--| | | AY 11. | 1307
1309
1311
1313
1315
1317
1319
1321
1323
1325
1327
1329
1331
1333
1335 | 0.1
5.0
10.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
110 | 71
71
71
71
71
71
71
71
71
71
71
71
71 | 8.0
8.0
8.0
8.0
7.9
7.8
7.7
7.8
7.7
7.5 | 14.0
14.0
14.0
14.0
13.5
11.0
11.0
11.0
10.5
10.5
10.5 | 9.0
9.0
9.0
9.0
8.8
8.8
8.7
8.7
8.7
8.6
8.6 | | | | | SE | 08 08 08 08 09 09 08 08 08 08 08 08 08 08 08 08 08 | 1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217 | 0.1
5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
100
110
120
130
140 | 75
75
75
75
75
75
75
75
75
75
75
75
75
7 | 8.2
8.3
8.3
8.4
8.1
8.0
7.8
7.6
7.5
7.4
7.4
7.4
7.4
7.3 | 21.5
21.0
20.5
20.5
18.0
16.0
14.0
8.5
7.5
7.5
6.5
6.5
6.0
6.0
6.0 | 7.1
7.2
7.2
7.5
7.7
8.1
7.4
7.2
7.1
7.0
6.6
6.4
6.4
6.1
6.0 | | | | | 36 | 09
09
09
09
09
09
09
09
09
09 | 1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133 | 0.1
5.0
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
75.0 |

 | 7.9
7.9
7.9
7.9
7.9
7.8
7.4
7.3
7.2
7.2 | 18.0
18.0
18.0
18.0
18.0
18.0
14.0
10.5
9.0
8.0 | 7.0
7.0
7.0
6.9
6.9
4.8
5.1
4.9 | | | | | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN) | | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | 1345
1355 | 0.1
117 | 71
71 | 8.0
7.5 | 14.0
10.5 | 118 | 9.0
8.6 | K<1 | 31
31 | 10
10 | 1.4
1.4 |
 1240
1300 | 0.1
140 | 75
75 | 8.2
7.3 | 21.5
6.0 | 94.0 | 7.1
6.0 | K<1 | 33
30 | 11
9.5 | 1.4
1.4 | | 1150
1215 | 0.1
75.0 | 82
73 | 7.9
7.2 | 18.0
8.0 | 90.0 | 7.0
4.8 | K<1
 | 36
33 | 12
11 | 1.4
1.4 | K-Based on non-ideal colony count. DATE MAY 11... 11... JUL 08... 08... SEP 09... 09... 06742500 CARTER LAKE NEAR BERTHOUD, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | |------------------------|---|---|--|---|--|---|--|--|--|---| | MAY
11
11
JUL | 2.2 | 0.2 | 0.7
0.6 | 31
31 | 3.0
3.4 | 0.3
0.3 | 0.2
0.2 | 2.1 | 34
48 | 39
39 | | 08
08
SEP | 2.4
2.4 | 0.2
0.2 | 0.8 | 34
30 | 3.1
2.9 | 0.2
0.1 | <0.1
<0.1 | 1.6
2.7 | 36
34 | 41
38 | | 09 | 2.4
2.3 | 0.2
0.2 | 0.8
0.7 | 38
34 | 3.2
3.0 | 0.4
0.4 | 0.1
0.1 | 1.6
2.7 | 51
38 | 45
42 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITROGEN, AM-
MONIA
ORGANIC
TOTAL
(MG/L
AS N) | -
+ PHOS- | DIS-
SOLVE | | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L) | PHYTO-
PLANK-
TON
CHROMO | | MAY
11
11 | <0.01
<0.01 | <0.05
<0.05 | <0.01
0.03 | <0.01
0.05 | <0.20
<0.20 | <0.01
<0.01 | | <0.01
<0.01 | 2.8 | <0.1 | | JUL
08
08
SEP | <0.01
<0.01 | <0.05
<0.05 | 0.01
0.01 | 0.02
0.01 | <0.20
<0.20 | <0.01
<0.01 | <0.01
<0.01 | <0.01
<0.01 | 0.7 | <0.1 | | 09 | <0.01
<0.01 | <0.05
0.08 | 0.02
<0.01 | 0.02
<0.01 | 0.30
<0.20 | <0.01
0.01 | <0.01
0.01 | <0.01
<0.01 | 0.8 | <0.1 | | | DATE | TIME | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, DIS- SOLVED (UG/L AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | | MAY
11
11 | 1345
1355 | 16
16 | <0.5
<0.5 | <10
<10 | <1.0
<1.0 | <5
<5 | <3
<3 | <10
<10 | 4
12 | | | JUL
08
08
SEP | 1240
1300 | 22
17 | <0.5
<0.5 | <10
<10 | <1.0
<1.0 | <5
<5 | <3
<3 | <10
<10 | 9
5 | | | 09 | 1150
1215 | 26
19 | <0.5
<0.5 | <10
<10 | 2.0
1.0 | <5
<5 | <3
<3 | <10
<10 | 5
9 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | | MAY
11
11 | <10
<10 | <4
<4 | 2
35 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 44
43 | <6
<6 | 20
23 | | | JUL
08
08 | <10
<10 | <4
<4 | <1
1 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 45
43 | <6
<6 | 12
4 | | | 09
09 | <10
<10 | <4
<4 | 5
5 | <10
<10 | <10
<10 | a<0.2
a<0.2 | 47
44 | <6
<6 | 12
12 | a-Analysis based on preliminary method. # 06746095 JOE WRIGHT CREEK ABOVE JOE WRIGHT RESERVOIR, CO LOCATION.--Lat 40°32'24", long 105°52'56", in SE¹/4SE¹/4 sec.26, T.7 N., R.76 W., Larimer County, Hydrologic Unit 10190007, on left bank 150 ft downstream from unnamed tributary and Colorado Highway 14 culvert crossing, 1.5 mi northeast of Cameron Pass, 1.5 mi southwest of Joe Wright Dam, and 8 mi east of Gould. DRAINAGE AREA. -- 3.01 mi2. PERIOD OF RECORD .-- October 1978 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,990 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 7, 1989, at datum 3.40 ft, higher. REMARKS.--Estimated daily discharges: Oct. 19 to May 10. Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER
VALUES | 1991 т | O SEPTEMBE | R 1992 | | | |--------------------------------------|---|-------------------------------------|------------------------------------|---------------------------------------|------------------------------------|------------------------------------|-------------------------------------|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 2.7
2.6
2.5
2.5 | 1.5
1.5
1.5
1.5 | 1.2
1.1
1.1 | .76
.74
.74
.74 | .60
.58
.60 | .84
.87
.91 | 1.1
1.1
1.1
1.1 | 4.7
5.0
5.6
6.0 | 37
37
45
52 | 14
23
31
30 | 12
11
11
11 | 7.7
7.0
6.3
6.1 | | 5 | 3.8 | 1.5 | 1.1 | .70 | .60 | . 95 | 1.1 | 6.3 | 54 | 28 | 10 | 6.1 | | 6
7
8
9
10 | 2.5
2.2
2.2
2.1
2.1 | 1.4
1.4
1.4
1.4 | 1.0
1.0
1.0
1.0 | .68
.60
.60
.60 | .60
.60
.60
.60 | .95
.95
.95
.95 | 1.1
1.2
1.2
1.2
1.3 | 8.8
15
17
18
17 | 53
54
55
55
57 | 28
30
31
28
26 | 11
10
9.8
9.3
9.0 | 5.7
5.5
5.1
4.9
4.6 | | 11
12
13 | 2.1
2.0
2.0 | 1.4
1.4
1.4 | .98
.96
.96 | .60
.60
.60 | .62
.64
.64 | .95
.95
.95 | 1.3
1.3
1.4 | 16
18
19 | 56
62
70 | 26
28
25 | 8.8
8.6
8.2 | 4.4
4.3
4.2 | | 14
15 | 1.9
1.8 | 1.4
1.4 | .96
.96 | .60
.60 | .64
.64 | . 95
. 95 | 1.4 | 21
24 | 73
70 | 22
21 | 7.9
7.7 | 4.1
4.1 | | 16
17
18
19
20 | 1.7
1.7
1.6
1.6
1.5 | 1.4
1.4
1.4
1.4 | .92
.92
.92
.92 | .60
.60
.60
.60 | .64
.64
.64
.64 | .95
.95
.95
.95 | 1.4
1.4
1.4
1.4 | 27
32
37
44
55 | 60
51
47
49
55 | 20
21
18
18
18 | 7.7
7.3
6.8
6.5
6.3 | 4.1
5.0
4.6
5.0
4.8 | | 21
22
23
24 | 1.5
1.5
1.5
1.5 | 1.3
1.3
1.3 | .88
.88
.88 | .60
.60
.60 | .64
.64
.64 | .96
.96
.97 | 1.4
1.4
1.6
1.7 | 68
71
66
68 | 61
62
62
54 | 17
16
17
17 | 6.2
6.3
6.7
7.2 | 4.7
4.4
4.3
4.1 | | 25 | 1.5 | 1.3 | .80 | .60 | .64 | 1.0 | 1.9 | 70 | 34 | 17 | 7.8 | 4.8 | | 26
27
28
29
30
31 | 1.5
1.5
1.5
1.5
1.5 | 1.2
1.2
1.2
1.2
1.2 | .80
.80
.80
.78
.78 | .60
.60
.60
.60 | .64
.70
.74 | 1.0
1.1
1.1
1.1
1.1 | 2.2
2.8
2.9
3.5
4.0 | 67
73
58
50
45
40 | 20
18
19
17
16 | 16
15
14
13
13 | 8.8
7.1
6.3
6.0
5.9
6.2 | 4.7
4.4
4.2
4.1
3.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 59.6
1.92
3.8
1.5
118 | 40.9
1.36
1.5
1.2
81 | 29.04
.94
1.2
.78
58 | 19.36
.62
.76
.60
38 | 18.28
.63
.74
.58
36 | 30.04
.97
1.1
.84
60 | 48.7 10
1.62
4.0
1.1
97 | 72.4
34.6
73
4.7
2130 | 1455
48.5
73
16
2890 | 653
21.1
31
12
1300 | 254.4
8.21
12
5.9
505 | 147.2
4.91
7.7
3.9
292 | | STATIST | ICS OF MOI | NTHLY MEAN | | | ARS 1979 | | 2, BY WATER YE | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.92
4.93
1987
.54
1981 | 1.12
3.20
1991
.36
1979 | .75
1.37
1991
.28
1981 | .60
1.25
1991
.25
1981 | .54
1.20
1991
.20
1979 | .55
1.20
1991
.20
1979 | .92
1.62
1992
.39
1979 | 12.6
34.6
1992
3.58
1982 | 46.4
88.5
1988
25.5
1989 | 21.2
45.4
1982
6.75
1989 | 6.59
10.8
1983
1.88
1985 | 3.06
4.91
1992
1.06
1980 | | SUMMARY | STATISTIC | CS | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WATE | ER YEAR | Ç | NATER YE. | ARS 1979 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT | | AN
AN
N
MINIMUM
AK FLOW | |
3929.04
10.8
110
2.78
.79 | Jun 13
Dec 29
Dec 25 | | .58
.60
90 | May 27
Feb 2
Jan 27
May 21
May 21 | | 8.02
11.5
5.40
125
20
238
55.60 | Jun 1
Jan 3
Jan 3
Jul | 1988
1981
5 1990
60 1979
7 1983
7 1983 | | ANNUAL
10 PERC
50 PERC | RUNOFF (ACEDITED ENT EXCEDITED EXCEDITED EXCEDITED EXCEDITED EXCEDITED EXCEDITED EXCEDITED ENT. | C-FT)
DS
DS | | 7790
34
1.5
1.2 | | | 7590
37
1.5 | ray 21 | | 5810
26
1.2
.39 | - Cu1 | , 1303 | a-Also occurred Dec 30 and 31. b-Also occurred Jan 31 to Apr 4, 1979, and Feb 9 to Apr 9, 1981. c-Maximum gage height, 8.81 ft, May 27, 1983, present datum, backwater from ice. # 06746110 JOE WRIGHT CREEK BELOW JOE WRIGHT RESERVOIR, CO LOCATION.--Lat 40°33'43", long 105°51'48", in SE¹/4NE¹/4 sec.24, T.7 N., R.76 W., Larimer County, Hydrologic Unit 10190007, on left bank 500 ft downstream from unnamed tributary, 2,000 ft downstream from Joe Wright Dam, and 3 mi southwest of Chambers Lake. DRAINAGE AREA. -- 6.90 mi2. PERIOD OF RECORD. -- June 1978 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,710 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Aug. 7, 1989, at datum 0.50 ft, higher. REMARKS.--Estimated daily discharges: Oct. 24 to Apr. 14. Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | P 4.0.1 | | DICCURD. | CE CUE | co prom pr | n anaonn | MARIE V | CEND COMODI | 2n 1001 m | O CEDMEN | IDED 1000 | | | |--------------|----------------------|--------------------------|--------------------------|-------------|--------------------------|--------------------------|----------------------|--------------|--------------|----------------|------------------|----------------| | | | DISCHAR | GE, CUB. | IC FEET PE | DA | LILY MEAN | EAR OCTOBI
VALUES | EK 1991 T | O SEPTEM | IBER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .96 | .74 | .62 | .61 | .59 | .51 | .57 | 2.3 | 19 | 22 | 46 | 1.3 | | 2 | .89 | .74 | .61 | .62 | .59 | .52 | .58 | 2.3 | 26 | 19 | 63 | 1.2 | | 3
4 | .89
.93 | .72
.72 | .62
.62 | .62
.62 | .59
.59 | .52
.52 | .59
.59 | 2.3 | 32
34 | 24
43 | 84
89 | .99
1.0 | | 5 | .92 | .70 | .62 | .63 | .58 | .53 | .59 | 2.5 | 35 | 38 | 69 | .99 | | | | | | | .50 | | | 2.5 | | | 0, | | | 6 | .89 | .66
.64
.64
.62 | .63
.63
.62 | .62 | .58 | .53 | .59 | 2.8 | 46 | 28 | 45 | .99 | | 7
8 | .89
.89 | . 64 | .63 | .61
.61 | .58
.58 | .53
.52 | .60
.60 | 3.0
3.0 | 64
82 | 35
38 | 61
55 | . 98
. 97 | | 9 | .89 | .62 | .62 | .62 | .58 | .52 | .61 | 3.6 | 108 | 44 | 53 | .94 | | 10 | .89 | .62 | .62 | .61 | .57 | .52 | .61 | 3.0 | 91 | 39 | 55 | 4.4 | | 11 | .89 | .60 | .62 | .61 | 5.7 | .53 | .60 | 2.5 | 91 | 33 | 48 | 12 | | 12 | .89 | .58 | .62
.63
.63
.62 | .62 | .57
.56
.56
.55 | .53 | .62 | 3.1 | 84 | 33 | 45 | 12 | | 13 | .89 | .56 | .63 | .60 | .56 | .52 | .62 | 3.5 | 91 | 33 | 53 | 12 | | 14 | .89 | .56 | .62 | .60 | .55 | .52 | .64 | 3.9 | 108 | 33 | 56 | 12 | | 15 | .89 | .56 | .61 | | | .53 | .66 | 3.7 | 119 | 24 | 44 | 12 | | 16 | .89 | .58 | .61 | .60 | .55 | .54 | .64 | 3.9 | 118 | 19 | 44 | 12 | | 17
18 | | . 50 | .61 | .60 | .55 | . 55 | .56 | 4.2
4.3 | 102 | 19
19 | 51
5 8 | 12
12 | | 19 | .89
.89 | .59
.60 | .60
.60 | .61
.60 | . 34
55 | .56 | .93
.71 | 4.7 | 47
34 | 19 | 52 | 12 | | 20 | .87 | .59 | .61 | .60 | .55
.55
.54
.55 | .54
.55
.56
.56 | .71 | 5.6 | 50 | 19 | 43 | 12 | | 21 | .80 | .60 | .61 | .61 | .53 | . 55 | .60 | 6.9 | 78 | 19 | 50 | 12 | | 22 | .79 | .60 | .61 | .60 | .52 | .55 | .60
.48 | 27 | 95 | 19 | 51 | 12 | | 23 | .81 | . 61 | .62 | .60 | .52 | | • 7 7 | 51 | 96 | 45 | 50 | 12 | | 24 | .78 | .61 | .62 | .61 | .52 | .54 | .41 | 51 | 82 | 84 | 56 | 12 | | 25 | .78 | .61 | .62 | . 60 | .51 | .56 | .45 | 44 | 43 | 86 | 43 | 12 | | 26 | .79 | . 63 | .61 | .61 | .51 | .57 | .55 | 34 | 37 | 83 | 13 | 12 | | 27 | .78 | . 62 | .61 | .60 | .51 | .58 | .70 | 35 | 46 | 73 | 12 | 12 | | 28
29 | .78
.76 | .61
.63 | .62
.61 | .62
.61 | .51
.50 | .58
.57 | 1.0
1.4 | 68
83 | 43
35 | 62
55
47 | 4.6
1.2 | 12
12 | | 30 | .76 | .62 | .61 | .61 | | .58 | 1.9 | 71 | 30 | 47 | 1.2 | 12 | | 31 | .76 | | .61 | .60 | | .58 | | 25 | | 36 | 1.0 | | | TOTAL | 26.51 | 18.74 | 19.10 | 18.88 | 15.98 | 16.82 | 20.55 | 562.4 | 1966 | 1190 | 1397.0 | 253.76 | | MEAN | .86 | .62 | .62 | .61 | .55 | .54 | .68 | 18.1 | 65.5 | 38.4 | 45.1 | 8.46 | | MAX | .96 | .74 | .63 | .63 | .59 | .58 | 1.9 | 83 | 119 | 86 | 89 | 12 | | MIN
AC-FT | .76
53 | .56
37 | .60
38 | .60
37 | .50
32 | .51
33 | .41
41 | 2.3
1120 | 19
3900 | 19
2360 | 1.0
2770 | .94
503 | | AC-F1 | 73 | 37 | 30 | ٥, | 32 | 33 | 41 | 1120 | 3 300 | 2300 | 2110 | 303 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1979 | 9 - 1992, | BY WATER | YEAR (WY) | | | | | | MEAN | 2.07 | 1.13 | .68 | .57 | .50 | .46 | .53 | 10.7 | 59.8 | 32.6 | 25.0 | 25.1 | | MAX | 8.45 | 3.01 | 1.96 | 1.40 | 1.30 | 1.38 | .78
1981 | 32.1 | 96.0
1988 | 66.7
1983 | 84.7
1991 | 60.4
1988 | | (WY)
MIN | 1987
.54 | 1982
.52 | 1983
.40 | 1983
.34 | 1983
.28 | 19 8 3 | .29 | 1988
1.21 | 12.6 | 2,49 | 6.44 | 1.13 | | (WY) | 1989 | 1990 | 1990 | 1979 | 1979 | 1985 | 1991 | 1980 | 1980 | 1989 | 1981 | 1991 | | SUMMARY | STATIST: | ıcs | FOR | 1991 CALEN | DAR YEAR | F | OR 1992 WA | TER YEAR | | WATER Y | EARS 1979 | 9 - 1992 | | ANNUAL | TOTAL | | | 6075.25 | 5 | | 5505.74 | | | | | | | ANNUAL | | | | 16.6 | | | 15.0 | | | 13.3 | | | | | ANNUAL N | | | | | | | | | 20.2 | | 1988 | | | ANNUAL MI
DAILY M | | | 193 | Aug 6 | | 119 | Jun 15 | | 3.6
193 | | 1980
6 1991 | | | DAILY MEA | | | a 17 | Aug 6 | | | Apr 24 | | a, | 7 100 | 3 1991 | | | | Y MINIMUM | | | Mar 31 | | .51 | Feb 24 | | .1 | 8 Mar | 31 1991 | | INSTANT | TANEOUS P | EAK FLOW | | | - | | 128 | | | 284 | Aug | 18 1991 | | | | EAK STAGE | | | | | 2.14 | Jun 15 | | 2.7 | 1 Aug | 18 1991 | | | RUNOFF (| | | 12050 | | | 10920 | | | 9610 | | | | | CENT EXCE | | | 62 | | | 52
.78 | | | 50
1.0 | | | | | CENT EXCE | | | .74 | | | .55 | | | .3 | | | | | | | | | • | | . 33 | | | • 5 | - | | a-Also occurred Apr 4, 1991. # 06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO LOCATION.--Lat 40°47'15", long 105°15'06", in SW¹/4SE¹/4 sec.32, T.10 N., R.70 W., Larimer County, Hydrologic Unit 10190007, on left bank 60 ft downstream from bridge on Colorado State Highway 200, 2.0 mi west of Livermore, and 2.9 mi downstream from Stonewall Creek. DRAINAGE AREA. -- 539 mi2. # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1986 to current year. May 1929 to September 1931, May 1947 to September 1960, published as near Livermore; records are not considered equivalent. GAGE.--Water-stage recorder. Elevation of gage is 5,715 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 1 to Feb. 18. Records good except for estimated daily discharges, which are poor. Natural flow affected by transbasin diversions, storage reservoirs, and irrigation. | | | DISCHAR | GE, CUBIC | C FEET PE | R SECOND, | | YEAR OCTOBE
LY MEAN VAL | | O SEPTEM | BER 1992 | | | |--|---|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
19
18
18 | 8.9
10
9.2
9.3 | 13
13
12
12
12 | 7.0
6.7
6.5
6.5 | 4.6
4.2
4.5
4.8
5.0 | 6.7
6.7
7.2
15 | 40
41
39
42
46 | 84
90
93
85
85 | 198
205
176
150
140 | 30
31
34
31
29 | 38
32
32
29
27 | 11
11
11
12
11 | | 6
7
8
9 | 19
19
20
19 | 10
9.5
9.1
8.8
12 | 12
11
11
11 | 6.0
6.0
5.4
5.4 | 5.0
5.0
5.0
5.0 | 14
13
13
15
14 | 51
57
56
56
58 | 83
83
78
74
78 | 130
114
110
118
111 | 27
26
25
24
22 | 22
21
19
19 | 9.8
9.3
9.0
8.5
8.5 | | 11
12
13
14
15 | 18
19
19
19 | 12
13
13
25
15 | 10
10
9.8
9.8
9.6 | 5.4
5.4
5.2
5.2
5.0 | 5.0
5.0
5.0
5.0 | 18
21
24
26
27 | 55
56
57
56
56 | 74
58
57
62
60 | 93
94
92
81
82 | 20
21
22
21
21 | 19
23
26
27
29 | 8.4
8.2
7.9
7.8
7.5 | | 16
17
18
19
20 | 19
18
17
15 | 15
15
15
15
14 | 9.6
9.6
9.6
9.6 | 4.7
4.6
4.6
4.6
4.6 | 5.2
5.4
6.0
6.8
7.7 | 28
28
29
29
27 | 72
125
144
144
134 | 51
46
38
34
30 | 76
65
60
54
45 | 20
20
17
17
20 | 28
28
29
30
27 | 7.5
8.0
7.3
6.6
7.8 | |
21
22
23
24
25 | 9.6
9.6
9.7
13 | 14
13
29
22
18 | 9.4
8.6
8.6
8.6
8.2 | 4.6
4.6
4.6
4.6
4.6 | 7.7
7.7
7.7
7.4
7.3 | 25
25
24
24
25 | 116
99
90
79
70 | 25
64
86
71
58 | 39
36
35
33
34 | 21
42
62
54
53 | 21
19
16
21
18 | 8.2
8.2
7.9
7.4
6.9 | | 26
27
28
29
30
31 | 15
10
9.3
8.8
9.3
9.8 | 16
16
16
15
14 | 8.0
7.9
7.3
7.2
7.0 | 4.6
4.6
4.6
4.6
4.6 | 7.6
7.8
7.0
6.7 | 25
26
29
35
39 | 62
55
50
45
70 | 61
76
205
198
156
170 | 35
43
39
37
35 | 50
51
48
40
44
38 | 18
14
13
12
12 | 6.5
6.6
6.8
6.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 485.1
15.6
20
8.8
962 | 421.8
14.1
29
8.8
837 | 304.0
9.81
13
7.0
603 | 161.2
5.20
7.0
4.6
320 | 171.1
5.90
7.8
4.2
339 | 695.6
22.4
39
6.7
1380 | 2121
70.7
144
39
4210 | 2513
81.1
205
25
4980 | 2560
85.3
205
33
5080 | 981
31.6
62
17
1950 | 698
22.5
38
11
1380 | 249.9
8.33
12
6.5
496 | | STATISTI | CS OF MC | NTHLY MEA | N DATA FO | R WATER Y | EARS 1987 | - 1992, | , BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.6
17.8
1991
4.85
1989 | 10.5
14.7
1987
6.62
1988 | 7.14
9.81
1992
3.58
1988 | 6.10
8.76
1987
3.60
1988 | 7.29
10.3
1990
5.77
1988 | 18.5
55.5
1990
7.23
1991 | 66.9
244
1990
5.72
1989 | 76.3
206
1988
10.3
1989 | 148
492
1991
20.3
1987 | 25.0
67.9
1991
5.23
1989 | 20.9
52.5
1991
4.24
1988 | 9.62
20.3
1991
4.48
1987 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALEN | DAR YEAR | E | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1987 | - 1992 | | LOWEST A HIGHEST LOWEST D ANNUAL S INSTANTA INSTANTA INSTANTA ANNUAL R 10 PERCE 50 PERCE | EAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA EVEN-DAY | CAN CAN MINIMUM CAK FLOW CAK STAGE OW FLOW CC-FT) CDS | | 21658.0
59.3
1900
3.9
4.5
42960
86
11
6.2 | Jun 2
May 14
Apr 27 | | 11361.7
31.0
205
4.2
4.5
258
8.94
22540
78
18
5.4 | May 28
Feb 2
Jan 28
May 28
May 28 | | 33.8
59.1
8.06
1900
² 2.6
2.9
5430
17.53
2.6
24470
74
8.7
4.6 | Jun
Sep
Sep
Jun
Jun | 1991
1989
2 1991
2 1988
1 1988
1 1991
1 1991
27 1989 | a-Also occurred Sep 3, 1988 and Apr 27, 1989. # 06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 19, 1986, to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
PERCENT | |--|---|--|---|---|---|---|--|---|---|--|--| | OCT
17 | 1445 | 18 | 311 | 8.5 | 12.0 | 9.1 | 140 | 41 | 10 | 11 | 14 | | NOV
13 | 1330 | 13 | 380 | | 7.5 | 11.7 | 170 | 47 | 12 | 15 | 16 | | DEC
18 | 1030 | 9.7 | 420 | 7.8 | 0.0 | 13.8 | 200 | 55 | 15 | 15 | 14 | | JAN
22 | 1030 | 4.6 | 419 | 8.4 | 0.5 | 13.4 | 200 | 56 | 15 | 16 | 15 | | FEB
20 | 1000 | 7.9 | 418 | 8.5 | 1.0 | 11.4 | 180 | 51 | 13 | 16 | 16 | | MAR
25 | 1130 | 26 | 243 | 8.6 | 5.0 | 10.3 | 110 | 30 | 7.3 | 11 | 18 | | APR 29 | 1015 | 43 | 201 | 8.4 | 11.5 | 9.8 | 79 | 23 | 5.2 | 9.9 | 21 | | MAY
20 | 1050 | 30 | 262 | 8.6 | 14.0 | 8.9 | 120 | 34 | 7.6 | 9.5 | 15 | | JUN 24 | 1000 | 32 | 271 | 8.3 | 15.5 | 8.7 | 130 | 37 | 8.3 | 9.7 | 14 | | JUL
15 | 0900 | 21 | 365 | 8.5 | 17.0 | 8.3 | 170 | 48 | 12 | 12 | 13 | | AUG
05 | 1050 | 28 | 272 | 8.4 | 17.5 | 8.1 | 120 | 36 | 8.3 | 8.2 | 12 | | SEP
17 | 1210 | 8.2 | 441 | 8.4 | 15.5 | 10.1 | 210 | 55 | 17 | 12 | 11 | | | | | | | | | | | | | | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | | ост
17 | AD-
SORP-
TION | SIUM,
DIS-
SOLVED
(MG/L | LINITY
LAB
(MG/L
AS | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED | DIS-
SOLVED
(TONS
PER | DIS-
SOLVED
(TONS
PER | | OCT
17
NOV
13 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY LAB (MG/L AS CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | | OCT
17
NOV
13
DEC
18 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | | OCT
17
NOV
13
DEC
18
JAN
22 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY
LAB
(MG/L
AS
CACO3)
149 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2 | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23 | DIS-
SOLVED
(TONS
PER
DAY)
8.17 | | OCT
17
NOV
13
DEC
18
JAN
22
FEB
20 | AD-
SORP-
TION
RATIO
0.4
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.8 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203 | DIS-
SOLVED
(MG/L
AS SO4)
14
11 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9 | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45 | | OCT
17
NOV
13
DEC
18
JAN
22
FEB
20
MAR
25 | AD-
SORP-
TION
RATIO
0.4
0.5
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.8
1.7 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203 | DIS-
SOLVED
(MG/L
AS SO4)
14
11
17
20 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9
1.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252
256 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45
2.92 | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 20 MAR 25 APR 29 | AD-
SORP-
TION
RATIO
0.4
0.5
0.5
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.7
1.6 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203
199 | DIS-
SOLVED
(MG/L
AS
SO4)
14
11
17
20 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9
1.2
1.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13
13 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252
256
242 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39
0.32 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45
2.92
5.13 | | OCT
17
NOV
13
DEC
18
JAN
22
FEB
20
MAR
25
APR
29
MAY | AD-
SORP-
TION
RATIO
0.4
0.5
0.5
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.8
1.7
1.6 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203
199
189 | DIS-
SOLVED
(MG/L
AS SO4)
14
11
17
20
17 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11
12
16
9.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9
1.2
1.2
1.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13
13 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234
241 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252
256
242
149 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39
0.32
0.33 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45
2.92
5.13
9.47 | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 20 MAR 25 APR 29 MAY 20 JUN 24 | AD-
SORP-
TION
RATIO
0.4
0.5
0.5
0.5
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.7
1.6
1.6 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203
199
189
101 | DIS-
SOLVED
(MG/L
AS SO4)
14
11
17
20
17
15 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11
12
16
9.9
6.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9
1.2
1.2
1.0 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13
13
12
13 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234
241
136
112 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252
256
242
149 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39
0.32
0.33
0.18 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45
2.92
5.13
9.47 | | OCT
17
NOV
13
DEC
18
JAN
22
FEB
20
MAR
25
APR
29
MAY
20
JUN
24
JUN
15 | AD-
SORP-
TION
RATIO
0.4
0.5
0.5
0.5
0.5
0.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.7
1.6
1.6
1.0 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203
199
189
101
83 | DIS-
SOLVED
(MG/L
AS SO4)
14
11
17
20
17
15
9.7
8.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11
12
16
9.9
6.7
5.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
1.2
0.9
1.2
1.2
1.0
0.9 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13
12
13
15 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234
241
136
112 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
187
217
252
256
242
149
122 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39
0.32
0.33
0.18
0.15 | DIS-
SOLVED
(TONS
PER
DAY)
8.17
7.92
7.45
2.92
5.13
9.47
13.1 | | OCT
17
NOV
13
DEC
18
JAN
22
FEB
20
MAR
25
APR
29
MAY
20
JUN
24
JUL | AD-
SORP-
TION
RATIO 0.4 0.5 0.5 0.5 0.5 0.5 0.4 0.4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
1.8
1.8
1.7
1.6
1.6
1.0
1.2 | LINITY
LAB
(MG/L
AS
CACO3)
149
177
203
199
189
101
83
119 | DIS-
SOLVED
(MG/L
AS SO4)
14
11
17
20
17
15
9.7
8.4
6.3 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
6.4
9.5
11
12
16
9.9
6.7
5.0 | RIDE,
DIS-
SOLVED (MG/L
AS F)
1.2
0.9
1.2
1.2
1.0
0.9
0.8 | DIS-
SOLVED
(MG/L
AS
SIO2)
12
13
13
13
12
13
15 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
170
219
284
234
241
136
112
150 | SUM OF CONSTI-
TUENTS, DIS-
SOLVED (MG/L) 187 217 252 256 242 149 122 152 161 | DIS-
SOLVED
(TONS
PER
AC-FT)
0.23
0.30
0.39
0.32
0.33
0.18
0.15
0.20 | DIS-
SOLVED
(TONS
PER
DAY) 8.17 7.92 7.45 2.92 5.13 9.47 13.1 12.1 14.1 | # 06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | WATE | R-QUALITY | DATA, WAT | ER YEAR C | CTOBER 19 | 91 TO SEPT | EMBER 19 | 92 | | | |-----------|---|-------------------------|--|--|---|--|---|--|--|---|---| | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO
GEN,
NO2+NO | NO2+NO3
DIS- | NITRO-
GEN,
AMMONIA | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVEI
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
17 | <0.01 | <0.05 | <0.05 | 0.01 | <0.01 | | <0,20 | | 0.01 | 0.02 | <0.01 | | NOV
13 | <0.01 | 0.06 | <0.05 | 0.03 | 0.01 | 0.17 | 0.20 | 0.26 | 0.02 | <0.01 | <0.01 | | DEC 18 | <0.01 | 0.14 | 0,15 | 0.01 | 0.01 | | <0.20 | | <0.01 | <0.01 | 0.01 | | JAN
22 | <0.01 | 0.22 | 0.23 | 0.02 | 0.02 | | <0.20 | | 0.01 | <0.01 | <0.01 | | FEB 20 | <0.01 | 0.15 | 0,16 | 0.02 | 0.02 | 0.28 | 0.30 | 0.45 | 0.01 | <0.01 | <0.01 | | MAR
25 | <0.01 | 0.05 | 0.06 | 0,02 | 0.02 | 0.28 | 0.30 | 0.35 | 0.01 | <0.01 | <0.01 | | APR
29 | <0.01 | 0.07 | 0.08 | . 0.03 | 0.02 | 0.37 | 0.40 | 0.47 | 0.05 | 0.02 | 0.01 | | MAY
20 | <0.01 | 0.07 | 0.07 | 0.02 | <0.01 | 0.48 | 0.50 | 0.57 | 0.06 | 0.04 | 0.02 | | JUN
24 | <0.01 | <0.05 | <0.05 | 0.02 | 0.02 | 0.38 | 0.40 | | 0.03 | <0.01 | 0.01 | | JUL
15 | <0.01 | <0.05 | <0.05 | 0.03 | 0.03 | 0.27 | 0.30 | | 0.04 | 0.02 | 0.02 | | AUG
05 | <0.01 | <0.05 | <0.05 | 0.02 | 0.02 | | <0.20 | | 0.02 | <0.01 | 0.01 | | SEP
17 | <0.01 | <0.05 | <0.05 | 0.02 | 0.01 | 0.18 | 0.20 | | 0.01 | <0.01 | <0.01 | | | | | | | | | | | | | | | DATE | | | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT
DIS-
SOLVED
(UG/L
AS CO | DIS
SOL
(UG | VED S | RON,
DIS-
OLVED
UG/L
S FE) | | OCT | | | | | | | | | | | | | NOV | ••• | 1445 | 85 | <0.5 | 30 | <1.0 | <5 | <3 | <1 | | 19 | | DEC | • • • | 1330 | 100 | <0.5 | 50 | <1.0 | <5 | <3 | <1 | | 43 | | JAN | ••• | 1030 | 120 | <0.5 | 40 | <1.0 | <5 | <3 | <1 | | 17 | | FEB | ••• | 1030 | 120 | <0.5 | 40 | <1.0 | <5 | <3 | <1 | | 7 | | MAR | ••• | 1000 | 100
63 | <0.5 | 40 | <1.0 | <5 | <3 | <1 | | 13 | | APR | ••• | 1130 | | <0.5 | 30 | <1.0 | <5 | <3 | <1 | | 64 | | MAY | ••• | 1015 | 49
76 | <0.5 | 30 | <1.0 | <5 | <3 | <1 | | 150 | | JUN | ••• | 1050 | 76 | <0.5
<0.5 | 30
30 | <1.0
2.0 | <5
<5 | <3
<3 | <1 | | 68
97 | | JUL | ••• | 0900 | 100 | | 40 | | <5 | <3 | <1 | | 24 | | AUG | ••• | 1050 | 75 | <0.5
<0.5 | 30 | <1.0 | | <3 | | | | | SEP | • • • | 1210 | 120 | <0.5 | 40 | <1.0
<1.0 | <5
<5 | <3 | <1 | | 66
10 | | 17 | • • • | 1210 | 120 | ~0.5 | 40 | \1.U | \ 3 | ζ3 | \1 | u | 10 | 06751490 NORTH FORK CACHE LA POUDRE RIVER AT LIVERMORE, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |------------------|--|--|--|---|--|--|--|--|--| | OCT | | | | | | | | | | | 17
NOV | <10 | 12 | 12 | <10 | <10 | <6 | <1.0 | 230 | <3 | | 13
DEC | <10 | 16 | 13 | <10 | 10 | <6 | <1.0 | 290 | 3 | | 18 | <10 | 14 | 16 | <10 | <10 | <6 | 1.0 | 330 | <3 | | JAN
22
FEB | <10 | 17 | 13 | <10 | <10 | <6 | <1.0 | 320 | <3 | | 20 | <10 | 20 | 12 | <10 | <10 | <6 | <1.0 | 300 | 7 | | MAR
25 | <10 | 10 |
12 | <10 | <10 | <6 | <1.0 | 170 | 6 | | APR
29 | <10 | 9 | 17 | <10 | <10 | <6 | <1.0 | 140 | 11 | | MAY
20
JUN | <10 | 9 | 29 | <10 | <10 | <6 | 1.0 | 210 | 7 | | 24
JUL | <10 | 12 | 18 | <10 | <10 | <6 | 1.0 | 210 | 13 | | 15
AUG | <10 | 12 | 24 | <10 | <10 | <6 | <1.0 | 300 | 5 | | 05
SEP | <10 | 10 | 16 | <10 | <10 | < 6 | <1.0 | 210 | 5 | | 17 | <10 | 13 | 24 | <10 | <10 | <6 | <1.0 | 350 | 5 | | | | | | | | | | | | SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-----------|------|--|--|--| | OCT
17 | 1445 | 18 | 8 | 0.37 | | NOV | 1443 | 10 | • | 0.37 | | 13
DEC | 1330 | 13 | 2 | 0.06 | | 18
JAN | 1030 | 9.7 | 3 | 0.07 | | 22
FEB | 1030 | 4.6 | 17 | 0.21 | | 20
MAR | 1000 | 7.9 | 11 | 0.23 | | 25
APR | 1130 | 26 | 4 | 0.28 | | 29
MAY | 1015 | 43 | 8 | 0.98 | | 20
JUN | 1050 | 30 | 31 | 2.5 | | 24
JUL | 1000 | 32 | 20 | 1.7 | | 15
AUG | 0900 | 21 | 24 | 1.4 | | 05 | 1050 | 28 | 15 | 1.2 | | SEP
17 | 1210 | 8.2 | 10 | 0.22 | | | | | | | #### 06752000 CACHE LA POUDRE RIVER AT MOUTH OF CANYON, NEAR FORT COLLINS, CO LOCATION.--Lat 40°39'52", long 105°13'26", in NW¹/4 sec.15, T.8 N., R.70 W., Larimer County, Hydrologic Unit 10190007, on left bank at mouth of canyon, 0.5 mi downstream from headgate of Poudre Valley Canal, 1.2 mi upstream from Lewstone Creek, and 9.3 mi northwest of courthouse in Fort Collins. DRAINAGE AREA .-- 1.056 mi2. PERIOD OF RECORD.——Streamflow records, June to August 1881, May to July 1883, October 1883 to current year. Monthly discharge only for some periods, published in WSP 1310. Records for Mar. 23 to Apr. 30 and July 4 to Aug. 20, 1883, published in WSP 9, have been found to be unreliable and should not be used. Prior to 1902, published as Cache la Poudre Creek or River at or near Fort Collins. Water-quality data available, June 1962 to October 1965, October 1971 to September 1982. REVISED RECORDS.--WSP 1310: 1885-87, 1889, 1892, 1894-96, 1934. WSP 1730: 1960, drainage area. See also PERIOD OF RECORD. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,220 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 1 to Feb. 29. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transbasin and transmountain diversions (see elsewhere in this report), diversions upstream from station for irrigation of about 50,000 acres, most of which is downstream from station, 89,890 acre-ft diverted during current year, and diversions for municipal use, 15,040 acre-ft diverted during current year. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHA | RGE, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTE | MBER 1992 | | | |---|---|---|----------------------------------|---|--------------------------|-------------------------------------|--|--|---------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 70 | 18 | 19 | 23 | 30 | 36 | 104 | 431 | 898 | 448 | 401 | 62 | | 2 | 63 | 30 | 8.4 | 28 | 30 | 36 | 93 | 545 | 869 | 381 | 391 | 54 | | 3 | 58 | 35 | 8.9 | 24 | 31 | 35 | 53 | 634 | 794 | 355 | 382 | 51 | | 4 | 56 | 34 | 24 | 28 | 26 | 55 | 62 | 560 | 813 | 396 | 430 | 67 | | 5 | 56 | 58 | 48 | 27 | 25 | 41 | 115 | 447 | 828 | 441 | 439 | 80 | | 6 | 48 | 60 | 84 | 37 | 24 | 45 | 76 | 393 | 888 | 465 | 411 | 79 | | 7 | 43 | 57 | 92 | 46 | 25 | 44 | 55 | 565 | 803 | 503 | 368 | 134 | | 8 | 42 | 4 5 | 93 | 46 | 21 | 49 | 50 | 586 | 992 | 678 | 346 | 183 | | 9 | 39 | 48 | 86 | 37 | 26 | 51 | 48 | 619 | 1210 | 627 | 360 | 181 | | 10 | 33 | 56 | 73 | 36 | 30 | 50 | 49 | 654 | 1120 | 508 | 401 | 169 | | 11 | 29 | 53 | 53 | 39 | 31 | 61 | 67 | 493 | 1130 | 407 | 404 | 171 | | 12 | 28 | 59 | 43 | 41 | 28 | 66 | 87 | 524 | 1180 | 430 | 413 | 134 | | 13 | 30 | 78 | 38 | 23 | 28 | 65 | 89 | 577 | 1210 | 474 | 407 | 62 | | 14 | 27 | 39 | 31 | 25 | 27 | 67 | 93 | 600 | 1150 | 411 | 335 | 52 | | 15 | 24 | 43 | 23 | 19 | 29 | 70 | 97 | 669 | 1120 | 385 | 303 | 53 | | 16 | 22 | 38 | 31 | 30 | 25 | 70 | 95 | 694 | 987 | 400 | 280 | 58 | | 17 | 20 | 40 | 25 | 37 | 23 | 78 | 89 | 700 | 1090 | 402 | 289 | 76 | | 18 | 18 | 40 | 27 | 23 | 36 | 82 | 89 | 768 | 882 | 367 | 301 | 73 | | 19 | 19 | 43 | 38 | 23 | 39 | 78 | 85 | 796 | 859 | 369 | 300 | 74 | | 20 | 18 | 32 | 41 | 47 | 38 | 72 | 70 | 896 | 1070 | 478 | 295 | 68 | | 21 | 18 | 35 | 37 | 38 | 44 | 72 | 61 | 1160 | 1120 | 482 | 294 | 68 | | 22 | 17 | 38 | 33 | 30 | 44 | 64 | 61 | 1310 | 1160 | 556 | 279 | 62 | | 23 | 16 | 24 | 26 | 28 | 38 | 64 | 61 | 1210 | 1150 | 535 | 291 | 50 | | 24 | 18 | 6.7 | 24 | 33 | 36 | 79 | 61 | 1310 | 1090 | 497 | 322 | 48 | | 25 | 21 | 30 | 21 | 34 | 35 | 79 | 60 | 1430 | 817 | 503 | 274 | 58 | | 26
27
28
29
30
31 | 25
29
27
26
12
6.9 | 57
52
42
38
34 | 29
16
14
15
18
21 | 24
25
27
34
28
33 | 34
24
23
31 | 77
78
95
104
102
120 | 60
150
215
260
330 | 1370
1480
1320
1170
1080
919 | 759
580
454
501
468 | 552
524
520
490
479
436 | 213
164
119
87
63
54 | 58
61
55
58
56 | | TOTAL | 958.9 | 1262.7 | 1140.3 | 973 | 881 | 2085 | 2885 | 25910 | 27992 | 14499 | 9416 | 2455 | | MEAN | 30.9 | 42.1 | 36.8 | 31.4 | 30.4 | 67.3 | 96.2 | 836 | 933 | 468 | 304 | 81.8 | | MAX | 70 | 78 | 93 | 47 | 44 | 120 | 330 | 1480 | 1210 | 678 | 439 | 183 | | MIN | 6.9 | 6.7 | 8.4 | 19 | 21 | 35 | 48 | 393 | 454 | 355 | 54 | 48 | | AC-FT | 1900 | 2500 | 2260 | 1930 | 1750 | 4140 | 5720 | 51390 | 55520 | 28760 | 18680 | 4870 | | | | | | | | | 2, BY WATER | | | | | | | MEAN | 92.4 | 61.7 | 45.0 | 40.7 | 42.9 | 53.2 | 152 | 938 | 1851 | 792 | 325 | 166 | | MAX | 270 | 148 | 125 | 158 | 138 | 149 | 743 | 2807 | 4811 | 2225 | 792 | 443 | | (WY) | 1943 | 1916 | 1984 | 1984 | 1984 | 1980 | 1900 | 1900 | 1884 | 1983 | 1884 | 1938 | | MIN | 23.5 | 8.14 | 12.6 | 9.00 | 10.2 | 10.6 | 19.5 | 204 | 442 | 158 | 61.2 | 37.3 | | (WY) | 1990 | 1939 | 1965 | 1930 | 1967 | 1939 | 1991 | 1977 | 1934 | 1966 | 1954 | 1962 | | SUMMARY | STATIST | TICS | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WAY | TER YEAR | | WATER YE | EARS 1881 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | MEAN ANNUAL ANNUAL DAILY DAILY SEVEN-DA ANEOUS RANEOUS RUNOFF ENT EXC | MEAN
MEAN
EAN
AY MINIMUM
PEAK FLOW
PEAK STAGE
(AC-FT)
EEDS | I
: | 103584.7
284
3740
6.0
14
205500
981 | Jun 2
Jan 1
Apr 12 | | 90457.9
247
1480
6.7
18
1720
4.71
179400
798 | May 27
Nov 24
Oct 18
May 27
May 27 | 1 | 891
129
7550
a1.6
3.9
2,621000
269900
1210 | Nov 2 | 1983
1977
6 1923
0 1948
7 1938
9 1891 | | | ENT EXC | | | 38
17 | | | 62
24 | | | 90
24 | | | a-Also occurred Nov 28, 1948, caused by diversion of Poudre Valley Canal, 0.5 mi upstream. b-Maximum discharge determined, caused by failure of Chambers Lake Dam, from reports of State Engineers Office. c-Maximum discharge not determined, occurred May 20, 1904. # 06752258 CACHE LA POUDRE RIVER AT SHIELDS STREET, AT FORT COLLINS, CO WATER-QUALITY RECORDS LOCATION.--Lat 40°36'11", long 105°05'43", in NE¹/4SE¹/4 sec.3, T.7 N., R.69 W., Larimer County, Hydrologic Unit 10190007, at Shields Street bridge, 0.8 mi downstream from Larimer-Weld Canal, and 1.0 mi northwest of Fort Collins. PERIOD OF RECORD. -- October 1979 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |------------------|---|--|--|---|--|---|---|--|---|---|---| | OCT
17 | 0955 | 3.3 | 435 | 8.2 | 12.0 | 8.4 | 180 | 50 | 14 | | 173 | | NOV
13 | 1030 | 2.5 | 460 | 8.2 | 6.0 | 10.7 | 220 | 60 | 16 | | 183 | | DEC
18 | 1330 | 3.9 | 464 | 7.8 | 4.5 | 13.6 | 210 | 59 | 16 | 14 | 187 | | JAN
22 | 1300 | 2.6 | 449 | 8.0
| 3.5 | 12.3 | 200 | 56 | 15 | | 177 | | FEB
19 | 1000 | 3.0 | 448 | 8.4 | 2.5. | 11.8 | 220 | 59 | 17 | | 179 | | MAR
25 | 1500 | 7.5 | 402 | 8.5 | 11.5 | 9.6 | 180 | 52 | 13 | | 129 | | APR
29
MAY | 1445 | 34 | 153 | | 17.0 | 8.4 | 61 | 18 | 3.9 | | 57 | | 20
JUN | 1430 | 540 | 60 | 8.2 | 13.0 | 7.6 | 22 | 6.4 | 1.5 | | 23 | | 24
JUL | 1415 | 272 | 65 | 8.0 | 16.0 | 8.7 | 25 | 7.1 | 1.8 | | 25 | | 15
AUG | 1355 | 79 | 94 | 8.4 | 16.0 | 8.8 | 39 | 12 | 2.2 | 3.1 | 37 | | 05
SEP | 1415 | 32 | 127 | 8.6 | 20.0 | 8.6 | 49 | 14 | 3.3 | | 50 | | 24 | 1130 | 25 | 352 | 8.4 | 15.5 | 9.0 | 150 | 45 | 10 | | 116 | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS- | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
17 | | | | | | 0.02 | 0.91 | 0.01 | | <0.01 | | | NOV
13 | | | | | | 0.02 | 1.3 | 0.05 | | <0.01 | | | DEC
18 | 55 | 6.0 | 0.6 | 8.6 | 271 | 0.02 | 0.9 | <0.01 | <0.01 | <0.01 | | | JAN
22 | | | | | | <0.01 | 0.49 | 0.02 | | <0.01 | | | FEB
19 | | | | | | 0.01 | 1.2 | 0.03 | | <0.01 | | | MAR
25 | | | | | | <0.01 | 0.34 | 0.02 | <0.01 | <0.01 | | | APR
29 | | | | | | <0.01 | 0.04 | 0.02 | <0.01 | <0.01 | | | MAY
20
JUN | | | | | | <0.01 | 0.11 | <0.01 | 0.02 | <0.01 | | | 24
JUL | | | | | | <0.01 | 0.13 | 0.02 | <0.01 | <0.01 | | | 15
AUG | 7.7 | 1.0 | 0.2 | 3.4 | 53 | <0.01 | 0.05 | 0.02 | <0.01 | <0.01 | | | 05
SEP | | | | | | <0.01 | 0.09 | 0.03 | <0.01 | <0.01 | | | 24 | | | | | | <0.01 | 0.13 | 0.04 | 0.01 | 0.01 | | O6752258 CACHE LA POUDRE RIVER AT SHIELDS STREET, AT FORT COLLINS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |---|--|---|---|---|--|--|---|--|--|---| | OCT
17 | 0955 | | | <1 | | | | 4 | <1 | 110 | | NOV
13 | 1030 | | | <1 | | | | | 1 | 160 | | DEC 18 | 1330 | <10 | <1 | <1 | <1.0 | <1 | <1 | | 2 | 200 | | JAN
22 | 1300 | ~- | | <1 | | | | <1 | 1 | 210 | | FEB
19 | 1000 | | | <1 | | | | 6 | 2 | 380 | | MAR
25 | 1500 | | | <1 | | | | | 1 | 240 | | APR
29 | 1445 | | | <1 | | | | 4 | 3 | 380 | | MAY
20 | 1430 | | | <1 | | | | 3 | 2 | 790 | | JUN
24 | 1415 | | | <1 | | | | 1 | 1 | 50 | | JUL
15 | 1355 | <10 | <1 | <1 | <1.0 | <1 | <1 | 3 | 3 | 100 | | AUG
05 | 1415 | | | <1 | | | | 2 | 2 | 190 | | SEP
24 | 1130 | | | <1 | | | | 2 | 1 | 110 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L | | OCT
17 | TOTAL RECOV- ERABLE (UG/L AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
17
NOV
13
DEC | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
17
NOV
13
DEC
18
JAN | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
17
NOV
13
DEC
18
JAN
22
FEB | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2
2
2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a<0.2 a<0.2 a<0.2 a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2
2
<1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOVERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN)1 11 | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2
2
<1
3 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RRABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR 29 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 | DIS-
SOLVED
(UG/L
AS ZN)1 11 | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR 29 MAY 20 JUN | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2
2
<1
3
1
1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR 29 MAY 20 JUN 24 JUL | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) 3 2 2 <1 3 1 1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR 29 MAY 20 JUN 24 JUL 15 AUG | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
3
2
2
<1
3
1
1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- REABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 |
DIS-
SOLVED
(UG/L
AS ZN) | | OCT 17 NOV 13 DEC 18 JAN 22 FEB 19 MAR 25 APR 29 MAY 20 JUN 24 JUL 15 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) 3 2 2 <1 3 1 1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) 0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. #### 06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO LOCATION.--Lat $40^\circ35^\circ21^*$, long $105^\circ04^\circ09^*$, in SE $^1/4NW^1/4$ sec.12, T.7 N., R.69 W., Larimer County, Hydrologic Unit 10190007, on left bank 200 ft upstream from Lincoln Street Bridge in Fort Collins. DRAINAGE AREA. -- 1,127 mi2. # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1975 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,940 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Nov. 10, 1988 at site 4,300 ft upstream, at different datum. Prior to May 22, 1987, at site 300 ft downstream, at different datum. REMARKS.--Estimated daily discharges: Dec. 17 to Jan. 9. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation, and return flow from irrigated areas. | | | DISCHARGE | c, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTEM | BER 1992 | | | |---|--|---|--|--|-------------------------------------|-------------------------------------|---|--|------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.3
5.5
6.3
5.7
5.6 | 7.2
7.0
7.1
7.1
7.5 | 5.0
5.3
5.1
5.1
5.3 | 5.2
5.2
5.2
5.2
5.0 | 4.6
4.5
4.9
9.2
9.3 | 3.6
8.1
4.5
21
7.5 | 57
34
23
16
28 | 58
212
352
44
26 | 337
383
345
233
188 | 29
26
26
46
43 | 51
18
14
34
27 | 4.8
4.1
4.9
6.7
9.8 | | 6
7
8
9
10 | 6.2
5.6
5.0
5.0 | 7.3
7.0
7.0
6.6
7.0 | 5.8
5.8
5.8
5.9
5.1 | 5.0
5.0
4.8
4.7
4.9 | 8.5
7.9
6.0
6.0 | 5.0
4.1
4.0
6.3
5.0 | 33
19
16
16 | 53
83
152
291
300 | 248
53
87
406
351 | 74
86
172
37
70 | 19
28
42
42
55 | 9.7
14
9.6
38
49 | | 11
12
13
14
15 | 5.5
5.7
5.5
5.3
3.8 | 6.7
6.3
6.2
5.8
6.7 | 5.2
5.5
6.5
6.1
6.3 | 5.4
5.7
5.1
4.9
4.7 | 6.0
6.0
6.0
6.3 | 6.4
5.9
5.8
5.2
5.0 | 14
12
17
27
24 | 169
156
306
369
288 | 271
256
281
190
200 | 138
129
302
73
55 | 58
68
40
24
25 | 13
8.5
8.3
7.5
22 | | 16
17
18
19
20 | 4.0
4.0
4.6
5.3
5.8 | 6.5
7.2
8.1
7.7
6.5 | 5.8
5.6
5.6
5.6
5.6 | 4.9
4.4
4.2
4.2
4.1 | 6.1
5.9
5.3
4.5
4.4 | 4.6
4.9
6.5
5.0
4.3 | 28
23
16
15
33 | 256
391
376
- 409
448 | 112
148
113
274
456 | 69
98
122
44
118 | 24
29
37
28
23 | 25
28
23
25
24 | | 21
22
23
24
25 | 5.0
5.5
5.7
5.7
5.2 | 6.2
5.9
5.7
5.8
6.6 | 5.6
5.6
5.7
6.0 | 4.2
4.2
4.2
4.6
4.4 | 4.0
3.8
3.2
3.1
3.3 | 4.3
4.5
4.3
7.9
8.3 | 18
5.4
4.5
4.3
4.6 | 500
447
402
484
487 | 411
267
245
429
581 | 52
59
41
52
55 | 30
40
45
52
14 | 24
23
23
19
13 | | 26
27
28
29
30
31 | 5.3
5.6
5.9
6.6
9.3
7.5 | 7.9
6.3
5.8
5.8
5.0 | 5.8
5.4
5.2
5.2
5.2
5.2 | 4.3
4.3
4.3
4.3
5.3 | 3.4
7.5
13
4.9 | 6.4
6.5
12
6.7
6.3 | 4.5
5.1
30
49
28 | 351
602
397
325
445
352 | 411
200
88
78
48 | 59
40
33
32
35
38 | 7.6
5.6
9.7
6.1
4.1
3.3 | 15
19
11
5.2
4.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 171.3
5.53
9.3
3.8
340 | | 72.5
5.56
6.5
5.0
342 | 146.2
4.72
5.7
4.1
290 | 169.6
5.85
13
3.1
336 | 226.9
7.32
37
3.6
450 | 620.4
20.7
57
4.3
1230 | 9531
307
602
26
18900 | 7690
256
581
48
15250 | 2253
72.7
302
26
4470 | 903.4
29.1
68
3.3
1790 | 491.4
16.4
49
4.1
975 | | STATIST | CICS OF MO | NTHLY MEAN | DATA FO | R WATER YE | ARS 1975 | - 1992 | , BY WATER Y | (EAR (WY) | 1 | | | | | MEAN
MAX
(WY)
MIN
(WY) | 22.7
94.1
1985
2.45
1978 | 122
19 8 5
1.79 | 22.0
97.3
1985
1.91
1978 | 27.6
123
1984
2.29
1978 | 28.3
135
1984
1.30
1987 | 32.3
136
1980
1.91
1988 | 126
652
1983
.37
1988 | 476
2720
1980
14.9
1976 | 902
4771
1983
158
1989 | 257
1450
1983
39.2
1988 | 63.3
290
1983
12.8
1988 | 27.3
105
1983
4.79
1987 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALEND | AR YEAR | I | FOR 1992 WAT | TER YEAR | | WATER YE | ARS 1975 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 33729.53
92.4
2430
.85
1.4
66900
191
7.0
2.6 | Jun 2
Mar 30
Mar 25 | | 22575.2
61.7
602
3.1
3.6
960
5.49
44780
259
7.5
4.5 | May 27
Feb 24
Feb 20
Jun 24
Jun 24 | | 779
41.8
6080
a.00
b6660
c8.31
123600
346
18
2.6 | Aug 1
Mar 1
Jun 2 | 1983
1977
21 1983
8 1987
24 1988
21 1983
21 1983 | a-Also occurred Aug 19, Sep 4, 18, 19, 1987, and many days in 1988. b-Site and datum then in use. c-Maximum gage height, 9.15 ft, Jun 2, 1991, present site and datum. # 06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1975 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1987 to current year. pH: October 1987 to current year. WATER TEMPERATURE: October 1987 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1987. Values recorded each 30 minutes. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum mean, 717 microsiemens, Mar. 14, 1992; minimum mean, 56 microsiemens, May 22 and May 24, 1992. pH: Maximum, 9.3 units, Aug. 13 and 20, 1992; minimum 7.0 units, occurred several times during the water year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | ,
DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |--|---|--|--|---|--|--|--|---|--|---|---| | OCT
16 | 1220 | 4.1 | 542 | 8.2 | 17.5 | 10.3 | 240 | 65 | 19 | | 207 | | NOV
12 | 1205 | 6.3 | 566 | 8.0 | 6.0 | 11.8 | 260 | 70 | 20 | | 203 | | DEC 17 | 1200 | 5.6 | 540 | 8.1 | 2.0 | 13.0 | 250 | 67 | 19 | 19 | 205 | | JAN | | | | | | | | _ | | | | | 21
FEB | 1430 | 4.2 | 569 | 8.3 | 3.0 | 12.0 | 250 | 68 | 20 | | 202 | | 18
MAR | 1330 | 5.1 | 538 | 8.3 | 4.5 | 10.6 | 230 | 61 | 19 | | 196 | | 24
APR | 1230 | 12 | 694 | 8.5 | 8.0 | 10.8 | 310 | 83 | 25 | | 188 | | 28
MAY | 1230 | 59 | 545 | 8.4 | 18.0 | 9.2 | 230 | 63 | 18 | | 151 | | 19
JUN | 1350 | 490 | 74 | 8.3 | 14.0 | 8.9 | 24 | 7.3 | 1.5 | | 27 | | 23
JUL | 1300 | 295 | 57 | 7.9 | 17.5 | 8.5 | 22 | 6.3 | 1.4 | | 21 | | 14 | 1300 | 47 | 142 | 8.3 | 15.5 | 10.5 | 61 | 18 | 4.0 | 5.3 | 52 | | AUG
04 | 1120 | 24 |
275 | 8.3 | 19.0 | 8.7 | 110 | 30 | 8.0 | | 93 | | SEP
16 | 1240 | 24 | 379 | 8.5 | 19.5 | 9.7 | 170 | 48 | 12 | | 7.1 | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | ост
16 | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRITE
DIS-
SOLVED
(MG/L | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L | GEN,
AMMONIA
DIS-
SOLVED
(MG/L | PHORUS
DIS-
SOLVED
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L | | | OCT
16
NOV
12 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
16
NOV
12
DEC
17 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | OCT
16
NOV
12
DEC | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
<0.01 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.01 0.02 0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) <0.01 0.05 <0.01 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
0.02
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.01 0.02 0.01 0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) <0.01 0.05 <0.01 0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.01
0.02
0.01
0.01
0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) <0.01 0.05 <0.01 0.03 0.01 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 0.02 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.01
0.02
0.01
0.01
0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1
0.70
0.25 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
<0.01
0.05
<0.01
0.03
0.01 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 0.02 0.03 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 48 MAR 24 APR 28 MAY 19 JUN | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.01
0.02
0.01
0.01
0.01
0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1
0.70
0.25
0.01 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
<0.01
0.05
<0.01
0.03
0.01
0.03 | PHORUS DIS- DIS- SOLVED (MG/L AS P) <0.01 0.02 0.03 0.02 | PHORUS
ORTHON
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 JUN 23 JUL | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED (MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) 8.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.01 0.02 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1
0.70
0.25
0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) <0.01 0.05 <0.01 0.03 0.01 0.03 0.04 <0.01 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 0.02 0.03 0.02 <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 JUN 23 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.01
0.02
0.01
0.01
0.01
0.01
<0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1
0.70
0.25
0.01 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
<0.01
0.05
<0.01
0.03
0.01
0.03 | PHORUS DIS- DIS- SOLVED (MG/L AS P) <0.01 0.02 0.03 0.02 | PHORUS
ORTHON
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 4 MAR 24 APR 28 MAY 19 JUN 23 JUL 14 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED (MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) 8.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.01 0.02 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.61
0.90
0.93
0.62
1.1
0.70
0.25
0.01 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) <0.01 0.05 <0.01 0.03 0.01 0.03 0.04 <0.01 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 0.02 0.03 0.02 <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01
<0.01 | | 06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO- MI UM, TOTAL RECOV- ERABLE (UG/L AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |---|---|---|---|---|--|---|---|---|--|---| | OCT
16 | 1220 | | | 1 | | | | 4 | <1 | 1 8 0 | | NOV
12 | 1205 | | | <1 | | | | | 1 | 1 9 0 | | DEC
17 | 1200 | <10 | <1 | <1 | <1.0 | <1 | <1 | | 1 | 390 | | JAN
21 |
1430 | | | <1 | | | | 2 | 2 | 190 | | FEB
18 | 1330 | | | <1 | | | | 6 | <1 | 170 | | MAR
24 | 1230 | | | <1 | | | | 11 | 2 | 500 | | APR
28 | 1230 | | | <1 | | | | 5 | 4 | 840 | | MAY
19 | 1350 | | | <1 | | | | 3 | 2 | 690 | | JUN
23 | 1300 | | | <1 | | | | 3 | 2 | 370 | | JUL
14 | 1300 | <10 | <1 | <1 | <1.0 | <1 | <1 | 3 | 3 | 130 | | AUG
04 | 1120 | | | <1 | | | | 2 | 3 | 200 | | SEP
16 | 1240 | | | <1 | | | | 4 | 4 | 150 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | OCT
16 | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | TOTAL RECOV- ERABLE (UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | OCT
16
NOV
12 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
16
NOV
12
DEC
17 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS 2N) | | OCT
16
NOV
12
DEC
17
JAN
21 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
16
NOV
12
DEC
17
JAN
21
FEB
18 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
2
2
2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS 2N) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOVE ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS 2N) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 <1 3 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS 2N) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 JUN 23 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 <1 3 4 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOVERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS 2N) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 JUN 23 JUL 14 | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 <1 3 4 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 16 NOV 12 DEC 17 JAN 21 FEB 18 MAR 24 APR 28 MAY 19 JUN 23 JUL | TOTAL RECOV- ERABLE (UG/L AS PB) 2 2 7 <1 <1 3 4 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG) a < 0.2 | DIS-
SOLVED
(UG/L
AS 2N) | a-Analysis based on preliminary method. 06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MFAN VALUES | | | | | | 1 | MEAN VALU | ES | | | | | | |------|-----|-------------|-----|-------------|-----|-------------|-----|-----|-----|-----|------|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 528 | 664 | 586 | | 547 | 517 | 344 | 252 | 102 | 269 | 190 | 593 | | 2 | 543 | 632 | 584 | | 577 | 519 | 397 | 137 | 83 | 276 | 290 | 619 | | 3 | 519 | 637 | 589 | | 592 | 486 | 467 | 100 | 92 | 361 | 371 | 657 | | 4 | 504 | | 578 | | 536 | | 469 | 158 | 92 | 228 | 257 | 663 | | 5 | 501 | 625 | 557 | | 503 | 449 | 482 | 227 | | 287 | 211 | 508 | | 6 | 497 | 591 | 546 | | 501 | 5 86 | 463 | 135 | | 113 | 25.2 | 493 | | 7 | 492 | 591 | 550 | | 506 | 607 | 458 | 152 | 131 | 105 | 249 | 413 | | 8 | | 591 | 533 | | 516 | 614 | 478 | 162 | 197 | 89 | 218 | 443 | | 9 | | 602 | 506 | | 516 | 575 | 481 | 131 | 78 | 160 | 238 | 386 | | 10 | 522 | 570 | 515 | 5 78 | 517 | | 480 | 134 | 77 | 201 | 147 | 227 | | 11 | 522 | 583 | 510 | 564 | 511 | 55 8 | | 123 | 78 | 121 | 137 | 346 | | 12 | 515 | | 502 | 547 | | 566 | ~ | 118 | 79 | 125 | 140 | 473 | | 13 | 513 | 602 | 489 | 546 | 515 | 630 | 495 | 108 | 77 | 105 | 147 | 501 | | 14 | 519 | 619 | 503 | 554 | 516 | 717 | 447 | 94 | 81 | 151 | 209 | 508 | | 15 | 518 | | 487 | 563 | 509 | 707 | 439 | | 84 | | 260 | 388 | | 16 | 539 | | 489 | 580 | 510 | 690 | ~ | 90 | 87 | 141 | 288 | 376 | | 17 | 549 | 544 | | 580 | 540 | 696 | 542 | | 88 | 138 | 227 | 350 | | 18 | 545 | 552 | | 567 | | 671 | 513 | | 91 | 136 | 145 | | | 19 | 533 | 552 | | 56 9 | | 601 | 594 | 75 | 83 | 190 | 157 | 343 | | 20 | 520 | 605 | | 572 | 535 | 657 | 617 | 69 | 67 | 131 | 169 | 342 | | 21 | 543 | 5 88 | | 566 | 540 | 688 | 495 | 63 | 64 | 141 | | 355 | | 22 | 544 | 588 | | | 539 | 648 | 493 | 56 | 62 | 124 | | 359 | | 23 | 543 | 608 | | | 542 | 671 | 556 | 58 | 62 | 150 | | 369 | | 24 | 510 | 613 | | | | 676 | 569 | 56 | 67 | 193 | | 390 | | 25 | 554 | 609 | | 552 | 546 | 655 | 586 | 59 | 79 | | 337 | 442 | | 26 | 563 | 574 | | 558 | 553 | 644 | 589 | 80 | 86 | 182 | 431 | 453 | | 27 | 568 | 562 | | 561 | 575 | | 582 | | 115 | 170 | 510 | 418 | | 28 | 596 | 594 | | 566 | 496 | 549 | 442 | 94 | | 216 | 473 | 451 | | 29 | 620 | 576 | | 567 | 468 | 647 | 217 | 88 | 215 | 188 | 516 | 532 | | 30 | 614 | 573 | | 572 | | 654 | 243 | 82 | 212 | 197 | 575 | 598 | | 31 | 669 | | | 566 | | 555 | | | | 193 | 610 | | | MEAN | | | | | | | ~ | | | | | | 06752260 CACHE LA POUDRE RIVER AT FORT COLLINS, CO--Continued PH, (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | OCTOBER NOVEMBER DECEMBER JANUARY FEBRUARY 1 8.4 7.9 2 8.3 7.8 3 8.3 7.8 4 8.7 7.6 5 8.6 7.8 6 8.6 7.7 7 8.2 7.5 8 8.1 7.4 | MARCH 8.0 7.3 8.0 7.2 8.5 7.2 8.2 7.8 | 7.2 |
--|--|--| | 2 8.3 7.8
3 8.3 7.8
4 8.7 7.6
5 8.6 7.8
6 8.6 7.7
7 8.6 7.7
8 8.2 7.5
8 8.1 7.4 | 8.0 7.2
8.5 7.2
7.8 | 7.2 | | 3 8.3 7.8
4 8.7 7.6
5 8.6 7.8
6 8.6 7.7
7 8.2 7.5
8 8.1 7.4 | 8.5 7.2
7.8 | .2 | | 4 8.7 7.6
5 8.6 7.8
6 8.6 7.7
7 8.2 7.5
8 8.1 7.4 | 8.2 7.8 | | | 5 8.6 7.8
6 8.6 7.7
7 8.2 7.5
8 8.1 7.4 | 8.2 7.8 | | | 7 8.2 7.5
8 8.1 7.4 | | | | 7 8.2 7.5
8 8.1 7.4 | 8.3 7.3 | 7.3 | | 8 8.1 7.4 | 8.0 7.1 | | | • | 7.5 7.0 | | | 9 8.2 7.4 | | | | 10 8.2 8.0 8.2 7.4 | | | | 11 8.3 8.0 8.2 7.4 | | | | 12 8.3 8.0
13 8.2 8.0 8.3 7.4 | 8.0 7.2
8.1 7.3 | | | 13 8.2 8.0 8.3 7.4
14 8.2 8.0 8.7 7.7 | 8.0 7.5 | | | 15 8.2 8.0 8.9 7.9 | 8.1 7.4 | | | | | | | 16 8.2 7.9 8.3 7.5
17 8.2 7.8 8.2 7.9 8.4 7.6 | 8.1 7.3
7.7 7.3 | | | 17 8.2 7.8 8.2 7.9 8.4 7.6
18 8.1 7.8 8.1 7.9 | 8.0 7.2 | | | 19 8.1 7.8 8.0 7.8 | | | | 20 8.1 7.8 8.1 7.8 8.3 8.0 | 7.9 7.0 | .0 | | 21 8.1 7.8 8.3 8.0 | | | | 21 8.1 7.8 8.3 8.0
22 8.1 7.8 8.5 8.0 | | | | 23 8.1 7.6 8.5 8.0 | 8.1 7.0 | | | 24 7.8 7.2 | | | | 25 8.0 7.7 8.1 7.9 8.5 8.1 | 8.5 8.1 | . 1 | | 26 8.1 7.7 8.3 8.1 8.5 8.1 | 8.5 8.1 | | | 27 8.0 7.5 8.4 8.2 8.5 7.7 | | . 1 | | 28 8.3 8.0 8.3 7.5 | | | | 29 8.4 8.1 8.2 7.2
30 8.4 8.1 | 8.4 8.0 | .0 | | 30 8.4 8.1
31 8.6 8.1 | 8.4 8.0
8.4 7.4 | .0 | | *** | 8.4 8.0
8.4 7.4
8.0 7.2 | .0 | | MONEY | 8.4 8.0
8.4 7.4
8.0 7.2 | .0 | | MONTH | 8.4 8.0
8.4 7.4
8.0 7.2 | .0 | | MONTH | 8.4 8.0
8.4 7.4
8.0 7.2 | .0 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN | 8.4 8.0
8.4 7.4
8.0 7.2 | 1.0
1.4
1.2 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST | 8.4 8.0
8.4 7.4
8.0 7.2
 | 1.0
1.4
1.2 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 | 8.4 8.0
8.4 7.4
8.0 7.2

MAX MIN
SEPTEMBER
8.0 7.3
7.9 7.2 | IIN R .3 .2 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 | IIN R .3 .2 .1 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 | IIN R .3 .2 .1 .2 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 | IIN R .3 .2 .1 .2 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 | IIN R .3 .2 .1 .1 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 5 8.8 7.1 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.8 8.7 7.9 8.4 7.0 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 | IIN R .3 .2 .1 .1 .1 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 8.8 7.1 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.8 8.3 7.8 8.6 8.2 8.2 7.6 8.3 7.7 8.8 7.3 8.2 7.7 8.5 7.9 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.7 8.5 7.9 8.7 7.9 8.4 7.0 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 8.6 7.6 | IIN R .3 .2 .1 .1 .1 .6 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 5 8.8 7.1 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.8 8.7 7.9 8.4 7.0 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 | IIN R . 3 . 2 . 1 . 1 . 1 . 6 . 6 | | DAY MAX MIN 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2 8.6 8.2 8.4 8.0 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 9.2 7.1 8.6 7.6 9.1 7.6 9.2 8.4 | IIN R .3 .2 .1 .1 .1 .6 .6 .4 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 7.9 7.1 9.2 7.1 8.6 7.6 9.1 7.6 9.2 8.4 9.1 8.2 | IIN R . 3 . 2 . 1 . 1 . 1 . 6 . 6 . 4 . 2 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 9.2 7.1 8.6 7.6 9.1 8.6 9.1 8.2 8.8 8.1 | IIN R . 3 . 2 . 1 . 1 . 6 . 6 . 4 . 2 . 1 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.1 7.9 7.1 9.2 7.1 8.6 7.6 9.1 7.6 9.2 8.4 9.1 8.2 | IIN R . 3 . 2 . 1 . 1 . 6 . 6 . 4 . 2 . 1 . 8 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 9.2 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.2 8.4 9.1 8.2 8.8 8.1 8.7 7.8 | IIN RR . 3 . 2 . 1 . 1 . 1 . 6 . 6 . 4 . 2 . 1 . 8 . 6 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 9.1 7.6 9.2 8.4 9.1 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 | .0
.4
.2
.1
.1
.1
.6
.6
.4
.2
.1
.8
.6
.7 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 |
MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 8.6 7.6 9.1 7.6 9.1 8.2 8.8 8.1 8.7 7.8 8.7 7.8 8.6 7.6 8.9 7.7 | IIN R .3 .2 .1 .1 .6 .6 .4 .2 .1 .8 .6 .7 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 9.1 7.6 9.2 8.4 9.1 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 | | | DAY MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 2.8 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.8 8.3 7.8 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.8 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.8 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 7.3 8.9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 9.0 7.9 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.1 8.0 9.2 8.0 9.0 7.9 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 7.8 9.1 9.1 9.1 7.8 9.1 9.1 9.1 7.8 9.1 9.1 9.1 7.9 9.1 7.9 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 7.9 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 8.2 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 | IIN RR .3 .2 .1 .1 .1 .6 .6 .4 .2 .1 .8 .6 .75 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 | IIN RR .3 .2 .1 .1 .1 .6 .6 .4 .2 .1 .8 .6 .75 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.4 8.0 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7. | IIN R .3 .2 .1 .1 .6 .6 .4 .2 .1 8 .6 .7 .75 .3 | | DAY MAX MIN AUGUST 1 8.5 8.2 8.4 8.0 8.4 7.9 8.4 7.0 8.7 7.8 8.4 7.9 8.7 7.8 8.4 7.0 8.2 7.7 8.3 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 8.2 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 8.3 7.5 8.4 7.3 8.5 7.5 | IIN R .3 .2 .1 .1 .6 .6 .4 .2 .1 .8 .6 .75 .3 .5 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 8.8 7.7 9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.8 8.4 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.8 8.3 7.7 8.7 8.9 7.3 8.2 7.2 8.9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.7 8.2 7.7 8.9 7.3 8.9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 8.2 7.7 9.3 7.9 14 8.6 7.6 8.5 7.9 8.6 7.8 9.1 8.0 12 8.6 7.6 8.5 7.9 8.6 7.7 8.6 7.7 9.3 7.9 14 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 9.3 7.9 14 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 9.3 7.9 14 8.6 7.8 8.2 7.7 9.3 7.9 14 8.0 12 8.6 7.8 8.2 7.7 9.3 7.9 14 8.0 12 8.8 8.1 9.0 8.0 9.2 8.0 19 8.8 8.8 8.2 8.2 8.0 7.5 8.5 8.0 8.0 9.0 7.9 9.2 7.9 9.1 7.8 16 8.6 8.2 8.0 7.5 8.5 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.1 8.8 8.8 8.2 8.0 7.5 8.5 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.1 8.0 8.8 8.3 8.0 8.8 7.9 8.2 8.0 8.5 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 9.2 8.4 9.1 8.6 9.1 7.6 9.2 8.4 9.1 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.4 | .0.4.2.1.1.1.1.6.6.4.2.1.1.8.6.6.7.7.5.3 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.1 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.3 7.7 8.3 7.7 8.3 7.7 8.9 7.3 9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 11 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 12 8.5 8.0 8.5 7.7 8.5 8.0 8.5 7.7 8.5 8.0 8.5 7.7 9.1 8.0 12 8.6 7.6 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.6 7.6 8.5 8.0 8.5 7.8 9.0 7.9 14 8.5 8.0 8.5 7.8 9.0 7.9 14 8.5 8.0 8.5 7.8 9.0 7.9 14 8.5 8.0 8.5 7.8 9.0 7.9 14 8.5 8.2 9.1 7.8 16 8.5 8.2 9.1 7.8 16 8.5 8.2 9.1 7.8 16 8.5 8.2 9.1 7.8 16 8.5 8.2 9.1 7.8 16 8.5 8.2 9.1 7.8 17 8.3 7.9 17 8.3 7.9 17 8.3 7.9 18 8.5 7.6 8.5 7.6 8.2 9.1 7.8 16 8.6 8.2 7.7 8.3 7.9 9.2 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.1 7.9 7.1 9.2 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.4 8.3 7.4 | IIN R .32.11.16.64.4 .21.18.66.7 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN APRIL MAY JUNE JULY AUGUST 1 8.5 8.2 8.6 7.4 8.4 8.2 8.4 7.8 3 8.5 8.1 8.1 7.7 8.5 7.9 8.7 7.3 8.2 7.2 4 8.4 8.0 8.8 7.7 8.7 7.8 8.4 7.9 8.8 7.7 9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.8 8.4 7.9 8.4 7.0 6 8.6 8.1 8.6 7.7 8.7 7.8 8.3 7.7 8.7 8.9 7.3 8.2 7.2 8.9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.7 8.2 7.7 8.9 7.3 8.9 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.4 8.4 7.3 8.3 7.5 9.1 8.0 10 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 8.2 7.7 9.3 7.9 14 8.6 7.6 8.5 7.9 8.6 7.8 9.1 8.0 12 8.6 7.6 8.5 7.9 8.6 7.7 8.6 7.7 9.3 7.9 14 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 8.6 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.7 9.3 7.9 14 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 13 8.4 8.1 8.3 7.8 8.5 8.0 8.5 7.8 9.0 7.9 9.3 7.9 14 8.6 7.8 8.2 7.7 9.3 7.9 14 8.0 12 8.6 7.8 8.2 7.7 9.3 7.9 14 8.0 12 8.8 8.1 9.0 8.0 9.2 8.0 19 8.8 8.8 8.2 8.2 8.0 7.5 8.5 8.0 8.0 9.0 7.9 9.2 7.9 9.1 7.8 16 8.6 8.2 8.0 7.5 8.5 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.1 8.8 8.8 8.2 8.0 7.5 8.5 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.1 8.0 8.8 8.3 8.0 8.8 7.9 8.2 8.0
8.5 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 9.0 7.9 9.2 7.9 9.2 7.9 9.3 7.9 1.0 8.0 8.8 7.9 8.2 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.8 7.9 8.2 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 9.2 8.4 9.1 8.6 9.1 7.6 9.2 8.4 9.1 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.4 | IIN R .32.11.16.64.4 .21.18.66.7 | | DAY MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN AUGUST 1 | MAX MIN SEPTEMBER 8.0 7.3 7.9 7.2 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 8.6 7.6 9.1 7.6 9.2 8.4 9.1 8.6 9.1 7.6 9.2 8.4 9.1 7.8 8.6 7.6 8.7 7.8 8.6 7.6 8.7 7.8 8.6 7.6 8.7 7.8 8.6 7.6 8.7 7.8 8.7 7.8 8.8 8.1 8.7 7.8 8.6 7.6 8.9 7.7 | IIN R 3.2.1.1.66.4.4.3.3.5.4.4.4.3 | | DAY MAX MIN MA | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.3 8.5 7.5 8.3 7.4 8.3 7.4 8.3 7.4 8.3 7.4 8.7 7.3 | IIN R .32.11.16.64 .21.18.66.7 | | DAY MAX MIN MA | 8.4 | IIN R 3.2.1.2.1.1.66.6.4.2.1.86.6.7 | | DAY MAX MIN AB 7.8 8.4 7.8 8.5 7.9 8.6 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 7.8 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.4 8.3 7.4 8.3 7.4 8.3 7.4 8.7 7.8 7.9 7.1 8.7 7.8 7.9 7.1 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 | IIN R .3 2 .1 1 .1 1 .6 6 6 .7 5 3 .5 4 4 4 4 .3 .1 2 1 .1 1 | | DAY MAX MIN AB 7.2 B 4.7 2.2 8.4 8.0 8.8 8.0 8.0 8.0 8.0 8.0 8.0 8.0 7.0 8.0 8.0 8.0 7.0 8.0 8.0 7.0 8.0 8.0 8.0 7.0 8.0 8.0 7.0 8.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | B.4 8.0 7.2 | IIN R 322.1 .11.6.6.4 .2.18.8.6.7 | | DAY MAX MIN AB 7.8 8.4 7.8 8.5 7.9 8.6 | MAX MIN SEPTEMBER 8.0 7.2 MAX MIN SEPTEMBER 8.0 7.3 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.2 7.8 7.1 8.6 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 9.1 7.6 8.3 7.5 8.4 7.3 8.5 7.5 8.3 7.4 8.4 7.4 8.3 7.4 8.3 7.4 8.3 7.4 8.7 7.8 7.9 7.1 8.7 7.8 7.9 7.1 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.2 7.8 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 7.9 7.1 | IIN R 322.1 .11.6.6.4 .2.18.8.6.7 | # 06752270 CACHE LA POUDRE RIVER BELOW FORT COLLINS, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}34^{\circ}01^{\circ}$, long $105^{\circ}01^{\circ}36^{\circ}$, in NW $^{1}/4$ NE $^{1}/4$ sec.20, T.7 N., R.68 W., Larimer County, Hydrologic Unit 10190007, 1.4 mi west of Interstate 25 on Prospect Street in Fort Collins. PERIOD OF RECORD.--January 1978 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |---|---|--|--|---|--|---|---|---|--|--|--| | OCT
18 | 0945 | 16 | 743 | 8.0 | 10.5 | 7.0 | 270 | 69 | 23 | | 199 | | NOV
14 | 1330 | 5.3 | 777 | 8.5 | 5.0 | 10.6 | 340 | 87 | 29 | | 263 | | DEC
18 | 1530 | 6.0 | 833 | 7.8 | 3.5 | 13.4 | 380 | 100 | 32 | 31 | 218 | | JAN
21 | 1115 | 5.3 | 866 | 8.4 | 2.0 | 12.6 | 380 | 100 | 32 | | 274 | | FEB
19 | 1600 | 6.7 | 811 | 8.5 | 6.5 | 14.5 | 370 | 94 | 33 | | 252 | | MAR
26 | 1515 | 8.5 | 837 | 8.6 | 12.0 | 11.5 | 390 | 100 | 34 | | 235 | | APR
30 | 1430 | 8.4 | 691 | 8.3 | 15.5 | 8.5 | 300 | 75 | 27 | | 205 | | MAY
21 | 0950 | 580 | 84 | 8,1 | 12.0 | 9.4 | 27 | 7.9 | 1.8 | | 27 | | JUN
25 | 0930 | 573 | 98 | 7.7 | 13.5 | 8.8 | 35 | 10 | 2.5 | | 30 | | JUL
16 | 1430 | 57 | 369 | 8.2 | 14.5 | 8.1 | 150 | 42 | 12 | 16 | 99 | | AUG
04 | 1435 | 37 | 566 | 8.7 | 22.0 | 10.5 | 230 | 61 | 20 | | 161 | | SEP
`25 | 1045 | 28 | 564 | 8.1 | 13.5 | 9.5 | 240 | 66 | 19 | | 167 | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | ОСТ | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS DIS- SOLVED (MG/L AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
18
NOV
14
DEC | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93 | | OCT
18
NOV
14 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
18
NOV
14
DEC
18
JAN | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.37
0.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02 | | OCT
18
NOV
14
DEC
18
JAN
21
FEB | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.37
0.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.03 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR |
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRATE DIS- SOLVED (MG/L AS N) 2.4 1.8 2.3 2.0 1.7 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.37
0.02
0.03
0.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01
<0.01 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR 30 MAY 21 | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0
1.7 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.37
0.02
0.03
0.02
0.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0
1.7 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.03
0.02 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR 30 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0
1.7
1.4 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.37
0.02
0.03
0.02
0.02 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0
1.7
1.4 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.03
0.02
0.04 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01

<0.01
0.03 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01
<0.01 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR 30 MAY JUN | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0
1.7
1.4
0.88
0.05 | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.37 0.02 0.03 0.02 0.02 0.02 0.05 0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0
1.7
1.4
0.93
0.06 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.03
0.02
0.04
0.09 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01

<0.01
0.03
0.04 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01
<0.01
<0.01
0.02
0.02 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED (MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0
1.7
1.4
0.88
0.05 | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.37 0.02 0.03 0.02 0.02 0.02 0.05 0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0
1.7
1.4
0.93 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.02
0.04
0.09
0.07 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 0.03 0.04 0.03 0.13 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01
<0.01
0.02
0.02
0.03
0.13 | | OCT 18 NOV 14 DEC 18 JAN 21 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL 16 AUG | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) 0.6 0.3 | DIS-
SOLVED
(MG/L
AS
SIO2) 11 6.1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
2.4
1.8
2.3
2.0
1.7
1.4
0.88
0.05 | GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.37 0.02 0.03 0.02 0.02 0.02 0.05 0.01 <0.01 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
2.8
1.8
2.3
2.0
1.7
1.4
0.93
0.06
0.17 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
1.5
0.06
0.03
0.03
0.02
0.04
0.09 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01

<0.01
0.03
0.04 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.93
0.03
0.02
<0.01
<0.01
0.02
0.02 | 06752270 CACHE LA POUDRE RIVER BELOW FORT COLLINS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |-----------|------|---|--|---|--|--|---|---|--|---| | OCT | | | | | | | | | | | | 18
NOV | 0945 | | | <1 | | | | 5 | 2 | 130 | | 14 | 1330 | | | <1 | | | | | 1 | 200 | | DEC
18 | 1530 | <10 | <1 | <1 | <1.0 | <1 | <1 | | <1 | 250 | | JAN | | | | | | | - | • | | | | 21
FEB | 1115 | | | <1 | | | | 2 | 2 | 200 | | 19 | 1600 | | | <1 | | | | 3 | 1 | 200 | | MAR
26 | 1515 | | | <1 | | | | | 1 | 430 | | APR
30 | 1430 | | | <1 | | | | 3 | 2 | 480 | | MAY | 1430 | | | ~1 | | | | 3 | 2 | 400 | | 21
JUN | 0950 | | | <1 | | | | 3 | 1 | 1200 | | 25 | 0930 | | | <1 | | | | 5 | 2 | 1300 | | JUL
16 | 1430 | <10 | <1 | <1 | <1.0 | <1 | <1 | 3 | 2 | 170 | | AUG | 1430 | 110 | ~1 | ~1 | 11.0 | 11 | `` | 3 | - | 170 | | 04 | 1435 | | | <1 | | | | 2 | 2 | 170 | | SEP
25 | 1045 | | | <1 | | | | 2 | 1 | 140 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |-----------|---|--|---|---|--|---|---|--|--| | OCT
18 | 4 | | | | | | <1 | a<2.0 | | | NOV
14 | 3 | | | | | | <1 | a<2.0 | | | DEC
18 | <1 | <1 | 40 | | 1 | 4 | <1 | a<2.0 | 11 | | JAN
21 | <1 | | | | | | <1 | a<2.0 | | | FEB
19 | 1 | | | | | | <1 | a<2.0 | | | MAR
26 | <1 | | | | | | <1 | a<2.0 | | | APR
30 | 2 | | | | | | <1 | a<2.0 | | | MAY 21 | 2 | | | | | | <1 | a<2.0 | | | JUN | | | | | | | | a<2.0 | | | 25
JUL | 4 | | | | | | <1 | | | | 16
AUG | <1 | <1 | 30 | <0.1 | <1 | <1 | <1 | a<2.0 | 27 | | 04
SEP | 2 | | | | | | <1 | ^a <2.0 | | | 25 | <1 | | | | | | <1 | a<2.0 | | a-Analysis based on preliminary method. #### 06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK, NEAR TIMNATH, CO LOCATION.--Lat 40°32'56", long 105°00'28", in NW¹/4NE¹/4 sec.28, T.7 N., R.68 W., Larimer County, Hydrologic Unit 10190007, on right bank 2,100 ft upstream from Box Elder Creek, 2.0 mi upstream from Interstate Highway 25 bridge, and 3.8 mi southeast of intersection of College Avenue and Prospect Street in Fort Collins. DRAINAGE AREA .-- 1, 245 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1979 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,860 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation, and return flow from irrigated areas. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3.7 4.1 1 3.6 4.1 4.8 4.1 15 7.3 199 34 10 4.1 4.4 4.4 4.2 3.4 3.3 4.2 3.8 3.5 214 176 4.1 2 4.1 4.1 12 41 37 6.5 123 26 6.0 4.3 5.4 11 3.5 3.B 107 3.8 9.3 5 3.5 4.4 4.6 4.2 3.7 29 10 5.4 63 4.9 4.1 3.2 4.7 6 5.0 4.4 13 13 112 26 4.9 4.4 9.7 5.9 5.7 4.4 3.0 4.4 4.8 4.1 3.8 10 17 18 28 2.9 4.4 3.6 39 61 8 4.5 4.3 9.6 10 28 16 10 128 10 2.9
4.9 4.4 4.3 3.7 15 10 141 191 9.4 5.1 19 4.2 9.9 11 2.9 4.9 3.5 80 134 37 6.9 13 12 2.6 5.3 4.1 4.4 3.7 17 7.9 58 109 22 9.1 4.2 3.0 3.9 3.8 3.6 5.9 3.7 13 6.0 4.7 18 7.8 153 135 132 4.1 218 82 37 14 6.5 4.1 8.9 4.4 15 15 3.5 6.5 3.B 3.6 13 11 161 90 8.1 4.0 3.9 7.1 20 121 50 9.9 3.8 3.9 16 3.4 3.8 4.4 3.5 12 14 3.3 9.1 3.9 4.2 3.5 11 9.1 243 49 3.8 42 7.6 18 3.3 8.8 4.1 4.2 3.6 13 8.4 238 48 4.4 4.9 4.9 3.9 9.2 7.5 19 3.5 4.4 3.8 15 7.8 367 96 4.2 20 3.9 3.9 4.1 4.0 11 7.5 347 256 50 4.9 4.5 7.2 7.8 265 30 4.7 4.2 21 3.8 3.8 4.0 3.9 11 351 3.5 6.7 3.8 4.1 8.0 313 110 13 4.0 4.1 22 4.0 12 8.0 7.7 3.5 6.2 4.0 3.8 4.0 99 8.3 5.1 3.8 253 3.9 24 25 6.4 3.8 7.5 9.2 4.4 3.8 11 334 332 4.1 3.8 7.4 340 723 25 10 4.3 10 4.1 3.8 5.0 26 4.1 6.1 4.1 3.7 4.1 10 6.8 209 458 18 8.5 4.0 6.7 6.7 13 27 4.5 6.0 4.0 3.8 10 425 163 5.4 4.5 5.2 7.0 5.2 4.2 4.9 6.0 3.9 3.8 20 279 4.7 28 6.5 63 47 29 3.8 4.1 3.7 4.1 13 7.0 112 4.1 30 4.1 4.1 3.8 ___ 12 7.4 214 4.1 4.1 4.3 4.9 31 3.7 11 185 150.2 TOTAL 109.9 3.55 177-4 127.5 109.0 3.76 4743 768.4 174.0 128.4 421.9 280.8 5518.7 4.14 4.11 13.6 9.36 178 5.91 158 24.8 5.61 5.01 MEAN 9.2 3.7 352 MAX 4.9 4.7 4.1 47 20 425 723 132 10 19 3.8 255 6.7 557 2.6 218 3.7 3.5 3.7 MIN 18 4.9 3.7 AC-FT 837 10950 9410 1520 298 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1992, BY WATER YEAR (WY) 25.7 150 913 245 43.0 26.9 MEAN 15.8 28.4 29.6 30.9 38.8 55.0 1985 122 1985 114 1985 139 1984 159 1980 633 1980 2729 1980 121 1983 MAX 156 4430 1288 248 1983 1983 1983 (WY) 1984 3.99 3.76 5.94 4.27 MIN 4.45 4.00 4.38 3.45 8.66 3.61 (WY) 1992 1991 1991 1991 1992 1991 1991 1982 1989 1987 1987 1988 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1980 - 1992 12709.2 ANNUAL TOTAL ANNUAL MEAN 24917.1 34.7 68.3 HIGHEST ANNUAL MEAN 700 1983 LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 19.4 1989 2400 723 Jun 25 5460 Jun 21 1983 Jun May 11 LOWEST DAILY MEAN Oct 14 1989 1.9 2.6 Oct 12 1.0 ANNUAL SEVEN-DAY MINIMUM 2.7 Apr 19 2.9 Oct 7 2.3 Sep 26 1986 Jun 24 5810 Jun 21 1983 INSTANTANEOUS PEAK FLOW 1130 INSTANTANEOUS PEAK STAGE 4.63 8.02 Jun 21 1983 Jun 24 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 124200 49420 25210 329 63 112 4.1 5.2 9.4 90 PERCENT EXCEEDS 3.7 4.0 # 06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK NEAR TIMNATH, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1979 to current year. WATER-QUALITY DATA WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | |---|---|--|--|---|---|--|--|--|---|--|---| | ОСТ
18 | 1230 | 3.3 | 1940 | 8.2 | 11.5 | 9.3 | 1000 | 270 | 90 | | 223 | | NOV
14 | 1030 | 5.8 | 2250 | 8.3 | 6.0 | 11.7 | 1200 | 300 | 100 | | 205 | | DEC
19 | 0945 | 4.1 | | 8.1 | 3.0 | 11.0 | 1200 | 310 | 100 | 110 | 255 | | JAN | | | | | | | | | | | | | 22
FEB | 1500 | 3.9 | 2140 | 7.6 | 2.5 | 11.8 | 1100 | 290 | 96 | | 260 | | 19
MAR | 1400 | 4.0 | 2110 | 8.4 | 4.0 | 12.1 | 1200 | 300 | 98 | | 228 | | 26
APR | 1130 | 10 | | 8.5 | 10.0 | 9.2 | 690 | 180 | 59 | | 229 | | 30
MAY | 1000 | 7.4 | | 8.1 | 17.5 | 9.5 | 850 | 210 | 78 | | 211 | | 21 | 1510 | 507 | | | 13.0 | 9.2 | 28 | 7.9 | 1.9 | | 27 | | JUN
25 | 1400 | 744 | 105 | 7.8 | 14.0 | 9.5 | 39 | 11 | 2.7 | | 33 | | JUL
16 | 0930 | 5.1 | | 8.0 | 15.5 | 6.0 | 500 | 130 | 43 | 50 | 135 | | AUG
06 | 1050 | 4.7 | | 8.0 | 21.5 | 7.5 | 860 | 220 | 76 | | 179 | | SEP 24 | 1415 | 4.0 | 1580 | 8.4 | 18.0 | 10.6 | 730 | 180 | 67 | | 186 | | | | | | | SOLIDS, | NITRO- | NITRO- | NITRO- | NITRO- | DUOG | PHOS- | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | GEN, NITRATE DIS- SOLVED (MG/L AS N) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN, AMMONIA DIS- SOLVED (MG/L AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
18 | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS | AT 180
DEG. C
DIS-
SOLVED | NITRATE
DIS-
SOLVED
(MG/L | NITRITE
DIS-
SOLVED
(MG/L | NO2+NO3
DIS-
SOLVED
(MG/L | AMMONIA
DIS-
SOLVED
(MG/L | PHORUS
DIS-
SOLVED
(MG/L | ORTHO,
DIS-
SOLVED
(MG/L | | OCT
18
NOV
14 | DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | RIDE,
DIS-
SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
18
NOV
14
DEC
19 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
18
NOV
14
DEC
19
JAN
22 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRATE
DIS-
SOLVED
(MG/L
AS N)
0.79 | NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.03 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.03 | | OCT
18
NOV
14
DEC
19
JAN
22
FEB
19 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE
DIS-
SOLVED
(MG/L
AS N)
0.79
2.0 | NITRITE
DIS-
SOLVED
(MG/L
AS N)
0.03
0.04 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.03
<0.01 | | OCT
18
NOV
14
DEC
19
JAN
22
FEB | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | NITRATE DIS-
SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 | NITRITE DIS-
SOLVED (MG/L
AS N) 0.03 0.04 0.02 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06 | PHORUS
DIS-
SOLVED
(MG/L
AS P) | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.03
<0.01
0.01 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS-
SOLVED (MG/L
AS N) 0.79 2.0 1.8 2.0 1.7 | NITRITE DIS-
SOLVED (MG/L
AS N) 0.03 0.04 0.02 0.02 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 | ORTHO,
DIS-
SOLVED
(MG/L
AS P)
0.03
<0.01
0.01
0.02 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS-
SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 1.7 1.1 | NITRITE DIS-
SOLVED (MG/L
AS N) 0.03 0.04 0.02 0.02 0.02 0.02 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0
1.7 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15
0.04 | PHORUS
DIS-
SOLVED
(MG/L
AS P)

<0.01

<0.01 | ORTHO, DIS- SOLVED (MG/L AS P) 0.03 <0.01
0.02 <0.01 <0.01 <0.01 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS- SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 1.7 1.1 0.67 | NITRITE DIS-
SOLVED (MG/L AS N) 0.03 0.04 0.02 0.02 0.02 0.02 0.03 <0.01 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0
1.7
1.1 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15
0.04
0.05 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 <0.01 0.03 | ORTHO, DIS- SOLVED (MG/L AS P) 0.03 <0.01 0.02 <0.01 <0.01 <0.01 0.02 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS-
SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 1.7 1.1 0.67 | NITRITE DIS-
SOLVED (MG/L AS N) 0.03 0.04 0.02 0.02 0.02 0.02 0.03 <0.01 <0.01 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0
1.7
1.1
0.70
0.06 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15
0.04
0.05
0.04 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 <0.01 0.03 0.02 | ORTHO, DIS- SOLVED (MG/L AS P) 0.03 <0.01 0.02 <0.01 <0.01 <0.01 0.02 0.03 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL 16 AUG | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS- SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 1.7 1.1 0.67 0.37 | NITRITE DIS- SOLVED (MG/L AS N) 0.03 0.04 0.02 0.02 0.02 0.02 0.03 <0.01 <0.01 0.03 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0
1.7
1.1 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15
0.04
0.05
0.04
0.07 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 <0.01 0.03 | ORTHO, DIS- SOLVED (MG/L AS P) 0.03 <0.01 0.02 <0.01 <0.01 <0.01 0.02 0.03 0.05 | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL 16 | DIS-
SOLVED
(MG/L
As SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) 1990 | NITRATE DIS-
SOLVED (MG/L AS N) 0.79 2.0 1.8 2.0 1.7 1.1 0.67 | NITRITE DIS-
SOLVED (MG/L AS N) 0.03 0.04 0.02 0.02 0.02 0.02 0.03 <0.01 <0.01 | NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
0.82
2.0
1.8
2.0
1.7
1.1
0.70
0.06 | AMMONIA
DIS-
SOLVED
(MG/L
AS N)
0.09
0.18
0.06
0.15
0.04
0.05
0.04 | PHORUS DIS- SOLVED (MG/L AS P) <0.01 <0.01 <0.01 0.03 0.02 | ORTHO, DIS- SOLVED (MG/L AS P) 0.03 <0.01 0.02 <0.01 <0.01 <0.01 0.02 0.03 | # 06752280 CACHE LA POUDRE RIVER ABOVE BOX ELDER CREEK NEAR TIMNATH, CO--Continued WATER-QUALITY RECORDS | DATE | TIME | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | |---|--|---|---|---|--|--|---|---|--|---| | OCT
18 | 1230 | | | 1 | | | | 5 | <1 | 290 | | NOV
14 | 1030 | | | <1 | | | | | 1 | 250 | | DEC
19
JAN | 0945 | <10 | <1 | <1 | <1.0 | 1 | 1 | | 1 | 180 | | 22
FEB | 1500 | | | <1 | | | | 2 | 1 | 260 | | 19
MAR | 1400 | | | <1 | | | | 4 | <1 | 150 | | 26
APR | 1130 | | | <1 | | | | | <1 | 360 | | 30
MAY | 1000 | | | <1 | | | | 2 | <1 | 470 | | 21
JUN | 1510 | | | <1 | | | | 4 | 1 | 1200 | | 25
JUL | 1400 | | | <1 | | | | 3 | 2 | 1200 | | 16
AUG | 0930 | <10 | <1 | <1 | <1.0 | 1 | <1 | 2 | 1 | 350 | | 0 6
SEP | 1050 | | | <1 | | | | 2 | <1 | 430 | | 24 | 1415 | | | <1 | | - - | | 1 | <1 | 350 | | | | | | | | | | | | | | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | DATE OCT 18 | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | NIUM,
DIS-
SOLVED
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | | OCT
18
NOV
14 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L | TOTAL
RECOV-
ERABLE
(UG/L | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
18
NOV
14
DEC | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) | DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
18
NOV
14
DEC
19
JAN
22 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG)
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 <1 <2 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 <1 2 <1 | DIS-
SOLVED
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV- ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL 16 | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 <1 <1 2 <1 | DIS-
SOLVED
(UG/L
AS PB) |
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED
(UG/L
AS AG)
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2
a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | | OCT 18 NOV 14 DEC 19 JAN 22 FEB 19 MAR 26 APR 30 MAY 21 JUN 25 JUL | TOTAL RECOV- ERABLE (UG/L AS PB) 1 3 1 <1 <1 2 <1 2 3 | DIS- SOLVED (UG/L AS PB) <1 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL RECOV- ERABLE (UG/L AS HG) <0.1 | DIS-
SOLVED
(UG/L
AS HG) | DIS- SOLVED (UG/L AS NI) <1 | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL RECOV-ERABLE (UG/L AS AG) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < | DIS-
SOLVED (UG/L
AS AG) a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 a<0.2 | DIS-
SOLVED
(UG/L
AS ZN) | a-Analysis based on preliminary method. #### 06752500 CACHE LA POUDRE RIVER NEAR GREELEY, CO LOCATION.--Lat 40°25'04", long 104°38'22", in NW¹/4 sec.11, T.5 N., R.65 W., Weld County, Hydrologic Unit 10190007, on right bank 25 ft downstream from highway bridge, 2.9 mi east of courthouse in Greeley, and 3.0 mi upstream from mouth. DRAINAGE AREA. -- 1,877 mi2. PERIOD OF RECORD.--Streamflow records, March to October 1903, August to November 1904, January 1914 to December 1919, June 1924 to current year. Monthly discharge only for some periods, published in WSP 1310. Water-quality data available, November 1951 to September 1952, August 1954 to August 1956, December 1963 to September 1966, October 1967 to September 1968, October 1970 to September 1982. REVISED RECORDS.--WSP 1440: 1935, 1938 (M), 1942-43. WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,610 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1710 or 1730 for history of changes prior to Dec. 14, 1933. REMARKS.--Estimated daily discharges: Apr. 14, 15, June 17-19, 29, July 4-6, and July 28-30. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, diversion for municipal supply, diversions upstream from station for irrigation of about 250,000 acres, and return flow from irrigated areas. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHAR | GE, CUBIC | FEET PE | | WATER
MEAN | YEAR OCTOBER | R 1991 1 | TO SEPTEM | MBER 1992 | | | |---|---|--|------------------------------------|--|------------------------------------|--|--|--|-------------------------------------|--|-------------------------------------|--| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 66
70
69
71
73 | 88
86
83
90
90 | 83
88
90
92
93 | 91
90
93
95
85 | 101
99
102
103
101 | 128
138
129
197
248 | 164
164
150
134
119 | 35
27
22
83
31 | 64
70
64
52
44 | 223
112
90
70
50 | 40
41
47
51
57 | 71
74
71
77
78 | | 6
7
8
9
10 | 65
73
72
77
82 | 91
87
86
84
88 | 93
90
87
89
94 | 93
94
80
94
91 | 101
98
95
91
93 | 187
163
181
192
213 | 127
127
135
135
137 | 21
24
23
25
21 | 31
37
34
35
40 | 40
26
26
27
26 | 56
61
45
41
50 | 69
64
71
76
75 | | 11
12
13
14
15 | 81
77
90
92 | 90
91
90
91
92 | 96
97
94
87
90 | 90
90
88
94
77 | 94
93
96
110
135 | 206
215
222
227
214 | 129
125
128
70
50 | 25
17
21
28
31 | 35
36
33
31
208 | 26
28
29
39
42 | 55
56
62
60
53 | 86
80
77
69
63 | | 16
17
18
19
20 | 93
90
83
78
77 | 99
114
109
131
108 | 91
95
92
96
92 | 88
91
92
88
92 | 126
129
129
128
128 | 207
204
199
205
198 | 90
76
54
45
39 | 25
31
23
23
22 | 150
90
70
60
48 | 41
44
43
40
94 | 44
46
64
62
56 | 58
57
58
60
52 | | 21
22
23
24
25 | 73
69
73
82
86 | 107
106
101
98
100 | 88
84
89
86
80 | 90
93
94
99
99 | 136
132
132
137
134 | 188
184
183
179
171 | 34
38
43
42
34 | 18
24
21
17
19 | 44
42
33
59
570 | 205
128
118
104
88 | 54
62
72
302
342 | 58
63
63
64
67 | | 26
27
28
29
30
31 | 83
84
88
92
90
87 | 100
99
93
93
83 | 88
94
90
87
90
90 | 101
101
100
102
103
104 | 131
127
131
132 | 170
170
242
207
177
168 | 29
29
29
28
28 | 22
37
71
96
49
88 | 758
623
336
240
264 | 137
107
90
65
40
41 | 187
151
110
96
85
80 | 64
64
66
60
56 | | TOTAL MEAN MAX MIN AC-FT | 2467
79.6
93
65
4890 | 2868
95.6
131
83
5690 | 2795
90.2
97
80
5540 | 2882
93.0
104
77
5720 | 3344
115
137
91
6630 | 5912
191
248
128
11730 | 2532
84.4
164
28
5020
, BY WATER YE | 1020
32.9
96
17
2020 | 4201
140
758
31
8330 | 2239
72.2
223
26
4440 | 2588
83.5
342
40
5130 | 2011
67.0
86
52
3990 | | MEAN
MAX
(WY)
MIN
(WY) | 94.5
337
1962
7.13
1935 | 113
368
1962
6.63
1935 | 104
237
1985
34.5
1935 | 94.5
249
1984
37.4
1935 | 102
311
1984
38.1
1935 | 103
343
1980
33.9
1935 | 115
836
1983
7.77
1935 | 223
3045
1980
9.58
1954 | 448
4786
1983
9.45
1977 | 98.6
1475
1983
13.0
1954 | 48.9
329
1983
5.43
1940 | 54.2
187
1984
9.53
1948 | | ANNUAL TO ANNUAL ME HIGHEST A LOWEST AN ANNUAL SE INSTANTAN ANNUAL RU 10 PERCEN 50 PERCEN 90 PERCEN | OTAL EAN ANNUAL ME NUAL ME ALLY MEA EVEN-DAY NEOUS PE NE | EAN
AN
AN
MINIMUM
AK FLOW
AK STAGE
C-FT)
OS | FOR 19 | 991 CALEN 41964 115 1850 12 16 83240 184 84 22 | Jun 3
Jul 6
Jul 2 | | | Jun 26
May 12
May 20
Jun 26
Jun 26 | | 131
872
27.9
6090
.80
1.5
6360
8.92
95260
189
74
15 | Jun 1
Oct
Aug 2
Jun 1 | - 1992
1983
1940
4 1983
3 1946
2 1946
4 1983
4 1983 | a-Also occurred May 24. b-Maximum gage height, 8.95 ft, Jun 22, 1983. #### 06754000 SOUTH PLATTE RIVER NEAR KERSEY, CO LOCATION.--Lat 40°24'44", long 104°33'46", in NW¹/4SW¹/4 sec.9, T.5 N., R.64W., Weld County, Hydrologic Unit 10190003, on downstream side of bridge on State Highway 37, 1.9 mi north of railroad in Kersey, and 2.5 mi downstream from Cache la Poudre River. PERIOD OF RECORD.--May 1901 to December 1903, March 1905 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "at Kersey" 1901-3. Statistical summary computed
for 1976 to current year. REVISED RECORDS.--WSP 1310: 1902, 1906, 1935(M). WSP 1730: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,575.77 ft above National Geodetic Vertical Datum of 1929. See WSP 1710 or 1730 for history of changes prior to July 3, 1935. REMARKS.--Estimated daily discharges: Oct. 2-8, and Nov. 3-8. Records fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 888,000 acres, and return flow from irrigated areas. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE CURIC PERT PER SECOND WATER VEAR OCTORER 1991 TO SEPTEMBER 1992 | | | DISCHAR | GE, CUBIC | FEET PE | | | YEAR OCTOBE
VALUES | R 1991 TO | O SEPTEME | 3ER 1992 | | | |----------|------------|-------------|------------|------------|------------|--------------|-----------------------|------------|-------------|--------------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 628 | 842 | 900 | 781 | 889 | 737 | 1550 | 389 | 1010 | 886 | 314 | 888 | | 2 | 670 | 809 | 887 | 757 | 889 | 746 | 1500 | 376 | 1790 | 705 | 310 | 823 | | 3 | 610 | 800 | 915 | 763 | 871 | 734 | 1350 | 307 | 1260 | 744 | 305 | 726 | | 4 | 600 | 790 | 892 | 790 | 871 | 872 | 1320 | 310 | 853 | 580 | 325 | 663 | | 5 | 5 60 | 780 | 903 | 758 | 880 | 2420 | 1290 | 236 | 808 | 470 | 386 | 609 | | 6 | 540 | 780 | 901 | 772 | 853 | 1730 | 1350 | 208 | 788 | 411 | 370 | 565 | | 7 | 590 | 780 | 898 | 836 | 835 | 1210 | 1300 | 210 | 823 | 276 | 392 | 486 | | 8 | 640 | 780 | 889 | 809 | 817 | 1120 | 1220 | 209 | 889 | 225 | 394 | 454 | | 9 | 646 | 787 | 879 | 906 | 799 | 1340 | 1080 | 239 | 1270 | 217 | 425 | 451 | | 10 | 664 | 81,8 | 870 | 941 | 816 | 1980 | 988 | 297 | 1680 | 217 | 410 | 433 | | 11 | 633 | 814 | 880 | 969 | 838 | 1990 | 864 | 438 | 1130 | 243 | 453 | 460 | | 12 | 664 | 802 | 872 | 1020 | 811 | 1940 | 796 | 459 | 958 | 289 | 473 | 537
558 | | 13
14 | 691 | 795 | 847 | 987
953 | 814 | 2040 | 780
880 | 383
339 | 1030
953 | 347
611 | 544
582 | 564 | | 15 | 671
690 | 857
971 | 828
829 | 953
872 | 831
850 | 2130
2070 | 1070 | 288 | 1190 | 401 | 580 | 544 | | | | | | | | | | | | | | | | 16
17 | 708
720 | 991
1040 | 833
840 | 881
937 | 818
806 | 1920
1800 | 982
1230 | 237
267 | 1070
790 | 329
607 | 572
509 | 497
480 | | 18 | 681 | 1180 | 825 | 947 | 805 | 1780 | 1380 | 291 | 598 | 632 | 558 | 495 | | 19 | 703 | 1330 | 843 | 901 | 810 | 1720 | 1220 | 336 | 444 | 510 | 576 | 523 | | 20 | 718 | 1360 | 836 | 889 | 799 | 1680 | 1160 | 287 | 340 | 513 | 418 | 523 | | 21 | 718 | 1260 | 822 | 927 | 809 | 1570 | 1160 | 265 | 436 | 827 | 363 | 474 | | 22 | 718 | 1240 | 815 | 933 | 817 | 1410 | 1130 | 365 | 442 | 956 | 450 | 472 | | 23 | 705 | 1200 | 816 | 921 | 798 | 1480 | 993 | 621 | 427 | 912 | 462 | 472 | | 24 | 704 | 1070 | 820 | 862 | 796 | 1320 | 815 | 729 | 420 | 764 | 1230 | 476 | | 25 | 718 | 1020 | 798 | 867 | 798 | 1180 | 730 | 613 | 1320 | 817 | 7090 | 460 | | 26 | 733 | 993 | 786 | 851 | 778 | 1170 | 693 | 896 | 21 60 | 943 | 4970 | 452 | | 27 | 724 | 985 | 776 | 903 | 753 | 1060 | 642 | 997 | 2600 | 853 | 2350 | 454 | | 28 | 686 | 980 | 795 | 925 | 732 | 1270 | 607 | 1180 | 1840 | 734 | 1540 | 462 | | 29 | 744 | 959 | 794 | 916 | 746 | 3060 | 502 | 1060 | 1390 | 443 | 1330 | 443 | | 30 | 854 | 909 | 790 | 889 | | 2070 | 468 | 883 | 1190 | 332 | 1110 | 462 | | 31 | 809 | | 792 | 889 | | 1560 | | 864 | | 294 | 973 | | | TOTAL | 21140 | 28722 | 26171 | 27352 | 23729 | 49109 | 31050 | 14579 | 31899 | 17088 | 30764 | 15906 | | MEAN | 682 | 957 | 844 | 882 | 818 | 1584 | 1035 | 470 | 1063 | 551 | 992 | 530 | | MAX | 854 | 1360 | 915 | 1020 | 889 | 3060 | 1550 | 1180 | 2600 | 956 | 7090 | 888 | | MIN | 540 | 780 | 776 | 757 | 732 | 734 | 468 | 208 | 340 | 217 | 305 | 433 | | AC-FT | 41930 | 56970 | 51910 | 54250 | 47070 | 97410 | 61590 | 28920 | 63270 | 33890 | 61020 | 31550 | | STATIST | ICS OF M | ONTHLY MEAN | N DATA FO | R WATER Y | EARS 1976 | - 1992 | , BY WATER Y | (EAR (WY) | | | | | | MEAN | 878 | 941 | 853 | 834 | 874 | 1016 | 1226 | 2717 | 2992 | 962 | 821 | 786 | | MAX | 3388 | 2585 | 1337 | 1434 | 1641 | 1852 | 3894 | 13060 | 14520 | 5784 | 2783 | 2079 | | (WY) | 1985 | 1985 | 1985 | 1984 | 1984 | 1983 | 1983 | 1980 | 1983 | 1983 | 1984 | 1984 | | MIN | 415 | 488 | 5 68 | 503 | 540 | 473 | 144 | 251 | 113 | 219 | 304 | 259 | | (WY) | 1978 | 1978 | 1982 | 1982 | 1978 | 1982 | 1982 | 1977 | 1977 | 1976 | 1981 | 1977 | | SUMMARY | STATIST | ICS | FOR 1 | 991 CALE | IDAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1976 | - 1992 | | ANNUAL | TOTAL | | ; | 299792 | | | 317509 | | | | | | | ANNUAL | MEAN | | | 821 | | | 868 | | | ^a 1242 | | | | | ANNUAL | | | | | | | | | 3631 | | 1983 | | | ANNUAL M | | | | | | | | | h 456 | | 1977 | | HIGHEST | DAILY M | EAN | | 9090 | Jun 3 | | 7090 | Aug 25 | | b ₁₆₈₀₀ | | 2 1980 | | | DAILY ME | | | 121 | May 15 | | 208 | May 6 | | 61 | | 26 1982 | | | | MINIMUM | | 154 | Jun 27 | | 244 | May 4 | | d 63 | | 25 1982 | | | ANEOUS P | | | | | | 10000 | Aug 25 | | d ₁₈₃₀₀ | | 2 1980 | | | | EAK STAGE | | | | | 8.49 | Aug 25 | | 10.31 | May | 2 1980 | | | RUNOFF (| | | 594600 | | | 629800 | | | 899500 | | | | | ENT EXCE | | | 1150 | | | 1330 | | | 2140 | | | | | ENT EXCE | | | 704 | | | 808 | | | 764 | | | | AO PERC | ENT EXCE | EDS | | 248 | | | 385 | | | 305 | | | a-Average discharge for 71 years (water years 1902-03, 1906-74), 777 ft³/s; 562900 acre-ft/yr, prior to a-Average discharge for '1 years (water years 1502-03, 1500 14,, 1.1 12,3, 55255 25,1), completion of Chatfield Dam. b-Maximum daily discharge for period of record, 31000 ft³/s, Jun 7, 1921. c-Minimum daily discharge for period of record, 28 ft³/s, Apr 30, 1955. d-Maximum discharge and stage for period of record, 31500 ft³/s, May 8, 1973, gage height, 11.73 ft. #### 06758500 SOUTH PLATTE RIVER NEAR WELDONA, CO LOCATION.--Lat 40°19'19", long 103°55'17", in SW¹/4SW¹/4 sec.7, T.4 N., R.58 W., Morgan County, Hydrologic Unit 10190003, on left bank 400 ft downstream from bridge on State Highway 144, 2.8 mi southeast of Weldona, and 4.2 mi upstream from Bijou Creek. DRAINAGE AREA. -- 13, 245 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1952 to current year. Statistical summary computed for 1976 to current year. REVISED RECORDS. -- WSP 1710: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,307.80 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Dec. 4-13. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | -1. | DISCUADO | E CUDIC | PP P P D | ED CECOND | WATED | YEAR OCTOBE | D 1001 | ro cedaema | rp 1002 | | | |-------------|--------------------------|--------------------|-------------|-----------------|-------------|--------------|--------------|------------------|----------------------|--------------------|--------------|---------------------| | | | DISCHARG | E, COBIC | reel r | | | VALUES | K 1991 . | IO SEPIEME | EK 1772 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 94 | 497 | 217 | 565 | 832 | 652 | 1310 | 268 | 886 | 228 | 210 | 547 | | 2
3 | 105
1 8 1 | 298
329 | 222
216 | 555
568 | 825
814 | 618
429 | 1270
1200 | 306
322 | 856
980 | 180
341 | 217
233 | 431
302 | | 4 | 268 | 319 | 200 | 560 | 802 | 365 | 1150 | 265 | 716 | 446 | 274 | 231 | | 5 | 299 | 301 | 180 | 564 | 805 | 401 | 1070 | 238 | 748 | 314 | 259 | 332 | | 6 | 326 | 304 | 160 | 538 | 799 | 1450 | 1240 | 199 | 856 | 233 | 299 | 482 | | 7
8 | 339
327 | 293
269 | 170
170 | 563
666 | 756
745 | 1020
818 | 1200
1120 | 154
145 | 895
9 4 3 | 138
92 | 331
345 | 4 94
371 | | 9 | 317 | 258 | 190 | 756 | 735 | 914 | 1070 | 141 | 992 | 224 | 309 | 316 | | 10 | 346 | 261 | 230 | 841 | 716 | 1130 | 966 | 164 | 1020 | 246 | 303 | 310 | | 11 | 354 | 255 | 260 | 859 | 718 | 1530 | 838 | 289 | 726 | 256 | 295 | 304 | | 12
13 | 374
384 | 177
140 | 300
330 | 865
871 | 728
679 | 1650
1720 | 779
709 | 422
358 | 650
697 | 271
238 | 334
383 | 318
359 | | 14 | 394 | 130 | 325 | 869 | 658 | 1680 | 684 | 308 | 802 | 251 | 421 | 358 | | 15 | 351 | 127 | 312 | 825 | 602 | 1660 | 764 | 277 | 758 | 314 | 456 | 351 | | 16 | 434 | 148 | 298 | 791 | 599 | 1610 | 886 | 251 | 625 | 207 | 451 | 333 | | 17
18 | 482
463 | 190 | 294
302 | 847
845 | 588 | 1390 | 871
1060 | 202
188 | 472
306 | 176
254 | 498
424 | 306
2 8 7 | | 19 | 444 | 199
262 | 302 | 847 | 544
538 | 1370
1320 | 1160 | 202 | 139 | 313 | 449 | 301 | | 20 | 452 | 386 | 357 | 826 | 533 | 1340 | 1110 | 213 | 181 | 268 | 413 | 369 | | 21 | 471 | 376 | 351 | 825 | 586 | 1300 | 1040 | 275 | 230 | 351 | 337 | 388 | | 22 | 472 | 366 | 329 | 825 | 649 | 1210 | 991 | 289 | 271 | 5 6 5 | 357 | 355 | | 23
24 | 460
499 | 326
298 | 326
433 | 816
805 | 654
651 | 1210
1250 | 881
713 | 373
511 | 260
152 | 383
293 | 345
654 | 360
367 | | 25 | 549 | 245 | 580 | 765 | 646 | 1200 | 537 | 648 | 75 | 208 | 1060 | 384 | | 26 | 574 | 214 | 590 | 768 | 627 | 1100 | 494 | 606 | 459 | 503 | 3140 | 410 | | 27 | 604 | 208 | 590 | 769 | 657 | 982 | 349 | 709 | 415 | 745 | 2630 | 430 | |
28
29 | 541
537 | 215
224 | 584
589 | 813
835 | 662
650 | 790
976 | 270
219 | 936
1160 | 456
19 6 | 447
371 | 1520
1080 | 466
483 | | 30 | 586 | 217 | 555 | 847 | | 2210 | 252 | 1060 | 212 | 308 | 872 | 491 | | 31 | 674 | | 540 | 837 | | 1430 | | 914 | | 221 | 722 | | | TOTAL | 12701 | | 10504 | 23526 | 19798 | 36725 | | 12393 | 16974 | 9385 | 19621 | 11236 | | MEAN
MAX | 410
6 74 | 261
4 97 | 339
590 | 759
871 | 683
832 | 1185
2210 | 873
1310 | 400
1160 | 566
10 2 0 | 303
745 | 633
3140 | 375
547 | | MIN | 94 | 127 | 160 | 538 | 533 | 365 | 219 | 141 | 75 | 92 | 210 | 231 | | AC-FT | 25190 | 15530 | 20830 | 46660 | 39270 | 72840 | 51970 | 24580 | 33670 | 18620 | 38920 | 22290 | | STATIST | CICS OF MC | ONTHLY MEAN | DATA FOR | R WATER | YEARS 1976 | - 1992 | , BY WATER Y | EAR (WY |) | | | | | MEAN | 563 | 526 | 609 | 736 | 684 | 574 | 919 | 2003 | 2101 | 681 | 648 | 625 | | MAX | 3119 | 2298 | 1266 | 1443 | 1562 | 1494 | | 10130 | 12310 | 4754 | 2208 | 2118 | | (WY)
MIN | 1985
134 | 1985
100 | 1986
130 | 1984
337 | 1984
231 | 1983
132 | 1983
119 | 1980
183 | 19 8 3
101 | 1983
191 | 1984
237 | 1984
123 | | (WY) | 1977 | 1977 | 1978 | 1978 | 1978 | 1978 | 1982 | 1981 | 1977 | 1981 | 1981 | 1977 | | SUMMARY | STATISTI | CS | FOR 19 | 991 CALE | NDAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1976 | - 1992 | | ANNUAL | TOTAL | | 3 | 68229 | | | 206898 | | | | | | | ANNUAL | | | | 461 | | | 565 | | | a
889 | | 1983 | | | ANNUAL ME | | | | | | | | | 2995
231 | | 1983 | | | DAILY ME | | | 4320 | Jun 4 | | 3140 | Aug 26 | 1 | ^b 15300 | Jun | 15 1983 | | | DAILY MEA | | | ^C 84 | Sep 27 | | 75 | Jun 25 | | d ₄₂ | | 7 1976 | | | SEVEN-DAY | | | 88 | Sep 25 | | 159 | Nov 12 | 4 | 44 | | 2 1976 | | | 'ANEOUS PE
'ANEOUS PE | | | | | | 4010
6.75 | Aug 26
Aug 26 | · | 16700
9.72 | | 29 1983
15 1983 | | | RUNOFF (A | | 3 | 333700 | | | 410400 | Aug 20 | | 643900 | Juli | 13 1303 | | 10 PERC | ENT EXCEE | DS | | 828 | | | 1060 | | | 1710 | | | | | ENT EXCEE | | | 321 | | | 450
200 | | | 459
155 | | | | JU PERC | ENT EXCEE | פחי | | 150 | | | 209 | | | 133 | | | a-Average discharge for 22 years (water years 1953-74), 572 ft³/s; 414400 acre-ft/yr, prior to completion of Chatfield Dam. b-Maximum daily discharge for period of record, 20800 ft³/s, May 9, 1973. c-Also occurred Sep 28, 29. e-Maximum daily discharge for period of record, 39 ft³/s, May 19, 1972. e-Maximum discharge and stage for period of record, 26800 ft³/s, May 8, 1973, gage height, 11.68 ft, from rating curve extended above 16000 ft³/s. # 06758500 SOUTH PLATTE RIVER NEAR WELDONA, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1967 to September 1968, October 1971 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 |---|-----------|--|--|---|--|---|--|--|-------------------------------------|--|--|---|--|--|---|--|---|---|---|-------------------| | DATE | | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFI
CON-
DUCT
ANCE
(US/C | C
- P
- (SI | 'AND-
IRD | TEMPI
ATUI
WATI
(DEG | RE
ER | OXYGE
DIS-
SOLVI
(MG/L | FN,
ED (| COLI
FORM
FECAI
0.7
UM-M
COLS | I, T
L, F
K
IF (| STREF
OCOCC
ECAL,
F AGA
COLS.
PER | CI HA
NES
AR TO
(N | ARD-
SS
DTAL
MG/L
AS
CO3) | | UM
S-
LVED
S/L | MAGNE
SIUM,
DIS-
SOLVE
(MG/L
S MG) | SODI
DI
D SOL | S-
VED
MG/L | | NOV
21 | | 1130 | 309 | 1880 | . 8 | . 2 | 6.1 | 0 | 10.8 | | 200 | | 420 | é | 570 | 16 | 50 | 65 | 1 | 60 | | FEB
26. | | 1215 | 607 | 1620 | | .3 | 6.0 | | 10.8 | | | | 37 | | 550 | 13 | | 54 | | .40 | | MAY | 07.
AUG | | 1230 | 192 | 1900 | | . 5 | 17.9 | | 10.3 | | 96 | | 140 | | 90 | 14 | 10 | 59 | | 40 | | 19. | • • | 1225 | 475 | 1870 | 8 | . 2 | 19.0 | 0 | 8.1 | | 520 | | 1100 | 6 | 80 | 15 | 0 | 74 | 1 | .60 | | | DATE | SODI
AD
SORP
TIC
RATI |)- S
)- D
)N SO
(M | I UM, L
IS-
LVED
G/L | ALKA-
INITY
LAB
(MG/L
AS
CACO3) | SULFA
DIS-
SOLV
(MG/
AS SO | ED
L | CHLORIDE DIS-SOLVI | , 1
ED :
L | FLUO-
RIDE,
DIS-
SOLVE
(MG/L
AS F) | D | ILICA
DIS-
SOLVE
(MG/L
AS
SIO2) | , RE
AT
D D | DLIDS,
SIDUE
180
DEG. C
DIS-
GOLVED | SOLI
SUM
CONS
TUEN
DI
SOL
(MG | OF
TI-
TS,
S-
VED | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT | s (| LIDS,
DIS-
OLVED
TONS
PER
DAY) | | | FEB
26 | | 3 | 8 | .9 | 279 | 580 | | 89 | | 0.8 | | 18 | | 1310 | 12 | 80 | 1.78 | | 1090 | | | | | 3 | 7 | . 8 | 245 | 470 | | 78 | | 0.8 | | 12 | | 1080 | 10 | 70 | 1.47 | | 1770 | | | | | 3 | 8 | . 1 | 255 | 570 | | 94 | | 1.2 | | 12 | | 1250 | 12 | 00 | 1.70 | | 648 | | | AUG
19 | | 3 | 8 | .3 | 274 | 640 | | 80 | | 1.0 | | 17 | | 1380 | 13: | 20 | 1.88 | | 1770 | | | 1 | DATE | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | G
NIT
D
SO
(M | EN, G
RITE M
IS- O
LVED
G/L | NITRO-
EN, AM-
ONIA +
RGANIC
TOTAL
(MG/L
AS N) | NITR
GEN
NO2+N
TOTA
(MG/
AS N | , 1
03
L
L | NITRO
GEN,
NO2+NO
DIS-
SOLVI
(MG/I
AS N) | , 1
03
- AN
ED 2 | NITRO
GEN,
MMONI.
TOTAL
(MG/L
AS N) | -
А | NITRO
GEN,
MMONI
DIS-
SOLVE
(MG/L
AS N) | A P
PH
D T | HOS-
ORUS
OTAL
MG/L
S P) | PHOS
PHORI
DIS
SOL'
(MG) | US
S-
VED
/L | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P) | PHO
O
D
SO
(M | HOS-
ORUS
RTHO,
IS-
LVED
G/L
P) | | | | | 0.03 | 0. | 04 | 1.1 | 7.0 | | 7.0 | (| 0.18 | | 0.17 | 0 | .46 | 0.3 | 0 | 0.31 | 0 | .30 | | | | | 0.05 | 0. | 05 | 0.80 | 6.9 | | 6.8 | (| 0.03 | | 0.04 | 0 | .93 | 0.7 | 7 | 0.81 | 0 | .70 | | | | | 0.08 | 0. | 07 | 0.60 | 4.5 | | 4.5 | (| 0.02 | | 0.03 | 0 | .33 | 0.2 | 9 | 0.26 | 0 | .26 | | | AUG
19 | | 0.03 | 0. | 03 | 2.0 | 5.5 | | 5.6 | (| 0.03 | | 0.03 | 0 | .46 | 0.18 | В | 0.17 | 0 | .16 | | | | | ATE | | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BER
LIUM
DIS-
SOLV
(UG/
AS B | , BO
ED SO
L (| DRON,
DIS-
DLVED
UG/L
S B) | 02
(U | MIUM
DIS-
LVED
UG/L
CD) | MIU
DIS
SOL | VED
VED | COBA
DIS
SOLV
(UG
AS | ED
/L | COPPER
DIS-
SOLVE
(UG/I
AS CU | D SC | RON,
DIS-
DLVED
JG/L
G FE) | LEAD
DIS
SOLV
(UG/
AS P | ED
L | ITHIUM
DIS+
SOLVED
(UG/L
AS LI) |) | | | NOV
21 | | 1130 | 35 | <0 | .5 | 340 | | <1.0 | | <5 | | <3 | <1 | 0 | 4 | < | 10 | 56 | j | | | FEB
26 | | 1215 | 36 | <0 | 1.5 | 280 | | <1.0 | | <5 | | <3 | <1 | 0 | <3 | | 10 | 44 | | | | | | 1230 | 45 | <0 | .5 | 300 | | <1.0 | | <5 | | <3 | <1 | 0 | <3 | < | 10 | 39 |) | | | AUG
19 | | 1225 | 52 | <0 | .5 | 340 | | <1.0 | | <5 | | <3 | <10 | 0 | 5 | < | 10 | 54 | | | | | | DATE | NE
D
SO
(U | NGA-
SE,
IS-
LVED
G/L | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | DI
SC
(U | CKEL,
IS-
OLVED
JG/L
IG/L | SOI
(UC | VER,
S-
LVED
S/L
AG) | D
SO:
(U | RON-
IUM,
IS-
LVED
G/L
SR) | VAN
DIU
DI
SOL
(UG
AS | M,
S-
VED
/L | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) | N
S
(| ELE-
IUM,
DIS-
OLVED
UG/L
S SE) | | | | | | | | OV
21
EB | | 22 | <10 | < | (10 | <1. | . 0 | 1 | 900 | <6 | | 7 | | 4 | | | | | | | | 26 | | 8 | <10 | < | <10 | <1. | . 0 | 1 | 500 | <6 | | 9 | | 4 | | | | | | | | 07 | : | 17 | 10 | < | 10 | <1. | . 0 | 1 | 700 | <6 | | 8 | | 6 | | | | | | | A | UG
19 | | 24 | <10 | < | <10 | <1. | . 0 | 1 | 900 | <6 | | 8 | | 4 | | | | ### 06764000 SOUTH PLATTE RIVER AT JULESBURG, CO LOCATION.--Lat 40°58'46", long 102°15'15", in NW¹/4NE¹/4 and NE¹/4SE¹/4 (two channels) sec.33, T.12 N., R.44 W., Sedgwick County, Hydrologic Unit 10190018, on left bank of channel 4 (left channel) 215 ft downstream from bridge, and on right bank of channel 2, 5 ft downstream from bridge on U.S. Highway 385, 0.9 mi southeast of Julesburg, 3.0 mi upstream from Colorado-Nebraska State line, and 8 mi downstream from Lodgepole Creek. DRAINAGE AREA.--23,193 m12. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1902 to current year. Monthly discharge only for some periods, published in WSP 1310. Published as "near Julesburg" 1903-8, 1915-16, and as "at Ovid" 1922-24. REVISED RECORDS.--WSP 1310: 1902, 1906-7, 1948(P). WSP 1440: 1903-4. WDR CO-86-1: Drainage area. GAGE. -- Two water-stage recorders with satellite telemetry. Datum of gages is 3,446.76 ft above National Geodetic Vertical Datum of 1929. See WSP 1710 or 1730 for history of changes
prior to Oct. 1, 1956. Since Oct. 1, 1956, water-stage recorders on channels nos. 2 and 4. Channel no. 2: Oct. 1 1956, to Sept. 22, 1965, at site 300 ft downstream at present datum. Channel no. 4: Oct. 1, 1956 to Dec. 10, 1958, at site 135 ft downstream at present datum. Since May 11, 1973, supplementary water-stage recorder on channel no. 2 at bridge 800 ft upstream at same datum. REMARKS.--Estimated daily discharges: Jan. 12-22, June 15-17, July 1-9, 25, July 28 to Aug. 12, and Aug. 18-28. Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of 1,200,000 acres upstream from station, and return flow from irrigated areas. COOPERATION .-- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOB | ER 1991 | O SEPTEM | BER 1992 | | | |--------------------------------------|--|-------------------------------------|--|--|---------------------------------------|--|--------------------------------------|--|---------------------------------------|---------------------------------------|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 169
195
204
232
223 | 95
85
100
124
136 | 73
82
74
125
170 | 338
338
356
370
410 | 1240
1270
1270
1170
1140 | 944
935
944
983
1080 | 522
925
1140
1420
1390 | 155
134
117
108
104 | 129
177
161
153
149 | 856
762
681
616
565 | 103
107
98
92
89 | 1680
1330
1130
957
832 | | 6
7
8
9
10 | 230
236
229
220
216 | 180
175
163
138
121 | 230
235
206
198
224 | 467
586
607
599
627 | 1060
905
837
804
771 | 954
976
1020
1320
1310 | 1260
1200
1240
1340
1280 | 83
61
54
48
39 | 137
126
115
136
119 | 514
478
432
373
310 | 90
131
140
134
112 | 717
667
589
554
517 | | 11
12
13
14
15 | 210
181
178
190
184 | 114
110
108
104
106 | 248
255
257
267
269 | 748
946
979
868
775 | 763
764
770
803
963 | 1360
1380
1590
1830
1820 | 1160
860
729
650
624 | 33
28
28
28
27 | 102
101
135
184
499 | 198
127
124
114
91 | 102
106
102
77
78 | 527
492
446
438
446 | | 16
17
18
19
20 | 171
148
125
112
109 | 104
108
109
104
95 | 284
289
299
311
311 | 336
311
286
433
784 | 1010
1060
1000
917
873 | 1800
1770
1870
1880
1920 | 573
504
462
417
384 | 28
27
25
23
23 | 1400
1520
813
658
605 | 127
141
103
95
87 | 84
136
181
293
290 | 458
493
534
534
523 | | 21
22
23
24
25 | 104
104
98
95
91 | 92
76
71
70
75 | 309
281
285
278
296 | 799
930
978
1060
1160 | 959
1040
1090
1190
1190 | 1910
1780
1580
1380
1160 | 377
387
411
449
385 | 24
28
31
34
45 | 592
518
404
271
254 | 87
81
101
296
238 | 241
203
178
223
383 | 523
505
508
516
518 | | 26
27
28
29
30
31 | 91
96
100
97
104
95 | 77
79
80
81
80 | 303
299
328
347
333
340 | 1410
1490
1440
1460
1460
1410 | 1190
1080
1040
989 | 854
650
622
578
515
468 | 322
285
263
234
182 | 41
41
44
46
48
54 | 277
1280
1170
1070
986 | 199
171
168
152
105
85 | 535
724
1040
2570
2740
2100 | 512
512
504
495
478 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4837
156
236
91
9590 | 3160
105
180
70
6270 | 7806
252
347
73
15480 | 24761
799
1490
286
49110 | 29158
1005
1270
763
57830 | 39183
1264
1920
468
77720 | 21375
712
1420
182
42400 | 1609
51.9
155
23
3190 | 14241
475
1520
101
28250 | 8477
273
856
81
16810 | 13482
435
2740
77
26740 | 18935
631
1680
438
37560 | | | | | | | | | BY WATER | | | 262 | 154 | 210 | | MEAN
MAX
(WY)
MIN
(WY) | 287
2427
1985
5.85
1904 | 352
2358
1985
23.0
1911 | 398
1371
1985
18.8
1912 | 508
1566
1970
89.9
1965 | 599
1864
1930
78.9
1935 | 552
2200
1939
56.9
1904 | 563
2808
1983
17.3
1904 | 1089
9922
1980
24.1
1911 | 1390
12200
1983
8.33
1910 | 268
5059
1983
2.15
1903 | 154
1346
1983
2.52
1902 | 218
1964
1984
5.60
1903 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEN | DAR YEAR | , | FOR 1992 WA | ATER YEAR | | WATER YE | ARS 1902 | - 1992 | | LOWEST | MEAN
ANNUAL M
ANNUAL ME | AN | 1 | .24948
342 | | | 187024
511 | | | 535
2882
76.3 | | 1983
1956 | | LOWEST
ANNUAL
INSTANT | DAILY ME
DAILY MEA
SEVEN-DAY
ANEOUS PE
ANEOUS PE | N
MINIMUM
AK FLOW | | 1880
² 31
35 | Jun 7
Aug 26
Aug 25 | | 2740
b23
25
3040
6.01 | Aug 30
May 19
May 15
Aug 29
L Aug 29 | | 30800
.00
.00
37600
10.44 | Aug
Jul | 16 1921
18 1902
25 1903
20 1965
20 1965 | | ANNUAL
10 PERC
50 PERC | RUNOFF (A
ENT EXCEE
ENT EXCEE
ENT EXCEE | C-FT)
DS
DS | 2 | 247800
881
210
46 | | | 371000
1260
306
80 | L AUG 29 | | 387400
1130
220
28 | oun . | 20 1363 | a-Also occurred Aug 27. b-Also occurred May 20. c-Also occurred Aug 19-20, 1902, and Jul 25 to Aug 7, 1903. d-From floodmarks in gage well. PLATTE RIVER BASIN 137 # 06764000 SOUTH PLATTE RIVER AT JULESBURG, CO--Continued (Irrigation network station) (National stream-quality accounting network station) ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1945 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1945 to September 1981 (discontinued). WATER TEMPERATURES: Water years 1945-49, October 1950 to September 1981 (discontinued). INSTRUMENTATION. -- Water-quality monitor from July 1973 to September 1979. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily, 3,270 microsiemens Jan. 12, 1971; minimum daily, 348 microsiemens Aug. 1968. WATER TEMPERATURES: Maximum, 36.0°C, July 17, 19, 1977, July 16, 1978; minimum, freezing point on many days | WATER-QUALITY DATA, WATER YEAR O | OCTOBER | 1991 | TO | SEPTEMBER | 1992 | |----------------------------------|---------|------|----|-----------|------| |----------------------------------|---------|------|----|-----------|------| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./ | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | HARD
NESS
TOTA
(MG/
AS
CACO | L
L | |------------------|--|--|--|---|---|--|---|--|--|--|---| | NOV
20 | 1310 | 99 | 2250 | 8.5 | 7.0 | 6.8 | 10.5 | 62 | 42 | 790 | | | FEB 25 | 1300 | 960 | 1860 | 8.3 | 7.0 | 31 | 9.5 | | 190 | 640 | | | MAY
06 | 1515 | 91 | 2090 | 8.5 | 23.5 | 2.0 | 8.7 | 45 | 77 | 740 | | | AUG | | | | | | | | | | | | | 18 | 1430 | 150 | 2030 | 8.4 | 25.0 | 20 | 7.9 | 590 | 310 | 670 | | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-A
BONATE
WATER
WH FET
FIELD
MG/L AS
HCO3 | BONATE
WATER
WH FET
FIELD | R WAT
TOT
FIE | TY WH SUI FET DI LD SO AS (N | FATE
S-
OLVED
IG/L
SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | | NOV
20 | 210 | 63 | 200 | 3 | 18 | 220 | 48 | 24 | 7 8 | 110 | 110 | | FEB 25 | 160 | 57 | 170 | 3 | 12 | 340 | 0 | 27 | | 80 | 87 | | MAY | | | | | | | | | | | | | 06
AUG | 190 | 63 | 190 | 3 | 17 | | | - | - | 50 | 54 | | 18 | 170 | 60 | 190 | 3 | 18 | 230 | 17 | 21 | 3 7 | 770 | 110 | | DATE | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) |
NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITR
GEN
AMMON
TOTA
(MG/
AS N | ,
IA
L
L | | NOV
20
FEB | 0.6 | 32 | 1690 | 1620 | 2.30 | 450 | 2.9 | 3.0 | 2.9 | 0.04 | | | 25
MAY | 0.7 | 16 | 1260 | 1280 | 1.71 | 3270 | 5.3 | 5.1 | 5.3 | 0.02 | | | 06
AUG | 0.4 | 20 | 1540 | 1430 | 2.09 | 379 | 2.8 | 2.8 | 2.8 | <0.01 | | | 18 | 0.7 | 19 | 1510 | 1470 | 2.05 | 612 | 1.3 | 1.1 | 1.3 | 0.03 | | A-Field dissolved bicarbonate, determined by incremental titration method. B-Field dissolved carbonate, determined by incremental titration method. C-Field total dissolved alkalinity, determined by incremental titration method. # 06764000 SOUTH PLATTE RIVER AT JULESBURG, CO--Continued (Irrigation network station) (National stream-quality accounting network station) PHOS-PHORUS DIS-SOLVED (MG/L AS P) 0.07 0.40 0.08 <0.01 | | ī. | ATER-QUAL | ITY DAT | , WATER | YEAR OCTO | BER 1991 | TO SEPTEM | BER 1992 | | |-----------|---|--|---|---|---|--|--|---|--| | DATE | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS NH4) | GEN,
NITRITE
DIS-
SOLVEI
(MG/L | GEN,
E NITRITE
DIS- | PHORUS ORTHO, DIS- SOLVED (MG/L | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | NOV
20 | 0.04 | 0.56 | 0.60 | 0.05 | 0.01 | 0.03 | 0.08 | 0.25 | 0.12 | | FEB
25 | 0.02 | 0.88 | 0.90 | 0.03 | 0.01 | 0.03 | 0.38 | 1.2 | 0.57 | | MAY
06 | 0.02 | | 0.60 | 0.03 | 0.03 | 0.10 | 0.08 | 0.25 | 0.11 | | AUG
18 | 0.01 | 1.3 | 1.3 | 0.01 | 0.01 | 0.03 | 0.02 | 0.06 | 0.26 | | | DAT | E TIM | SOI
IE (UC | JM, BAR
IS- DI
LVED SOL
G/L (U | S- DI
VED SOI
G/L (U | S- I
VED SO
IG/L (U | DLVED SOI
JG/L (UG | HIUM NES
IS- DI
LVED SOI
E/L (UC | NGA-
5E,
IS-
LVED
G/L
MN) | | | NOV | 121 | 0 1 | 0 | - | · | 30 3 | | . 1 | | | 20
FEB
25 | 131
130 | | | 52
33 | <9
<3 | | | 11
:1 | | | MAY 06 | 150 | | | 55 | <9 | | 57 | 5 | | | AUG
18 | 143 | | | | <6 | | . 8 | 8 | | | | 110 | MOLYB-
DENUM,
DIS- | NICKEL,
DIS- | SELE-
NIUM,
DIS- | SILVER,
DIS- | STRON-
TIUM,
DIS- | VANA-
DIUM,
DIS- | | | | МОЛ | DATE | SOLVED
(UG/L
AS MO) | SOLVED
(UG/L
AS N1) | SOLVED
(UG/L
AS SE) | (UG/L | (UG/L | SOLVED
(UG/L
AS V) | | | | | 20 | <30 | 2 | 6 | <1.0 | 2200 | <18 | | | | | 25 | <10 | 2 | 5 | <1.0 | 1700 | <6 | | | | | 06 | <30 | 2 | 4 | <1.0 | 2000 | <18 | | | | 1 | 18 | <20 | 2 | 2 | <1.0 | 1900 | <12 | | | | RAD | IOCHEMICA | L ANALYS | ES, WATE | R YEAR OC | TOBER 199 | 1 TO SEPTE | EMBER 199 | 2 | | | DATE | GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) | GROSS
ALPHA,
SUSP.
TOTAL
(UG/L
AS
U-NAT) | GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) | GROSS
BETA,
SUSP.
TOTAL
(PCI/L
AS
CS-137) | GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) | (PCI/L
AS SR/ | RADIUM
226,
DIS-
SOLVED,
RADON
METHOD
(PCI/L) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U) | | | NOV 20 | 85 | 1.1 | 46 | 15 | 34 | 15 | 0.12 | 58 | | | MAY
06 | 57 | 0.8 | 37 | 6.4 | 28 | 6.1 | 0.18 | 43 | | | | | | | | | | | | | | SUSPEN | DED-SEDIM | ENT DISC | HARGE, W | | OCTOBER | 1991 TO SE | PTEMBER 1 | 1992 | | | | DA | TE | TIME | DIS-
HARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | | | | | | NOV
20 | • | 1310 | 99 | 53 | 14 | | | | | | FEB 25 | • | 1300 | 960 | 113 | 293 | | | | | | MAY
06 | | 1515 | 91 | 436 | 107 | | | | | | AUG
18 | • | 1430 | 150 | 251 | 102 | | | | | | | | | | | | | | ### 06823000 NORTH FORK REPUBLICAN RIVER AT COLORADO-NEBRASKA STATE LINE LOCATION.--Lat $40^{\circ}04^{\circ}10^{\circ}$, long $102^{\circ}03^{\circ}05^{\circ}$, in SE $^{1}/4NW^{1}/4$ sec.10, T.1 N., R.42 W., Dundy County, Nebraska, Hydrologic Unit 10250002, on right bank 100 ft east of Colorado-Nebraska State line, 9.5 mi upstream from confluence with Arikaree River, and at mile 448. DRAINAGE AREA.--1,360 mi², approximately, of which about 100 mi² contributes directly to surface runoff. PERIOD OF RECORD.--October 1930 to current year. Prior to October 1932, published as North Fork of Arikaree River at Colorado-Nebraska State line. Monthly discharge only for some periods, published in WSP 1310. REVISED RECORDS.--WSP 1240: 1947 (M). WSP 1390: 1934. WSP 2119: Drainage area. GAGE.--Water-stage recorder. Steel piling control since January 1965. Datum of gage is 3,336.09 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1934, nonrecording gage at present site and datum. REMARKS.--Records fair except for estimated periods of record, which are poor. Natural flow affected by diversion in Pioneer Canal for irrigation of about 2,700 acres in Colorado and Nebraska. | | | DISCHA | RGE, CUBI | C FEET P | | WATER | YEAR OCTOR | BER 1991 | TO SEPTE | MBER 1992 | | | |---|---|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|-------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 16
19
28
23
20 | 57
56
e56
e58
59 | 51
53
51
51
51 | 56
55
55
56
56 | 63
62
62
63
63 | 54
55
54
59
63 | 51
50
50
49
49 | 19
18
18
18 | e15
e17
e20
19
23 | 15
14
16
16
16 | 11
9.1
8.4
11 | 44
42
42
43
42 | | 6
7
8
9 | 15
13
13
15
18 | 63
58
56
55
54 | 52
51
50
50
51 | 56
57
58
e58
e56 | 63
62
61
61 | 60
58
57
59
58 | 45
46
46
44
44 | 16
14
13
12 | 20
16
18
28
35 | 16
15
12
9.8
9.6 | 9.4
9.3
9.3
8.5
8.5 | 41
42
42
42
37 | | 11
12
13
14
15 | 22
27
31
34
39 | 54
53
53
51
51 | 51
57
55
52
52 | 55
56
55
57
57 | 61
61
61
60 | 59
59
58
56
55 | 45
47
45
25
28 | 10
9.4
11
10 | 35
35
35
33
30 | 9.6
9.6
11
11 | 9.4
120
48
44
43 | 36
35
34
33
31 | | 16
17
18
19
20 | 46
48
49
50 | 53
62
60
56
54 | 52
52
52
52
52 | 56
e56
55
56
55 | 60
61
60
60
59 | 53
53
53
54
53 | 32
30
28
26
25 | 10
12
12
15
9.4 | 28
26
25
24
24 | 11
12
11
9.3
8.1 | 4 4
4 6
5 3
4 9
4 6 | 31
32
27
27
26 | | 21
22
23
24
25 | 51
51
51
52
52 | 54
55
53
52
53 | 53
54
55
54
53 | 55
54
54
55
57 | 58
58
60
64
62 | 52
52
52
51
51 | 26
26
25
26
24 | e7.4
e6.0
e4.5
e4.0
e3.5 | 22
19
18
17
16 | 8.8
8.0
8.4
11 | 46
46
43
52
78 | 25
25
24
24
24 | | 26
27
28
29
30
31 | 54
54
53
53
53 | 53
52
52
52
51 | 53
54
55
54
55 | 59
60
61
62
63
63 | 60
57
54
53 | 52
51
51
51
50
50 | 23
23
22
21
19 | e3.6
e4.0
e6.0
e10
e13
e13 | 14
14
18
20
19 | 9.1
9.4
9.9
9.1
10 | 63
55
51
47
45
44 | 25
25
23
24
23 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1154
37.2
54
13
2290 | 1646
54.9
63
51
3260 | 1631
52.6
57
50
3240 | 1764
56.9
63
54
3500 | 1751
60.4
64
53
3470 | 1693
54.6
63
50
3360 | 1040
34.7
51
19
2060 | 339.8
11.0
19
3.5
674 | 683
22.8
35
14
1350 | 347.7
11.2
16
8.0
690 | 1166.9
37.6
120
8.4
2310 | 971
32.4
44
23
1930 | | STATIST | CICS OF M | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1935 | - 1992, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 37.1
67.1
1963
11.1
1979 | 57.8
83.5
1957
27.0
1989 | 62.1
74.7
1954
44.8
1991 | 61.6
73.4
1953
39.4
1979 | 63.5
76.8
1960
49.1
1988 | 66.2
85.8
1960
50.7
1980 | 59.0
85.7
1980
23.5
1972 | 43.3
104
1951
11.0
1992 | 36.0
113
1962
12.2
1952 | 19.1
93.8
1962
5.36
1978 | 19.2
72.4
1950
4.12
1940 | 27.1
128
1951
5.78
1978 | |
SUMMARY | STATIST | rcs | FOR 1 | 991 CALEN | DAR YEAR | F | OR 1992 WA | TER YEAR | | WATER Y | EARS 1935 | - 1992 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME DAILY ME SEVEN-DAY ANEOUS PE | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 14740.6
40.4
79
4.2
5.2
29240
58
51
11 | Jul 24
Jul 6
Jul 3 | | 14187.4
38.8
120
3.5
4.5
1260
*4.74
28140
59
46 | Aug 12
May 25
May 22
Aug 12
Aug 12 | | 45.8
65.3
30.0
761
1.7
2.3
2110
5.9
33190
73
52
9.0 | May 1
Jul 1
Aug
Apr 2 | 1951
1979
5 1951
1 1938
5 1940
8 1947
8 1947 | e-Estimated. *-From floodmark. 140 PLATTE RIVER BASIN ### 06826000 BONNY RESERVOIR NEAR HALE, CO LOCATION.--Lat 39°37'24", long 102°10'26", in SE¹/4SE¹/4 sec.9, T.5 S., R.43 W., Yuma County, Hydrologic Unit 10250003, in stair well to outlet conduit of Bonny Dam on South Fork Republican River, 1.7 mi west of Hale, and 3.0 mi downstream from Landsman Creek. DRAINAGE AREA. -- 1,820 mi², approximately. PERIOD OF RECORD. -- October 1950 to current year. REVISED RECORDS. -- WSP 1710: 1955. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation) Prior to Oct. 1, 1967, nonrecording gage at present site and datum. REMARKS.--Reservoir is formed by an earthfill dam. Storage began July 6, 1950; dam completed May 4, 1951. Capacity of reservoir, 170,200 acre-ft, below elevation 3,710 ft, crest of spillway, of which 128,800 acre-ft is for flood control and 39,900 acre-ft is for irrigation. Dead storage, 1,420 acre-ft below elevation 3,635.0 ft, sill of trashrack at outlet conduit. Figures given represent total contents. COOPERATION .-- Capacity tables provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.—Maximum contents observed, 55,030 acre-ft, May 17, 1957, elevation, 3,678.10 ft; minimum observed since appreciable contents were attained, 22,520 acre-ft, Oct. 6-14, 1952, elevation 3,661.20 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 42,700 acre-ft, Feb. 10, elevation, 3,672.63 ft; minimum, 35,500 acre-ft, Sept. 30, elevation, 3,669.01 ft. Capacity table (elevation, in feet, and total contents, in acre-feet) 3,669.0 35,500 3,672.7 42,800 RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|--|---|--|---|--|--|---| | 1 | 39500 | 38900 | 39900 | 41000 | 42300 | 40800 | 40800 | 40600 | 39500 | 38800 | 37500 | 36700 | | 2 | 39500 | 38900 | 39900 | 41100 | 42300 | 40800 | 40800 | 40600 | 39500 | 38800 | 37400 | 36700 | | 3 | 39400 | 38800 | 39900 | 41100 | 42400 | 40900 | 40800 | 40600 | 39500 | 38700 | 37400 | 36700 | | 4 | 39300 | 38900 | 40000 | 41200 | 42400 | 41000 | 40800 | 40500 | 39400 | 38700 | 37300 | 36600 | | 5 | 39300 | 39000 | 40000 | 41200 | 42500 | 41000 | 40800 | 40500 | 39500 | 38600 | 37200 | 36600 | | 6
7
8
9 | 39300
39200
39200
39200
39200 | 39000
39000
39000
39100
39100 | 40100
40100
40100
40100
40100 | 41200
41300
41400
41400
41400 | 42500
42600
42600
42600
42700 | 41000
41000
40900
41100
41100 | 40800
40800
40900
40900
40900 | 40400
40400
40400
40300
40200 | 39400
39500
39500
39600
39600 | 38500
38500
38500
38400
38300 | 3 ² 200
37100
37100
37000
36900 | 36500
36400
36400
36400
36400 | | 11 | 39100 | 39100 | 40300 | 41400 | 42500 | 41100 | 40900 | 40200 | 39600 | 38400 | 36800 | 36400 | | 12 | 39100 | 39200 | 40400 | 41600 | 42400 | 41100 | 40900 | 40100 | 39600 | 38400 | 36800 | 36300 | | 13 | 39100 | 39200 | 40400 | 41500 | 42300 | 41100 | 40900 | 40100 | 39600 | 38400 | 36700 | 36300 | | 14 | 39000 | 39200 | 40400 | 41600 | 42100 | 41100 | 40900 | 40100 | 39600 | 38300 | 36700 | 36300 | | 15 | 39000 | 39200 | 40400 | 41600 | 42000 | 41200 | 40900 | 40000 | 39600 | 38400 | 36600 | 36300 | | 16 | 39000 | 39400 | 40400 | 41600 | 41800 | 41100 | 40900 | 39900 | 39600 | 38400 | 36500 | 36300 | | 17 | 38900 | 39500 | 40500 | 41700 | 41700 | 41100 | 40900 | 39900 | 39500 | 38300 | 36600 | 36100 | | 18 | 38900 | 39600 | 40500 | 41700 | 41500 | 41000 | 40900 | 39800 | 39500 | 38300 | 36500 | 36200 | | 19 | 38900 | 39600 | 40500 | 41800 | 41300 | 41100 | 40800 | 39700 | 39500 | 38300 | 36500 | 36100 | | 20 | 38900 | 39600 | 40600 | 41900 | 41300 | 41000 | 40800 | 39700 | 39400 | 38200 | 36400 | 36100 | | 21 | 38800 | 39600 | 40600 | 41900 | 41200 | 41000 | 40800 | 39600 | 39400 | 38200 | 36400 | 36000 | | 22 | 38800 | 39700 | 40600 | 41900 | 41100 | 41000 | 40800 | 39500 | 39400 | 38200 | 36300 | 35900 | | 23 | 38800 | 39700 | 40700 | 42000 | 41100 | 40900 | 40800 | 39500 | 39400 | 38100 | 36500 | 35900 | | 24 | 38700 | 39700 | 40700 | 42000 | 41100 | 40900 | 40800 | 39400 | 39300 | 38100 | 36700 | 35800 | | 25 | 38700 | 39800 | 40800 | 42000 | 41000 | 40900 | 40800 | 39300 | 39200 | 38000 | 36800 | 35700 | | 26
27
28
29
30
31 | 38700
38700
38700
38700
38800
38900 | 39700
39800
39800
39700
39900 | 40800
40800
40800
40800
40900
41000 | 42000
42100
42100
42200
42200
42200 | 40900
40900
40900
40900
 | 40900
40900
40800
40800
40800
40800 | 40700
40800
40700
40700
40700 | 39200
39300
39300
39200
39200
39300 | 39100
39100
39000
39000
38900 | 38000
37900
37900
37800
37700
37600 | 36800
36800
36800
36700
36600
36700 | 35700
35600
35600
35600
35500 | | MAX | 39500 | 39900 | 41000 | 42200 | 42700 | 41200 | 40900 | 40600 | 39600 | 3 88 00 | 37500 | 36700 | | MIN | 38700 | 38800 | 39900 | 41000 | 40900 | 40 8 00 | 40700 | 39200 | 3 8 900 | 37600 | 36300 | 35500 | CAL YR 1991 MAX 42800 MIN 35500 WTR YR 1992 MAX 42700 MIN 35500 ## 07079200 LEADVILLE MINE DRAINAGE TUNNEL AT LEADVILLE, CO LOCATION.--Lat $39^{\circ}16^{\circ}29^{\circ}$, long $106^{\circ}17^{\circ}15^{\circ}$, in $SW^{1}/4SW^{1}/4$ sec. 12, T.9 s., R.80 W., Lake County, Hydrologic Unit 11020001, on right bank 80 ft downstream from access road, 0.5 mi upstream from mouth, and 0.8 mi north of Leadville. PERIOD OF RECORD.--May 4, 1990 to current year. Formerly published as Leadville Drain at Leadville, Co. ## WATER-DISCHARGE RECORDS GAGE.--Water-stage recorder with satellite telemetry and Parshall flume. Elevation of gage is 9,960 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 4, 1990 to July 19, 1990, at same location on left bank, at same datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated by U.S. Bureau of Reclamation mine drainage treatment facility, since Feb. 15, 1992. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | R 1991 T | О ЅЕРТЕМВЕ | R 1992 | | | |---|--|--|--|--|--------------------------------------|--|---|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.9
2.7
2.1
1.8
1.7 | 2.8
2.8
2.8
2.7
2.8 | 2.5
2.5
2.4
2.4
2.4 | 2.4
2.4
2.4
2.4 | 2.2
2.2
2.2
2.2
2.2 | 1.9
2.7
2.3
2.0
2.4 | 2.3
1.8
1.8
2.3
1.1 | 2.5
2.5
2.5
2.4
2.4 | 2.2
2.2
2.2
2.1
2.1 | 2.2
2.1
2.3
2.5
2.5 | 2.2
2.7
2.5
2.5
2.5 | 2.8
2.5
2.8
2.9
2.9 | | 6
7
8
9
10 | 1.7
1.6
1.8
1.9 | 2.7
2.7
2.7
2.7
2.6 | 2.5
2.4
2.4
2.3
2.4 | 2.4
2.5
2.4
2.4 | 1.7
2.2
2.2
2.2
2.2 | 2.4
2.3
2.4
2.4
2.2 | 1.4
1.4
1.6
1.8
2.6 | 2.4
2.4
2.4
2.4
2.4 | 2.2
2.2
2.1
2.1
2.1 | 2.6
2.5
2.4
2.4 | 2.5
2.5
2.5
2.5
2.5 | 2.9
2.9
2.9
2.9
2.8 | | 11
12
13
14
15 | 1.8
1.8
1.8
2.1
2.7 | 2.6
2.2
1.6
1.4
1.5 | 2.4
2.4
2.3
2.3
2.3 | 2.4
2.4
2.4
2.4
2.3 | 2.2
2.2
2.9
2.2
2.2 | 2.4
2.3
2.5
2.4
2.1 | 2.6
2.6
2.5
2.6 | 2.4
2.4
2.2
2.4
2.4 | 2.1
2.1
2.1
2.1
2.1 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.6
2.5
2.6 | 2.8
2.9
2.9
2.9
2.9 | | 16
17
18
19
20 | 2.4
1.7
1.7
1.8
1.8 | 2.3
2.7
2.6
2.6
2.6 | 2.3
2.3
2.2
2.3
2.4 | 2.3
2.3
2.3
2.3
1.6 | 2.2
2.1
2.2
2.2
2.2 |
1.8
2.2
2.2
2.5
2.1 | 2.5
2.5
2.6
2.6
2.6 | 2.3
2.2
2.1
2.1
2.1 | 2.1
2.1
2.1
2.1
2.1 | 2.5
2.5
2.5
2.5
2.5 | 2.7
2.7
2.7
2.7
2.7 | 2.9
3.0
2.9
2.9
3.0 | | 21
22
23
24
25 | 1.8
1.7
1.8
1.7
2.5 | 2.6
2.6
2.5
2.6
2.6 | 2.4
2.4
2.4
2.4
2.4 | 1.9
2.3
2.3
2.2
2.2 | 1.9
2.1
2.5
2.2
2.2 | 2.3
2.3
2.3
2.1 | 2.5
2.5
2.5
2.5
2.3 | 2.1
2.1
2.1
2.1
2.2 | 2.1
2.2
2.2
2.1
2.2 | 2.4
2.5
2.4
2.4
2.5 | 2.7
2.7
2.7
2.8
2.8 | 2.9
2.9
2.8
2.7
2.9 | | 26
27
28
29
30
31 | 2.5
2.2
2.1
2.9
2.9
2.9 | 2.5
2.5
2.5
2.5
2.5 | 2.4
2.4
2.4
2.4
2.4
2.4 | 2.2
2.2
2.2
2.2
2.2
2.2 | 2.3
2.3
2.3
2.4 | 1.7
2.2
2.4
2.5
2.5
2.3 | 2.5
2.5
2.5
2.5
1.7 | 2.0
2.2
2.1
2.1
2.1
2.2 | 2.2
2.2
2.2
2.2
2.2 | 2.5
2.4
2.5
2.5
2.5
2.5 | 2.8
2.7
2.7
2.8
2.8
2.8 | 2.8
2.9
2.9
2.9
2.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 63.6
2.05
2.9
1.6
126 | 74.8
2.49
2.8
1.4
148 | 73.8
2.38
2.5
2.2
146 | 70.9
2.29
2.5
1.6
141 | 64.3
2.22
2.9
1.7
128 | 69.5
2.24
2.7
1.4
138 | 67.8
2.26
2.6
1.1
134 | 70.2
2.26
2.5
2.0
139 | 64.3
2.14
2.2
2.1
128 | 76.0
2.45
2.6
2.1
151 | 81.4
2.63
2.8
2.2
161 | 86.0
2.87
3.0
2.5
171 | | | | | | | | | , BY WATER Y | | 2.24 | 2.49 | 2 61 | 2.65 | | MEAN
MAX
(WY)
MIN
(WY) | 2.36
2.68
1991
2.05
1992 | 2.60
2.71
1991
2.49
1992 | 2.54
2.71
1991
2.38
1992 | 2.49
2.70
1991
2.29
1992 | 2.45
2.70
1991
2.22
1992 | 2.40
2.56
1991
2.24
1992 | 2.33
2.41
1991
2.26
1992 | 2.28
2.30
1991
2.26
1992 | 2.34
2.60
1990
2.14
1992 | 2.49
2.67
1990
2.34
1991 | 2.61
2.84
1990
2.36
1991 | 2.65
2.87
1992
2.24
1991 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1990 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE CFT) DS | | 875.5
2.40
b3.3
1.4
1.6
1740
2.7
2.4
2.0 | Apr 19
Sep 26
Sep 25 | | 862.6
2.36
a3.0
1.1
1.6
6.9
1.20
1710
2.8
2.4
1.9 | Sep 17
Apr 5
Apr 2
Feb 13
Feb 13 | | 2.43
2.50
2.36
3.3
1.1
1.6
7.1
1760
2.8
2.5
2.1 | Apr 1
Apr
Sep 2 | 1991
1992
9 1991
5 1992
5 1991
2 1991
2 1991 | a-Also occurred Sep 20. b-Also occurred Sep 27. c-Maximum gage height, 1.20 ft, Feb 13, 1992. 07079200 LEADVILLE MINE DRAINAGE TUNNEL AT LEADVILLE, CO ## 07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO LOCATION.--Lat 39°16'21", long 106°18'21", in NW¹/4NW¹/4 sec. 14, T.9 S., R.80 W., Lake County, Hydrologic Unit 11020001, on right bank 20 ft downstream from U.S. Highway 24, 0.35 mi downstream from Leadville Mine Drainage Tunnel, 2.2 mi upstream from mouth of Tennessee Creek, and 1.5 mi northwest of Leadville. DRAINAGE AREA .-- 49.9 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1990 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,900 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 28 to Mar. 11. Records good except for daily discharges above 120 ft³/s, which are fair, and estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions (see elsewhere in this report). | | | DISCHA | GE, CUBI | C FEET PE | | | YEAR OCTOBE | R 1991 T | O SEPTEM | BER 1992 | | | |--|---|--|--------------------------------------|---|--------------------------------------|--|--|--|-----------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
19
19
18
17 | 10
10
9.0
9.2
9.6 | 9.6
9.0
8.8
9.0
9.6 | 8.8
8.8
9.0
9.1
8.8 | 14
13
12
11
9.2 | 8.7
9.5
9.1
9.0
9.2 | 9.7
9.3
9.6
10
9.5 | 39
40
41
45
51 | 103
99
107
119
127 | 130
106
91
89
92 | 40
39
38
37
36 | 32
33
31
30
30 | | 6
7
8
9 | 17
17
17
17
16 | 10
10
11
11
12 | 11
12
12
12
11 | 8.8
9.6
10
11
12 | 9.6
10
9.6
10 | 9.1
9.0
8.8
8.7
8.6 | 10
10
11
11
13 | 57
59
73
80
78 | 124
126
123
129
129 | 92
94
114
104
89 | 37
37
35
35
36 | 29
27
26
24
23 | | 11
12
13
14
15 | 16
16
16
16
17 | 13
14
14
14
13 | 10
9.4
8.8
9.6 | 12
11
10
9.4
9.2 | 10
10
9.6
9.9
9.4 | 8.6
8.5
8.8
8.7
8.4 | 14
14
15
16
16 | 71
76
75
81
85 | 145
159
170
173
171 | 81
80
87
76
67 | 38
36
33
31
31 | 22
22
22
21
22 | | 16
17
18
19
20 | 16
16
16
15 | 12
11
10
9.6
9.6 | 12
12
12
11
11 | 9.4
9.8
10
11 | 9.2
9.0
9.0
8.8
9.0 | 8.1
8.3
8.4
8.7
8.5 | 16
16
16
15 | 92
96
107
113
129 | 161
143
157
173
173 | 57
58
54
55
52 | 32
38
34
30
28 | 22
23
22
21
23 | | 21
22
23
24
25 | 15
15
15
16
16 | 10
10
9.0
8.8
9.6 | 10
10
9.2
9.0
9.0 | 12
11
12
13 | 9.2
9.4
9.7
9.4
9.3 | 8.8
8.7
8.9
8.8
8.3 | 14
14
14
13
14 | 157
167
157
163
141 | 167
161
168
173
166 | 51
49
48
50
59 | 27
27
30
45
49 | 22
21
20
20
21 | | 26
27
28
29
30
31 | 16
16
13
11
10 | 11
12
12
11
10 | 9.0
8.8
8.8
9.0
9.0 | 14
14
15
15
15 | 9.4
9.5
9.2
9.2 | 8.8
8.9
9.2
9.2
9.8
9.7 | 14
15
19
24
33 | 143
149
136
120
114
111 | 176
157
138
141
132 | 62
53
49
47
45
42 | 47
40
36
33
31
30 | 21
20
20
20
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 488
15.7
19
10
968 | 325.4
10.8
14
8.8
645 | 311.6
10.1
12
8.8
618 | 349.7
11.3
15
8.8
694 | 287.6
9.92
14
8.8
570 | 273.8
8.83
9.8
8.1
543 | 429.1
14.3
33
9.3
851 | 3046
98.3
167
39
6040 | 4390
146
176
99
8710 | 2223
71.7
130
42
4410 | 1096
35.4
49
27
2170 | 709
23.6
33
19
1410 | | STATIST | ICS OF MO | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1990 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 18.4
21.0
1991
15.7
1992 | 13.0
15.1
1991
10.8
1992 | 10.6
11.2
1991
10.1
1992 | 11.2
11.3
1992
11.0
1991 | 10.5
11.0
1991
9.92
1992 |
9.27
9.70
1991
8.83
1992 | 12.6
14.3
1992
10.9
1991 | 84.7
98.3
1992
71.2
1991 | 171
187
1991
146
1992 | 65.3
78.2
1991
46.1
1990 | 35.6
38.7
1991
32.7
1990 | 23.6
24.5
1991
22.7
1990 | | SUMMARY | STATIST | cs | FOR | 1991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1990 | - 1992 | | LOWEST IN HIGHEST LOWEST IN ANNUAL INSTANTANTAN ANNUAL IN PERCE 50 PERCE | MEAN ANNUAL MEANNUAL MEANNUAL MEATLY | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 14589.2
40.0
287
8.8
8.9
28940
123
13
9.4 | Jun 14
Mar 8
Dec 24 | | 13929.2
38.1
176
8.1
8.4
214
3.33
27630
121
15
9.0 | Jun 26
Mar 16
Mar 14
Jun 26
Jun 26 | | 39.5
40.9
38.1
462
8.0
8.4
675
53.94
28590
127
21
9.4 | Dec :
Mar : | 1991
1992
8 1990
23 1990
14 1992
8 1990
8 1990 | a-Maximum gage height, 3.37 ft, May 24. b-From floodmark. # 07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1990 to current year. PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: May 1990 to current year. WATER TEMPERATURE: May 1990 to current year. pH: May 1990 to current year. INSTRUMENTATION: Water-quality monitor. REMARKS.--Records for daily water temperature are good. Records for daily specific conductance and pH are fair. Daily data that are not published are either missing or of unacceptable quality. Daily maximum and minimum specific conductance, daily mean water temperature, and daily mean pH data are available in the district office. SPECIFIC CONDUCTANCE: Maximum, 601 microsiemens, Mar. 26, 1992; minimum, 99 microsiemens, June 8, 1990. WATER TEMPERATURE: Maximum, 17.2°C, Aug. 6, 1990; minimum, 0.0°C, many days. pH: Maximum, 8.9 units, Mar. 17-18, 1992; minimum, 7.2 units, May 22, 1991. EXTREMES FOR CURRENT YEAR .-- MEAN SPECIFIC CONDUCTANCE: Maximum, 601 microsiemens, Mar. 26; minimum, 100 microsiemens, June 14. WATER TEMPERATURE: Maximum, 16.0°C, Aug. 15; minimum, 0.0°C, many days. pH: Maximum, 8.9 units, Mar. 17-18; minimum, 7.4 units, Sept. 15, 18. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES OCT NOV APR JUN JUL AUG SEP DAY DEC JAN FEB MAR MAY ---___ 267 297 122 120 407 ---119 208 236 ---413 ---121 181 241 ------ --- --- > 07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | XAM | MIN | MAX | MIN | MAX | MIN | XAM | MIN | MAX | MIN | MAX | MIN | |----------------------------------|--|--|---------------------------------|--|---------------------------------|---------------------------------|--|--|--|--|---------------------------------|---------------------------------| | | OCT | OBER | NOVE | MBER | DECI | EMBER | JANC | JARY | FEB | RUARY | MAI | RCH | | 1
2
3
4
5 | 8.4
8.4
8.4
8.4 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.1
8.1
8.3 | 7.9
7.8
7.8
7.9
8.0 | 8.2
8.2
8.2
8.2
8.2 | 8.1
8.1
8.0
8.0
8.1 | 8.3
8.3
8.3
8.3 | 8.2
8.1
8.1
8.2
8.1 | 8.4
8.3
8.2
8.2
8.2 | 8.0
8.1
8.1
8.1
8.0 | 8.5
8.5
8.4
8.4 | 8.3
8.3
8.3
8.3 | | 6
7
8
9
10 | 8.4
8.4
8.4
8.4 | 8.0
8.0
8.0
8.0 | 8.2
8.3
8.3
8.3
8.3 | 8.1
8.1
8.1
8.1 | 8.3
8.3
8.3
8.3 | 8.0
8.1
8.1
8.1 | 8.3
8.3
8.3
8.3 | 8.1
8.2
8.2
8.2
8.2 | 8.5
8.4
8.4
8.5
8.3 | 8.0
8.2
8.3
8.3 | 8.5
8.5
8.4
8.4 | 8.3
8.2
8.3
8.2
8.1 | | 11
12
13
14
15 | 8.4
8.5
8.4
8.4 | 8.0
8.0
8.0
8.0 | 8.3
8.2
8.2
8.2
8.3 | 8.1
8.0
8.0
8.1 | 8.3
8.3
8.3
8.2
8.3 | 8.2
8.2
8.2
8.1
8.1 | 8.3
8.3
8.3
8.4
8.3 | 8.2
8.3
8.2
8.2
8.1 | 8.3
8.3
8.2
8.2
8.2 | 8.2
8.1
8.1
8.1 | 8.5
8.5
8.5
8.5
8.4 | 8.2
8.3
8.3
8.3 | | 16
17
18
19
20 | 8.4
8.4
8.4
8.4 | 8.1
8.0
8.1
8.0
8.0 | 8.3
8.2
8.2
8.2 | 8.1
8.0
8.0
7.9 | 8.2
8.2
8.3
8.3 | 8.1
8.1
8.1
8.2
8.2 | 8.2
8.3
8.4
8.2
8.3 | 8.1
8.1
8.2
8.1
8.1 | 8.2
8.3
8.5
8.5 | 8.1
8.1
8.1
8.3
8.3 | 8.8
8.9
8.9
8.4 | 8.3
8.3
8.4
8.2 | | 21
22
23
24
25 | 8.4
8.4
8.4
8.4 | 8.0
8.0
8.0
8.0 | 8.3
8.3
8.2
8.2 | 8.1
8.0
8.0
8.0 | 8.3
8.3
8.3
8.3 | 8.2
8.2
8.2
8.1
8.2 | 8.2
8.2
8.2
8.2
8.1 | 8.1
8.0
8.1
8.1 | 8.5
8.6
8.4
8.4 | 8.3
8.3
8.2
8.2
8.3 | 8.4
8.4
8.4
8.4 | 8.1
8.2
8.2
8.2
8.2 | | 26
27
28
29
30
31 | 8.3
8.3
8.1
8.2
8.1
8.0 | 8.0
8.0
7.9
7.9
7.9
7.9 | 8.2
8.2
8.3
8.3
8.2 | 8.1
8.1
8.1
8.1 | 8.3
8.3
8.3
8.3
8.3 | 8.1
8.1
8.2
8.1
8.2 | 8.1
8.4
8.3
8.2
8.2 | 8.0
8.0
8.1
8.0
8.0
8.0 | 8.4
8.5
8.5
8.5 | 8.3
8.3
8.3 | 8.4
8.4
8.5
8.5 | 8.1
8.2
8.2
8.1
8.4 | | MONTH | 8.5 | 7.9 | 8.3 | 7.8 | 8.3 | 8.0 | 8.4 | 8.0 | 8.6 | 8.0 | 8.9 | 8.1 | | | API | RIL | ма | Y | JU | NE | JU | LY | AUG | UST | SEPTE | MBER | | 1
2
3
4
5 | 8.6
8.6
8.6
8.7
8.7 | 8.3
8.3
8.3
8.3 | 8.0
8.0
8.0
8.0 | 7.7
7.9
7.9
7.9
7.9 | 8.2
8.2
8.2
8.2
8.2 | 8.0
7.9
7.9
8.0
8.1 | 8.4
8.0
8.0
8.0
8.1 | 8.2
7.9
7.9
7.9
7.8 | 8.0
8.0
8.0
8.0 | 7.9
7.9
7.9
7.9
7.9 | 8.0
8.0
8.0
8.0 | 7.8
7.7
7.8
7.9
8.0 | | 6
7
8
9
10 | 8.7
8.7
8.5
8.5
8.5 | 8.4
8.4
8.4
8.3 | 8.0
8.0
8.0
8.0 | 7.9
7.9
7.9
7.9
7.9 | 8.2
8.2
8.2
8.1
8.2 | 8.0
8.1
8.0
8.0
8.1 | 8.2
8.4
8.3
8.4 | 8.0
7.8
8.1
8.1
8.2 | 8.3
8.4
8.3
8.2
8.2 | 8.1
8.0
8.0
8.0
8.0 | 8.1
8.1
8.2
8.2
8.3 | 7.9
8.0
8.0
8.1
8.0 | | 11
12
13
14
15 | 8.5
8.4
8.4
8.3
8.3 | 8.3
8.3
8.2
8.2
8.1 | 8.0
8.0
8.0
8.0 | 7.9
7.9
7.9
7.9
7.9 | 8.2
8.3
8.3
8.3 | 8.1
8.1
8.1
8.2
8.2 | 8.2
8.2
8.3
8.2
8.3 | 8.1
8.0
8.0
8.1
8.1 | 8.4
8.2
8.0
8.0 | 8.0
7.9
7.8
7.8
7.9 | 8.0
8.1
7.9
7.8
7.9 | 7.8
7.8
7.7
7.5
7.4 | | 16
17
18
19
20 | 8.4
8.4
8.3
8.3 | 8.1
8.2
8.1
8.1 | 8.1
8.2
8.1
8.1
8.1 | 7.9
7.9
7.9
7.6
7.7 | 8.4
8.4
8.4
8.4 | 8.2
8.3
8.1
8.0
8.2 | 8.1
8.1
8.1
8.1 | 8.0
8.0
8.0
8.0 | 8.0
8.1
8.1
8.2
8.2 | 7.9
7.9
7.8
7.7
7.8 | 8.1
8.0
8.4
8.4 | 7.8
7.8
7.4
8.0
8.0 | | 21
22
23
24
25 | 8.4
8.3
8.2
8.3
8.4 | 8.1
8.1
8.0
8.0 | 8.0
7.8
8.1
8.2
8.3 | 7.6
7.7
7.8
8.0
8.1 | 8.4
8.4
8.3
8.3 | 8.3
8.2
8.2
8.2
8.1 | 8.1
8.1
8.1
8.1 | 8.0
8.0
8.0
8.0 | 8.1
8.2
8.2
7.9
8.1 | 7.7
7.7
7.8
7.7
7.7 | 8.5
8.5
8.5
8.5 | 8.0
8.0
8.0
8.0 | | 26
27
28
29
30
31 | 8.4
8.4
8.3
8.2 | 8.0
8.0
8.0
7.9
7.9 | 8.3
8.4
8.4
8.3
8.2 | 8.1
8.2
8.2
8.3
8.2
8.1 | 8.3
8.3
8.1
8.1 | 8.1
8.1
8.0
7.9
7.9 | 8.1
7.9
8.2
8.4
8.0
8.0 | 7.9
7.7
7.7
7.9
7.9
8.0 | 7.9
8.0
8.0
8.0
8.1
8.0 | 7.7
7.6
7.6
7.7
7.7
7.7 | 8.3
8.3
8.4
8.4 | 8.0
8.0
8.0
8.0 | | MONTH | | | | | | | | | | | | | | | 8.7 | 7.9 | 8.4 | 7.6 | 8.4 | 7.9 | 8.4 | 7.7 | 8.4 | 7.6 | 8.5 | 7.4 | 07079300 EAST FORK ARKANSAS RIVER AT HIGHWAY 24 NEAR LEADVILLE, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |--|---|---|---|--|---|--|--|--|---
---|--|---| | | OCT | OBER | NOV | EMBER | DEC | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 11.9
11.3
11.0
7.8
8.1 | 3.2
3.4
3.0
1.7 | 1.6
1.3
.6
1.8
3.9 | .0
.0
.0 | .4
.0
.4
.9 | .0 | .7
.3
.4
1.1
1.1 | .0
.0
.0 | .0
.0
.0
.0 | .0 | 3.6
6.1
5.9
3.9
5.8 | .1
.1
.9 | | 6
7
8
9 | 9.4
8.4
8.8
10.2
9.7 | 1.0
1.7
2.0
2.7
2.3 | 3.0
5.0
3.6
6.0
5.7 | .5
.1
.0
.2
2.9 | 1.1
1.2
1.2
.8
.5 | .0 | 1.2
.6
.9
.9 | .0
.2
.0
.0 | .1
.1
.1
.1 | .0
.1
.1
.1 | 6.7
5.6
5.6
5.7
5.2 | .2
.2
.2
.2 | | 11
12
13
14
15 | 10.4
8.9
8.7
7.7
9.8 | 2.3
2.7
2.1
1.5
2.2 | 5.7
3.6
2.8
1.9
3.0 | 1.3
.0
.0
.0 | .7
1.1
.0
.0 | .0 | 1.2
1.0
.9
1.0 | .0
.2
.0
.1 | .2
.9
.1
1.5
2.1 | .1
.1
.1 | 4.9
7.7
7.6
7.5
7.9 | .2
.2
.2
.1 | | 16
17
18
19
20 | 9.3
8.7
8.2
7.3
6.9 | 1.8
1.9
2.2
1.5 | 3.1
3.4
2.2
2.2
1.1 | .4
.2
.0
.0 | .0
.5
.9
1.5
1.4 | .0
.0
.0 | .8
1.3
1.0
1.1 | .0
.0
.0 | .2
.4
.5
.4
2.0 | .1
.1
.1
.1 | 8.1
6.8
4.2
5.2
4.3 | .2
.2
.2
.2 | | 21
22
23
24
25 | 7.5
7.5
7.3
6.6
6.0 | 1.1
.4
1.9
1.9 | 3.0
.9
.0
.8
1.6 | .0 | 1.0
.7
.9
.6
1.0 | .0
.0
.0 | .9
1.0
1.4
1.6 | .0
.0
.0
.1 | 3.6
2.8
3.0
1.9
4.2 | .1
.1
.1
.1 | 5.4
4.5
6.8
5.7
5.6 | .1
.7
1.0 | | 26
27
28
29
30
31 | 6.1
7.0
3.8
2.3
.7
1.9 | .7
1.3
.0
.0 | 1.6
2.0
1.8
.9 | .2
.0
.0
.0 | .8
.8
.9
.6 | .0 | 1.8
1.7
1.8
2.0
2.1 | .0 | 2.9
5.2
5.7
5.4 | .1
.1
.1
.1 | 6.8
6.8
5.5
7.6
8.6 | .3
.1
1.8
1.5
1.3 | | MONTH | 11.9 | .0 | 6.0 | .0 | 1.5 | .0 | 2.1 | .0 | 5.7 | .0 | 8.6 | .1 | | | | | | | | | | | | | | | | | AP | RIL | м | AY | Jī | JNE | J | ULY | AUG | SUST | SEPTI | EMBER | | 1
2
3
4
5 | AP:
6.1
8.9
7.0
9.3
8.7 | 1.1
1.5
1.3
1.1 | 12.0
12.4
11.9
9.7
9.5 | 2.2
1.9
2.7
2.2
1.8 | 7.4
11.6
10.8
9.8
8.1 | 1.8
1.8
3.0
3.6
3.6 | 9.4
13.4
13.9
13.0 | 5.4

3.8
5.1
5.6 | 15.6
14.5
13.3
13.3
11.5 | GUST
4.6
4.6
6.6
6.0
6.6 | SEPTH
9.9
10.2
10.9
11.7
12.7 | 4.0
4.8
4.4
5.6
5.5 | | 2
3
4 | 6.1
8.9
7.0
9.3 | 1.1
1.5
1.3
1.1 | 12.0
12.4
11.9
9.7 | 2.2
1.9
2.7
2.2 | 7.4
11.6
10.8
9.8 | 1.8
1.8
3.0
3.6 | 9.4
13.4
13.9 | 5.4

3.8
5.1 | 15.6
14.5
13.3
13.3 | 4.6
4.6
6.6
6.0 | 9.9
10.2
10.9
11.7 | 4.0
4.8
4.4
5.6 | | 2
3
4
5
6
7
8
9 | 6.1
8.9
7.0
9.3
8.7
7.9
9.3
8.6 | 1.1
1.5
1.3
1.1
1.5
1.7
1.6
2.2 | 12.0
12.4
11.9
9.7
9.5
9.4
9.3
12.5
8.2 | 2.2
1.9
2.7
2.2
1.8
1.7
2.2
2.3
2.3 | 7.4
11.6
10.8
9.8
8.1
9.8
8.5
9.1 | 1.8
1.8
3.0
3.6
3.6
2.8
2.9
2.5
3.3 | 9.4
13.4
13.9
13.0
15.8
11.4
9.3
13.2 | 5.4

3.8
5.1
5.6
6.2
6.3
7.2
5.9 | 15.6
14.5
13.3
13.3
11.5
13.4
15.1
15.2
15.5 | 4.6
4.6
6.6
6.0
6.6
7.1
6.3
6.4 | 9.9
10.2
10.9
11.7
12.7 | 4.0
4.8
4.4
5.6
5.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 6.1
8.9
7.0
9.3
8.7
7.9
9.3
8.6
9.9
9.5
9.5 | 1.1
1.5
1.3
1.1
1.5
1.7
1.6
2.2
1.9
2.2
2.7
3.1
2.6
2.4 | 12.0
12.4
11.9
9.7
9.5
9.4
9.3
12.5
8.2
8.8
11.0
8.9
10.0
9.7 | 2.2
1.9
2.7
2.2
1.8
1.7
2.2
2.3
2.3
.9
.5
1.5
2.2 | 7.4
11.6
10.8
9.8
8.1
9.8
8.5
9.1
7.7
10.8
8.7
11.5 | 1.8
1.8
3.0
3.6
3.6
2.8
2.9
2.5
3.3
2.7
3.4
3.1
3.6 | 9.4
13.4
13.9
13.0
15.8
11.4
9.3
13.2
13.7
12.8
11.0
12.8 | 5.4

3.8
5.1
5.6
6.2
6.3
7.2
5.9
1.4
6.6
6.3
6.3
5.3 | 15.6
14.5
13.3
13.3
11.5
13.4
15.1
15.2
15.5
11.5 | 4.6
4.6
6.0
6.0
7.1
6.3
6.9
5.3
5.9
5.5 | 9.9
10.2
10.9
11.7
12.7

12.8
12.0
11.9
12.3
9.9 | 4.0
4.8
4.4
5.6
5.5

4.8
5.4
6.1
5.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 6.1
8.9
7.0
9.3
8.7
7.9
9.3
8.9
9.5
9.5
11.2
10.4
7.3
8.6
9.1
8.6
9.1
8.6
7.2 | 1.1
1.5
1.3
1.1
1.5
1.7
1.6
2.2
1.9
2.2
2.7
3.1
2.6
2.4
3.7
1.9 | 12.0
12.4
11.9
9.7
9.5
9.4
9.3
12.5
8.2
8.8
11.0
9.7
10.1
9.8
10.8
9.7 | 2.2
1.9
2.7
2.2
1.8
1.7
2.2
2.3
2.3
.9
.5
1.5
2.1 | 7.4
11.6
10.8
9.8
8.1
9.8
8.5
9.1
7.7
10.8
8.7
11.5
11.0
11.1
8.2
12.7
13.0
12.5 | 1.8
1.8
3.0
3.6
3.6
2.8
2.5
3.3
2.7
3.4
3.6
3.7 | 9.4
13.4
13.9
13.0
15.8
11.4
9.3
13.2
13.7
12.8
11.0
12.8
10.2
10.7 | 5.4

3.8
5.1
5.6
6.2
6.3
7.2
5.9
1.4
6.6
6.3
5.3
4.7
5.4
5.8
5.3
6.0
5.2 | 15.6
14.5
13.3
13.3
11.5
13.4
15.1
15.2
15.5
11.5
12.0
12.0
14.4
16.0 | 4.6
6.6
6.0
6.6
7.1
6.3
6.9
5.3
5.9
5.5
6.7
7.3
7.4
7.3
7.4
7.2
7.1 | 9.9
10.2
10.9
11.7
12.7
 | 4.0
4.8
4.4
5.6
5.5

4.8
5.1
5.1
5.7
4.1
4.5
5.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 6.1
8.9
7.0
9.3
8.7
7.9
8.9
8.6
9.5
9.5
10.4
7.3
8.6
10.8
10.8
11.5
6.5 | 1.1
1.5
1.3
1.1
1.5
1.7
1.6
2.2
1.9
2.2
2.7
3.1
2.6
2.4
3.7
1.0
1.1 | 12.0
12.4
11.9
9.7
9.5
9.4
9.3
12.5
8.2
8.8
11.0
9.7
10.1
9.7
10.1
9.8
10.8
9.7
8.5 | 2.2
1.9
2.7
2.2
1.8
1.7
2.2
2.3
2.3
2.3
.9
.5
1.5
2.2
1.9
2.1 | 7.4
11.6
10.8
9.8
8.1
9.8
8.5
9.1
7.7
10.8
8.7
11.5
11.0
11.1
8.2
12.7
13.0
12.5
11.4 | 1.8
3.0
3.6
3.6
2.8
2.5
3.3
2.7
3.4
3.8
3.6
3.7
3.3
4.0
4.0
4.0
4.2
5.5 | 9.4
13.4
13.9
13.0
15.8
11.4
9.3
13.2
13.7
12.8
10.2
10.7
13.0
11.2
11.3
11.7 | 5.4

3.8
5.1
5.6
6.2
6.3
7.2
5.9
1.4
6.6
6.3
5.3
4.7
5.4
5.8
5.3
6.0
5.2
6.0
8.3
6.0
5.2 | 15.6
14.5
13.3
13.3
11.5
13.4
15.1
15.2
15.5
11.5
12.0
12.0
14.4
16.0
12.9
13.4
13.3
13.3
13.6
8.9 | 4.6
6.6
6.0
6.6
7.1
6.3
6.9
5.3
5.9
5.5
6.7
7.3
7.4
7.3
7.4
7.2
7.1 | 9.9
10.2
10.9
11.7
12.7
 | 4.0
4.8
4.4
5.6
5.5

4.8
5.1
5.1
5.7
4.1
4.5
5.3
4.4
5.1
4.0
4.8
3.6 | ## 07081200 ARKANSAS RIVER NEAR LEADVILLE, CO LOCATION.--Lat $39^{\circ}15^{\circ}26^{\circ}$, long $106^{\circ}20^{\circ}35^{\circ}$, in $NW^{1}/4NW^{1}/4$ sec. 21, T.9 S, R.80 W., Lake County, Hydrologic Unit 11020001, on right bank, 500 ft downstream from confluence of East Fork Arkansas River and Tennessee Creek, 0.5 mi downstream from highway bridge, and 2.8 mi northwest of LeadVille. DRAINAGE AREA .-- 98.8 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1967 to September 1983. April 1990 to current year. REVISED RECORDS.--WDR CO-91-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,730 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 29 to Apr. 7. Records good except for estimated daily discharges, which are poor. Transmountain diversions from Colorado River Basin enters above this station (see elsewhere in this report). Small diversions upstream for irrigation and municipal use, amounts unknown. | | | DISCHARGE | E, CUBIC | FEET PER | SECOND,
DAIL | WATER
MEAN | YEAR OCTOBE
VALUES | R 1991 T | O SEPTEM | BER 1992 | | | |---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|------------------------------------|--|-------------------------------------
---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 27
26
25
24
23 | 16
16
15
16
16 | 15
15
15
16
16 | 14
14
15
15 | 17
17
16
15 | 15
15
15
14
14 | 17
17
16
17
18 | 110
110
114
120
132 | 188
171
176
187
214 | 165
147
127
122
123 | 57
55
54
53
52 | 52
53
49
47
48 | | 6
7
8
9
10 | 23
23
22
23
22 | 17
17
18
18
19 | 16
17
17
17
17 | 14
14
14
15
16 | 16
16
15
15 | 14
15
15
14
14 | 17
19
22
24
29 | 139
156
187
198
170 | 211
219
197
209
208 | 123
128
159
156
129 | 55
55
51
47
52 | 45
42
40
37
36 | | 11
12
13
14
15 | 22
22
22
22
22 | 19
19
19
19 | 16
16
15
15
16 | 17
16
15
15 | 15
15
15
14
15 | 15
15
15
15
16 | 31
34
41
47
51 | 143
153
150
162
172 | 222
238
253
255
244 | 116
113
121
110
103 | 57
57
52
50
48 | 35
34
34
33
34 | | 16
17
18
19
20 | 21
21
21
21
21 | 18
18
18
16
17 | 16
16
16
16
16 | 16
16
16
16
17 | 14
13
14
14 | 16
15
15
15
15 | 57
61
55
45
39 | 180
183
208
229
250 | 216
188
199
217
228 | 100
89
83
81
81 | 47
59
57
45
41 | 35
37
35
34
39 | | 21
22
23
24
25 | 20
20
21
22
22 | 17
17
15
15
16 | 15
15
15
16
16 | 17
16
15
16
16 | 14
15
15
14
14 | 15
16
15
15
15 | 37
37
36
33
38 | 282
284
270
274
243 | 224
216
220
234
228 | 75
71
69
73
92 | 41
40
50
93
100 | 39
36
33
32
34 | | 26
27
28
29
30
31 | 22
21
21
17
16
16 | 17
18
17
16
16 | 16
16
16
15
15 | 17
17
17
17
17 | 14
15
15
15 | 14
15
15
16
16 | 51
76
94
98
107 | 249
283
239
215
204
199 | 240
219
189
192
175 | 107
82
71
67
64
60 | 83
68
58
54
51
50 | 36
34
32
32
31 | | TOTAL
MEAN
MAX
MIN
AC-FT | 671
21.6
27
16
1330 | 513
17.1
19
15
1020 | 489
15.8
17
15
970 | 487
15.7
17
14
966 | 431
14.9
17
13
855 | 466
15.0
17
14
924 | 1264
42.1
107
16
2510 | 6008
194
284
110
11920 | 6377
213
255
171
12650 | 3207
103
165
60
6360 | 1732
55.9
100
40
3440 | 1138
37.9
53
31
2260 | | STATIST | CICS OF MO | NTHLY MEAN | DATA FO | R WATER YE | ARS 1968 | - 1992 | , BY WATER Y | EAR (WY) |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 25.6
38.3
1971
16.5
1978 | 20.1
28.9
1971
11.6
1977 | 16.0
21.7
1983
11.6
1978 | 14.2
18.1
1983
9.15
1977 | 13.9
20.5
1973
7.93
1978 | 14.5
20.8
1971
8.82
1974 | 29.4
52.9
1989
12.7
1970 | 154
334
1970
55.3
1981 | 330
634
1980
114
1977 | 129
256
1983
35.9
1977 | 57.6
130
1983
23.8
1977 | 33.2
55.8
1982
16.7
1974 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEND | AR YEAR | 1 | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1968 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 23606
64.7
464
a14
15
46820
206
21
16 | Jun 12
Mar 7
Mar 6 | | 22783
62.2
284
13
14
314
3.17
45190
197
22
15 | May 22
Feb 17
Feb 14
May 27
May 27 | | 70.7
101
32.4
960
77.0
1090
4.30
51240
204
26 | Feb
Feb
Jun 2 | 1983
1977
11 1980
3 1978
3 1978
21 1983
21 1983 | a-Also occurred Mar 8. b-Also occurred Feb 4-20, 1978. c-Maximum gage height, 3.29 ft, Dec 17, backwater from ice. # ARKANSAS RIVER BASIN 07081200 ARKANSAS RIVER NEAR LEADVILLE, CO ## 07081800 CALIFORNIA GULCH AT MALTA, CO LOCATION.--Lat 39°13'21", long 106°21'17", in NW¹/4SE¹/4 sec. 32, T.9 s., R.80 W., Lake County, Hydrologic Unit 11020001, on right bank 220 ft downstream from access road, 210 ft upstream from mouth, and 3.2 mi west of Leadville. PERIOD OF RECORD. -- July 12, 1991 to current year. #### WATER-DISCHARGE RECORDS GAGE.--Water-stage recorder with satellite telemetry and Parshall flume. Elevation of gage is 9,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges (1992 water year): Oct. 29 to Nov. 6, Nov. 22 to Dec. 12, Feb. 16-19, and Mar. 4-9. Records good except for estimated daily discharges, which are fair. Flow regulated from mine drainage pond upstream and Leadville waste-water treatment facility. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR SEP APR MAY JUN JUL AUG 2.3 1.7 ---------___ ___ ------___ 2.5 1.6 ___ ------3 ---2.8 1.6 ___ ___ ------___ _--___ ___ 2.6 1.4 1.8 6 ---___ 3.6 1.3 ------------___ ------------___ 2.6 ------8 _------------___ ___ 2.0 ___ ___ ___ ___ ---___ ---------___ 1.5 10 ---------___ ------1.4 11 ------___ ___ 2.0 ---___ ------1.4 ---12 ---2.3 1.0 ------13 ___ ___ ------___ 1.8 2.4 1.0 ___ ___ ___ ---.96 ------___ 14 ------1.8 2.2 ---.99 16 ___ ---___ ---___ 1.9 . 94 ---------1.8 ---------1.8 1.6 .82 ___ . 78 18 ___ ---------___ ---.73 ------2.4 19 ------___ ---1.9 2.0 ------------------. 74 .74 21 ___ 2.4 ___ ------___ 22 ---------___ .72 ---------------1.7 23 2.4 .64 ---___ ___ ---------------___ 2.6 1.0 .65 ---25 ---------------1.7 1.0 .72 26 27 ------------------------1.9 ___ ___ _--2.7 1.8 .81 ---1.8 .69 29 ------___ ---___ ---------___ 1.8 ------------30 ---2.2 .99 31 2.4 1.8 TOTAL. ___ ---___ ------_------___ 61.7 31.28 MEAN ---___ ------___ ___ ___ ___ ___ ---1.99 1.04 ------MIN ___ ------___ AC-FT ___ 122 62 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 1991, BY WATER YEAR (WY) MEAN 1.99 1.04 ------1.99 1.04 ------------(WY) ---------___ ------1.991 1991 ------MIN ---------___ ---1.99 1.04 1991 (WY) 1991 07081800 CALIFORNIA GULCH AT MALTA, CO--Continued | | | DISCHARG | E, CUBIC | FEET PER | | WATER
Y MEAN | YEAR OCTOBER | 1991 | TO SEPTEM | BER 1992 | | | |---|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.5
1.3
.93
.85
1.2 | 1.0
1.0
1.0
1.1 | 1.0
1.1
1.2
1.0
1.1 | 1.1
1.1
1.0
1.0 | 1.3
1.3
1.3
1.2 | 1.6
1.7
1.5
1.4 | 1.4
1.5
1.6
1.6 | 1.7
1.7
1.5
1.5 | 1.5
1.6
1.5
1.1 | .89
.96
1.1
.65
.65 | 1.3
1.4
1.0
1.3 | 2.4
2.5
2.4
2.0
1.5 | | 6
7
8
9
10 | 1.2
.99
1.0
1.0 | 1.1
1.1
1.2
1.2
1.2 | 1.0
1.0
1.1
1.0 | 1.1
1.1
1.0
1.1
1.1 | 1.2
1.3
1.3
1.3 | 1.1
1.2
1.1
1.2 | 1.8
1.9
2.1
2.3
2.6 | 1.8
1.9
1.9
1.8
1.9 | 1.3
1.3
1.2
1.5 | .80
.91
1.6
1.8 | 1.5
1.9
1.7
1.5
2.2 | 1.3
1.3
1.5
2.1
2.0 | | 11
12
13
14
15 | 1.0
1.0
1.0
1.2 | 1.2
1.1
.97
1.1 | 1.1
1.1
1.1
1.4
1.5 | 1.1
1.2
.97
.85
1.0 | 1.3
1.2
1.1
1.1 | 1.1
1.3
1.4
1.3 | 2.6
3.3
2.8
2.3
2.1 | 1.8
1.9
1.8
1.7 | 1.7
1.4
1.0
.96 | 1.5
1.6
1.6
1.9
2.7 | 2.6
2.6
2.5
2.2
1.4 | 1.9
1.1
1.2
1.5
2.3 | | 16
17
18
19
20 | 1.0
1.1
1.1
1.0
1.0 | 1.2
1.1
1.1
1.1 | 1.5
1.4
1.4
1.3 | 1.1
1.1
1.1
1.1 | 1.4
1.1
1.0
1.1
1.3 | 1.3
1.3
1.2
1.2 | 1.8
2.0
2.0
1.7
1.5 | 2.5
2.6
2.4
3.5
3.4 | 1.0
1.3
1.4
1.1 | 2.7
2.5
2.2
2.1
2.2 | 1.5
2.4
2.7
2.4
1.8 | 2.0
2.0
1.9
1.5
1.9 | | 21
22
23
24
25 | .94
.85
.92
1.0
1.2 | 1.2
1.1
1.1
1.0
1.1 | 1.3
1.3
1.3
1.2 | 1.1
1.0
1.0
1.1 | 1.5
1.5
1.5
1.3 | 1.2
1.2
1.5
1.5 | 1.7
1.7
1.9
1.7 | 3.5
4.1
3.8
3.0
1.6 | 1.3
1.7
1.3
1.8
2.1 | 2.0
1.4
1.4
1.8
2.8 | 1.8
1.9
1.9
6.3
3.0 | 1.8
1.9
1.8
1.7 | | 26
27
28
29
30
31 | 1.1
1.1
1.3
.90
.90 | 1.2
1.0
1.1
1.0
1.2 | 1.3
1.3
1.3
1.2
1.2 | 1.2
1.2
1.2
1.3
1.3 | 1.5
1.2
1.3
1.6 | 1.5
1.5
1.4
1.5
1.5 | 1.8
1.9
1.9
1.8
1.9 | 1.5
1.7
1.8
1.8
1.4 | 1.7
1.3
1.3
.98 | 2.4
1.9
1.7
1.6
1.5 | 2.8
2.3
2.1
1.4
1.3 | 1.1
1.1
1.4
1.6
1.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 32.78
1.06
1.5
.85
65 | | 37.5
1.21
1.5
1.0
74 | 34.02
1.10
1.3
.85
67 | 37.4
1.29
1.6
1.0
74 |
41.5
1.34
1.7
1.1
82 | 58.7
1.96
3.3
1.4
116 | 66.1
2.13
4.1
1.3
131 | 39.94
1.33
2.1
.86
79 | 51.86
1.67
2.8
.65
103 | 63.7
2.05
6.3
1.0
126 | 52.1
1.74
2.5
1.1
103 | | | | | | | | | , BY WATER YE | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.06
1.06
1992
1.06
1992 | 1.11
1992
1.11 | 1.21
1.21
1992
1.21
1992 | 1.10
1.10
1992
1.10
1992 | 1.29
1.29
1992
1.29
1992 | 1.34
1.34
1992
1.34
1992 | 1.96
1.96
1992
1.96
1992 | 2.13
2.13
1992
2.13
1992 | 1.33
1.33
1992
1.33
1992 | 1.67
1.67
1992
1.67
1992 | 2.02
2.05
1992
1.99
1991 | 1.39
1.74
1992
1.04
1991 | | SUMMARY | STATIST | ıcs | | | FOR 19 | 92 WATE | R YEAR | | | WATER YEA | ARS 1991 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN 'ANNUAL MI 'DAILY MI DAILY ME | EAN EAN AN C MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | | 1 | a.65
.84
2
1.54 | Aug 24
Jul 4
Jun 30
Aug 24
Aug 24 | | | 1.50
1.50
1.50
6.3
.64
.70
12
1.54
1090
2.4
1.4 | Aug 2
Sep 2
Sep 2
Aug 2 | 1992
1992
24 1992
23 1991
20 1991
24 1992
24 1992 | a-Also occurred Jul 5. 07081800 CALIFORNIA GULCH AT MALTA, CO ## 07082400 TURQUOISE LAKE NEAR LEADVILLE, CO LOCATION.--Lat 39°15'10", long 106°22'26", in SW¹/4NE¹/4 sec.19, T.9 S., R.80 W., Lake County, Hydrologic Unit 11020001, in control house of Sugar Loaf Dam on Lake Fork, 4.0 mi west of Leadville and 4.6 mi upstream from mouth. DRAINAGE AREA. -- 28.1 mi2. PERIOD OF RECORD. -- April 1968 to current year. GAGE.--Nonrecording gage read once daily. Datum of gage is 9,754.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir formed by earthfill dam completed in 1909, capacity, 17,400 acre-ft. Enlargement of dam began Dec. 8, 1965, and closure was made Apr. 15, 1968. Enlarged capacity, 129,400 acre-ft at elevation 9,869.4 ft, crest of spillway. Dead storage, 2,770 acre-ft below elevation 9,765.90 ft, sill of lowest outlet. Figures given are total contents. Since Apr. 15,1968, Turquoise Lake has been a regulatory reservoir for the Fryingpan-Arkansas project and stores water imported from the Colorado River basin through Charles H. Boustead Tunnel for rrigation, municipal water supply, and power development. It also stores water for industrial use, and water imported from the Colorado River basin through Busk-Ivanhoe tunnel for irrigation and through Homestake tunnel for municipal water supply. COOPERATION. -- Records provided by U. S. Bureau of Reclamation. EXTREMES (at 0800 of following day) FOR PERIOD OF RECORD.--Maximum contents, 131,820 acre-ft, July 10, 1983, elevation, 9,870.73 ft; minimum since appreciable storage was attained, 14,510 acre-ft, Oct. 1, 1968, elevation, 9,782.85 ft. EXTREMES (at 0800 of the following day) FOR CURRENT YEAR.--Maximum contents, 122,780 acre-ft, July 11, elevation, 9,865.67 ft; minimum, 72,560 acre-ft, Apr. 30, elevation, 9,835.04 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents
(acre-feet) | Change
in contents
(acre-feet) | |--|--|--|---| | Sept. 30 | 9,863.72
9,862.07
9,859.83
9,854.07 | 119,360
116,490
112,630
102,860 | -2,870
-3,860
-9,770 | | CAL YR 1991 | | | -13,980 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 9,847.89
9,842.27
9,839.91
9,835.04
9,848.42
9,864.64
9,864.72
9,865.09
9,864.15 | 92,660
83,660
79,970
72,560
93,520
120,970
121,110
121,760
120,110 | -10,200
-9,000
-3,690
-7,410
+20,960
+27,450
+140
+650
-1,650 | | WTR YR 1992 | | | +750 | 153 ## 07083000 HALFMOON CREEK NEAR MALTA, CO (Hydrologic bench-mark station) LOCATION.--Lat 39°10'20", long 106°23'19", in SE¹/4SE¹/4 sec.13, T.10 S., R.81 W., Lake County, Hydrologic Unit 11020001, on right bank 1.4 mi upstream from culvert on Halfmoon Campground road, 3.3 mi upstream from mouth, and 4.3 mi southwest of Malta. DRAINAGE AREA. -- 23.6 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1946 to current year. REVISED RECORDS.--WSP 2121: Drainage area at site 1.4 ml downstream. WRD Colo. 1968: 1967 (M). WDR CO-79-1: 1976 (M). WDR CO-80-1: 1954 (M). GAGE.--Water-stage recorder with satellite telemetry and concrete control since 1966. Elevation of gage is 9,830 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 19, 1966, at sites 1.4 mi downstream at different datums. REMARKS.--Estimated daily discharges: Oct. 31 to Mar. 2. Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. | | | DISCHARGE | CUBIC | FEET PE | R SECOND,
DAILY | WATER | YEAR OCTOBER
VALUES | 1991 5 | TO SEPTEME | BER 1992 | | | |---|--|---|--------------------------------------|--|--------------------------------------|--|--|--|------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.6
9.2
8.8
8.4
8.3 | 3.8
3.6
3.4
3.6
3.8 | 3.8
3.6
3.8
4.0
4.2 | 3.0
3.1
3.2
3.3
3.4 | 5.6
4.6
3.8
3.4
3.0 | 2.8
3.0
3.2
3.0
3.1 | 3.2
3.1
3.4
3.6
4.2 | 28
30
31
32
37 | 44
41
46
57
6 5 | 89
76
67
68
71 | 40
37
36
35
34 | 31
30
27
27
26 | | 6
7
8
9
10 | 8.4
8.3
8.0
7.9
7.7 | 4.0
4.2
4.4
4.6
4.8 | 4.4
4.6
4.4
4.2
4.3 | 3.4
3.3
3.3
3.4
3.6 | 3.0
3.1
3.2
3.2
3.1 | 3.1
3.0
3.0
3.0 | 4.6
4.7
5.1
5.6
6.4 | 44
47
45
38
35 | 63
63
56
57
61 | 76
81
109
92
77 | 36
36
31
31
34 | 24
23
21
20
19 | | 11
12
13
14
15 | 7.6
7.5
7.3
7.2
7.2 | 5.2
5.6
5.6
5.4
5.1 | 4.4
4.5
4.2
4.0
4.2 | 3.8
3.6
3.4
3.4
3.5 | 3.0
2.9
2.7
2.6
2.6 | 3.2
3.2
3.3
3.3
3.5 | 7.1
7.4
7.7
8.1
7.8 | 33
36
37
43
48 | 74
79
97
99 | 69
70
68
59
55 | 38
34
33
31
30 | 18
17
17
16
17 | | 16
17
18
19
20 | 7.0
6.7
6.7
6.5
6.7 | 4.8
4.6
4.6
4.5 | 4.3
4.2
4.2
4.3
4.2 | 3.6
3.6
3.5
3.6
3.8 | 2.1
2.0
2.0
2.1
2.2 | 3.5
3.4
3.0
3.0
3.1 | 8.1
8.2
8.6
7.4
6.9 | 53
55
69
82
89 | 75
65
80
95
99 | 56
51
48
48
51 | 29
37
33
29
27 | 17
16
16
16
16 | | 21
22
23
24
25 | 6.7
6.3
6.3
6.5
6.8 | 4.4
4.2
4.0
4.0 | 4.0
3.8
3.6
3.5
3.5 | 4.2
4.2
4.3
4.8
5.2 | 2.3
2.3
2.1
2.2
2.2 | 3.1
3.1
3.0
3.0
3.0 | 6.9
7.2
7.1
6.7
7.3 | 95
88
79
81
69 | 106
102
107
118
121 | 53
48
49
58
69 | 27
27
29
38
38 | 16
15
14
14
15 | | 26
27
28
29
30
31 | 6.5
6.3
6.4
5.1
3.9
3.8 | 4.2
4.4
4.4
4.3
4.0 | 3.4
3.4
3.3
3.3
3.3 | 5.0
5.2
5.4
5.4
6.0 | 2.2
2.4
2.4
2.6 | 3.1
3.2
3.2
3.2
3.1
3.2 | 8.0
9.6
14
19
25 | 74
83
64
55
52
48 | 118
101
99
103
96 | 87
65
56
52
48
44 | 40
37
36
33
31
30 | 14
13
13
12
12 | | TOTAL MEAN MAX MIN AC-FT | 219.6
7.08
9.6
3.8
436 | | 22.3
3.95
4.6
3.3
243 | 123.5
3.98
6.0
3.0
245 | 80.9
2.79
5.6
2.0
160 | 97.0
3.13
3.5
2.8
192 | 232.0
7.73
25
3.1
460 | 1700
54.8
95
28
3370 | 2478
82.6
121
41
4920 | 2010
64.8
109
44
3990 | 1037
33.5
40
27
2060 | 552
18.4
31
12
1090 | | STATIST | ICS OF MC | NTHLY MEAN | DATA FOR | R WATER Y | EARS 1946 | - 1992, | , BY WATER YE | EAR (WY | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.9
24.5
1962
6.23
1956 | 16.6
1962
4.40 | 5.13
8.33
1986
3.20
1975 | 4.02
7.00
1960
1.65
1977 | 3.71
7.90
1986
1.70
1948 | 3.72
10.8
1947
1.20
1948 | 6.91
13.8
1989
2.70
1973 | 44.1
76.5
1958
20.5
1983 | 126
208
1980
61.2
1977 | 82.1
239
1957
22.9
1977 | 34,2
76,1
1984
14.3
1950 | 17.4
44.3
1961
8.03
1974 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | I | FOR 1992 WATE | ER YEAR | | WATER YE | ARS 1946 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC
 | AN
AN
MINIMUM
AK FLOW
CAK STAGE
(C-FT)
DS | | 8111.9
22.2
161
2.0
2.3
16090
73
5.5
3.2 | Jun 14
Feb 18
Feb 24 | | 8784.3
24.0
121
a2.0
2.1
139
2.88
17420
70
7.1
3.1 | Jun 25
Feb 17
Feb 16
Jun 25
Jun 25 | | 28.9
49.0
14.3
3884
51.1
1.2
615
5 3.77
20910
86
8.8
3.2 | Apr
Mar 2
Jun 3 | 1984
1977
8 1985
8 1948
27 1948
80 1984 | a-Also occurred Feb 18. b-Also occurred Apr 2, 1948. c-From rating curve extended above 300 ft³/s. ## 07083000 HALFMOON CREEK NEAR MALTA, CO--Continued (Hydrologic bench-mark station) ## WATER-QUALITY RECORDS PERIOD OF RECORD .-- November 1966 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURES: May 1967 to September 1982. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum, 26.05C, Aug. 16, 1980; minimum, 0.05C, on many days during winter months. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | WAT | EK-QUALITY | DATA, W | ATER YEAR | CTOBER | 1991 TO : | SEPTEMBER | 1992 | | |------------------|---|--|--|---|--------------------------------------|--|---|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU) | OXYGEN,
DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | | OCT 21 | 1645 | 6.4 | 84 | 7.8 | 7.0 | 0.6 | 8.1 | | <1 | | DEC
11 | 1320 | 4.4 | 100 | 7.6 | 0.0 | 0.9 | 11.6 | <1 | <1 | | FEB
26 | 1515 | 2.2 | 101 | 8.1 | 0.0 | 0.8 | 10.2 | <1 | кз | | APR
29 | 1600 | 17 | 75 | 8.2 | 13.0 | 0.7 | 6.8 | <1 | <1 | | JUN
30 | 1830 | 91 | 52 | 7.8 | 11.0 | 0.8 | 7.6 | <1 | <1 | | AUG
27 | 1600 | 44 | 76 | 7.8 | 11.5 | 0.5 | 7.5 | <2 | <3 | | DATE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
PERCENT | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | BICAR-A
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | CAR-B
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | | OCT
21
DEC | 44 | 11 | 4.1 | 1.6 | 7 | 0.1 | 0.6 | 48 | 0 | | 11 | 44 | 11 | 4.0 | 1.8 | 8 | 0.1 | 0.7 | 48 | 0 | | FEB
26
APR | 48 | 12 | 4.3 | 1.9 | 8 | 0.1 | 0.3 | 59 | 0 | | 29 | 34 | 8.2 | 3.2 | 1.3 | 8 | 0.1 | 0.6 | 36 | 0 | | JUN
30
AUG | 26 | 6.8 | 2.2 | 0.9 | 7 | 0.1 | 0.4 | | | | 27 | 36 | 9.0 | 3.2 | 1.1 | 6 | 0.1 | 0.5 | 44 | 0 | | ם | LIN
WAT
TOT
FI
ATE MG/ | | FATE RI
S- DI
LVED SO
S/L (M | DE, RI
S- D
LVED SC
G/L (M | DE, DI
IS- SC
LVED (N | LICA, RES
IS- AT
DLVED DE
MG/L D
AS SO | IDUE SUM
180 CON
G. C TUE
IS- D
LVED SO | STI- D
NTS, SO
IS- (T
LVED P | IDS,
IS-
LVED
ONS
ER
AY) | | OCT
21. | | 39 5 | 5.2 | 0.6 | 0.2 | 6.0 | 51 | 53 | 0.88 | | DEC 11. | | | | | 0.2 | 6.8 | 45 | | | | FEB
26. | | | | | 0.1 | 6.9 | 69 | 63 | 0.41 | | APR 29. | | | | | 0.1 | 4.6 | 53 | | 2.43 | | JUN
30. | | | | | 0.1 | 3.4 | 33 | | | | AUG
27. | •• | 36 4 | 1.2 | 0.1 < | 0.1 | 4.2 | 44 | 45 | 5.23 | A Field dissolved bicarbonate, determined by incremental titration method. B Field dissolved carbonate, determined by incremental titration method. C Field total dissolved alkalinity, determined by incremental titration method. K Based on non-ideal colony counts. ## 07083000 HALFMOON CREEK NEAR MALTA, CO--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | mildle golder bring mildle tolk tolk 1991 to be table 1992 | | | | | | | | | | | | |-----------|--|--|---|---|--|---|---|--|---|---|--|--| | | E | 1
STAC | NITRO-
GEN,
NITRITE I
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | | | | OCT
21.
DEC | | <0.01 | 0.078 | <0.01 | <0.01 | <0.20 | <0.01 | <0.01 | <0.01 | | | | | 11. | | <0.01 | 0.160 | 0.06 | 0.02 | 0.50 | 0.06 | 0.04 | 0.02 | | | | | FEB
26. | | <0.01 | 0.140 | 0.02 | 0.04 | <0.20 | <0.01 | <0.01 | <0.01 | | | | | APR
29. | •• | <0.01 | 0.078 | | 0.03 | | | <0.01 | 0.01 | | | | | JUN
30. | | <0.01 | 0.097 | 0.01 | 0.02 | <0.20 | <0.01 | <0.01 | <0.01 | | | | | AUG
27. | • • | <0.01 | 0.140 | 0.01 | 0.02 | <0.20 | <0.01 | <0.01 | <0.01 | | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | DIS-
SOLVED
(UG/L | (UG/L | DIS-
SOLVED
(UG/L | DENUM,
DIS-
SOLVED
(UG/L | NICKEL,
DIS-
SOLVED
(UG/L | DIS-
SOLVED
(UG/L | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | | OCT 21 | <10 | 22 | 2 <3 | 69 | <4 | | 5 <10 | 1 | <1 | <1 | 78 | <6 | | FEB
26 | <10 | 20 |) <3 | 32 | <4 | 6 | 5 <10 | <1 | <1 | <1 | 85 | <6 | | JUN
30 | <10 | 17 | 7 <3 | 28 | <4 | 3 | 3 <10 | <1 | <1 | <1 | 48 | <6 | | AUG
27 | <10 | 21 | . <3 | 75 | <4 | 5 | 5 <10 | <1 | <1 | <1 | 67 | <6 | | | | | | | | | | | | | | | ## RADIOCHEMICAL ANALYSES, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) | GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) | GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) | GROSS
BETA,
SUSP.
TOTAL
(PCI/L
AS SR/
YT-90) | GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) | GROSS
BETA,
SUSP.
TOTAL
(PCI/L
AS
CS-137) | RADIUM
226,
DIS-
SOLVED,
RADON
METHOD
(PCI/L) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U) | |-----------|------|--|--|--|--|---|---|---|--| | DEC | 1000 | .0 . | | | .0 . | | .0 . | | 0.10 | | 11
JUN | 1320 | <0.6 | 0.9 | 0.8 | <0.6 | 0.9 | <0.6 | 0.03 | 0.10 | | 30 | 1830 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | <0.6 | 0.02 | 0.07 | ## CROSS-SECTION DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) | TEMPER-
ATURE
WATER
(DEG C) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | OXYGEN,
DIS-
SOLVED
(MG/L) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |------|------|---|--------------------------------------|---|---|-------------------------------------|--| | OCT | 1616 | | | • | 5.6 | | | | 21 | 1646 | 4.00 | 7.0 | 84 | 7.6 | 8.1 | 2 | | 21 | 1647 | 10.0 | 7.0 | 84 | 7.6 | 8.1 | 2 | | 21 | 1648 | 15.0 | 7.0 | 84 | 7.7 | 8.1 | 2 | | JUN | | | | | | | | | 30 | 1831 | 8.00 | 11.0 | 52 | 7.8 | 7.6 | 1 | | 30 | 1832 | 17.0 | 11.0 | 52 | 7.8 | 7.6 | 1 | | 30 | 1833 | 23.5 | 11.0 | 52 | 7.8 | 7.6 | 1 | # 07083000 HALFMOON CREEK NEAR MALTA, CO--Continued MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |----------|------|--|---|--------------------------------------|----------|------|--|---|--------------------------------------| | JAN 1992 | | | | | AUG 1992 | | | | | | 30 | 1400 | 5.4 | 108 | 0.0 | 05 | 0930 | 33 | 75 | 7.0 | | MAY | | | | | SEP | | | | | | 28 | 1300 |
63 | 59 | 7.5 | 22 | 1050 | 15 | 85 | 6.0 | SUSPENDED-SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | |-----------|------|--|--|--| | OCT | | | | | | 21 | 1645 | 6.4 | 2 | 0.03 | | DEC | | | _ | | | 11 | 1320 | 4.4 | 4 | 0.05 | | FEB
26 | 1515 | 2.2 | 3 | 0.02 | | APR | 1515 | 2.2 | 3 | 0.02 | | 29 | 1600 | 17 | 4 | 0.19 | | JUN | 1000 | 1, | - | 0.19 | | 30 | 1830 | 91 | 9 | 2.1 | | AUG | | | - | 3 | | 27 | 1600 | 44 | 2 | 0.29 | ## 07083710 ARKANSAS RIVER BELOW EMPIRE GULCH NEAR MALTA, CO LOCATION.--Lat 39°09'50", long 106°19'10", in NE¹/4SW¹/4 sec. 22, T.10 S., R.80 W., Lake County, Hydrologic Unit 11020001, at right downstream end of private road bridge, 0.1 mi downstream from Empire Gulch, 0.4 mi downstream from bridge on U.S. Highway 24, 0.6 mi upstream from Dry Union Gulch, and 4.8 mi southeast of Malta. DRAINAGE AREA. -- 237 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1990 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov.1 to Mar. 3, and Mar. 31 to Apr. 6. Records good except for those above 650 ft³/s and those for estimated daily discharges, which are poor. Natural flow of river affected by transmountain diversions, storage reservoirs, diversions for irrigation upstream from station (acreage unknown), and return flow from irrigated areas. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER
MEAN | YEAR OCTOBER
VALUES | 1991 | го ѕерте мв еі | 1992 | | | |---|---|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---------------------------------|--|------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 70
69
68
68
67 | 62
60
60
58
58 | 64
66
68
73
71 | 68
68
70
70
70 | 64
60
58
58
56 | 57
58
57
58
60 | 70
68
70
76
76 | 148
146
152
153
164 | 290
245
237
249
283 | 251
234
229
229
231 | 126
122
123
121
117 | 108
109
103
99
96 | | 6
7
8
9
10 | 67
67
67
66
66 | 60
64
67
68
68 | 69
67
67
68
70 | 70
68
68
66
68 | 56
58
58
58
58 | 60
60
59
58
57 | 74
77
79
84
92 | 173
195
222
234
217 | 283
300
270
296
293 | 237
312
310
247
224 | 113
114
108
104
124 | 88
86
79
76
75 | | 11
12
13
14
15 | 66
65
66
65
65 | 68
66
66
67
66 | 67
68
65
67
72 | 70
70
68
66
64 | 58
58
58
56
56 | 57
58
56
57
58 | 95
97
98
102
99 | 185
202
209
221
228 | 309
342
353
365
348 | 226
240
219
211
206 | 138
130
119
115
107 | 77
71
71
71
78 | | 16
17
18
19
20 | 64
63
62
60
62 | 66
66
66
67
62 | 74
78
80
80
78 | 64
66
66
68 | 58
56
53
54
56 | 60
61
59
59 | 102
117
119
107
99 | 223
221
244
271
304 | 305
268
276
313
332 | 203
182
167
158
162 | 102
125
122
100
91 | 80
79
78
76
89 | | 21
22
23
24
25 | 63
66
67
74
79 | 67
66
63
63
64 | 66
72
68
70
73 | 66
62
60
60 | 56
59
58
58
54 | 58
61
60
59
61 | 97
98
99
92
95 | 342
364
357
364
324 | 337
330
336
369
377 | 161
147
149
169
200 | 94
90
105
207
201 | 88
82
78
75
78 | | 26
27
28
29
30
31 | 77
75
76
71
66
64 | 66
66
65
66
64 | 72
72
74
72
70
70 | 62
62
62
63
63 | 56
56
57
57
 | 59
61
63
63
66
64 | 100
117
142
144
145 | 338
393
364
322
298
295 | 386
347
311
320
283 | 230
184
165
154
146
132 | 166
137
120
110
106
105 | 79
76
74
76
73 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2091
67.5
79
60
4150 | 64.5
68
58 | 2191
70.7
80
64
4350 | 2039
65.8
70
60
4040 | 1658
57.2
64
53
3290 | 1843
59.5
66
56
3660 | 97.7
145
68 | 7873
254
393
146
5620 | 9353
312
386
237
18550 | 6315
204
312
132
.2530 | 3762
121
207
90
7460 | 2468
82.3
109
71
4900 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | WATER YE | ARS 1990 | - 1992 | , BY WATER YE | AR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 81.8
96.1
1991
67.5
1992 | 92.6
1991
64.5 | 61.9
70.7
1992
53.1
1991 | 56.7
65.8
1992
47.7
1991 | 54.3
57.2
1992
51.4
1991 | 58.1
59.5
1992
56.7
1991 | 79.5 | 247
254
1992
241
1991 | 389
438
1990
312
1992 | 182
204
1992
165
1990 | 107
121
1992
88.4
1990 | 74.4
82.3
1992
66.7
1990 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | R YEAR | V | ATER YE | ARS 1990 - | 1992 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | 44399
122
691
43
45
88070
285
71
50 | Jun 14
Jan 1
Jan 10 | | 53
56
425 | May 27
Feb 18
Feb 14
Jun 26
Jun 26 | ā | 123
125
121
846
31
34
1030
4.19
89240
299
87
54 | Jun 11
Dec 23
Dec 21
Jun 10
Jun 10 | 1990
1990
1990 | a-From rating curve extended above 500 ${\rm ft}^3/{\rm s}$. b-Maximum gage height, 4.34 ft, Jan 31, backwater from ice. c-Maximum gage height, 4.34 ft, Jan 31, 1992, backwater from ice. 07083710 ARKANSAS RIVER BELOW EMPIRE GULCH NEAR MALTA, CO ## 07084500 LAKE CREEK ABOVE TWIN LAKES RESERVOIR, CO LOCATION.--Lat 39°03'47", long 106°24'26", Lake County, Hydrologic Unit 11020001, on left bank 1.2 mi upstream from water line of Twin Lakes Reservoir at elevation 9,200 ft and 1.9 mi southwest of village of Twin Lakes. DRAINAGE AREA. -- 75 mi². PERIOD OF RECORD.--April 1946 to September 1962, October 1963 to current year. Monthly discharge only for some periods, published in WSP 1241, 1311, and 1731. REVISED RECORDS.--WSP 1117: Drainage area. WSP 1711: 1951(M), 1952. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,310 ft, from topographic map. Prior to May 20, 1950, at site 190 ft downstream, at different datum. May 20, 1950, to Apr. 7, 1953, at site 10 ft upstream, at present datum. REMARKS.--Estimated daily discharges: Oct 29 to Apr. 15. Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Records include inflow from Roaring Fork River in Colorado River basin through Twin Lakes tunnel. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | Julve | -Y • | | | | | | | | | | | | |---|-------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|-------------------------------------|--|------------------------------------|--| | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER | R 1991 T | O SEPTEMB | ER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 27
26
26
25
24 | 18
18
17
18
19 | 16
15
15
14
15 | 12
11
11
11 | 12
11
10
10 | 8.8
9.0
9.1
9.5
9.4 | 13
14
14
14
14 | 182
213
232
313
318 | 296
282
314
384
440 | 487
400
350
346
386 | 154
147
124
138
85 | 73
70
65
63
60 | | 6
7
8
9 | 25
24
24
23
22 | 20
21
22
23
24 | 16
16
16
17
16 | 10
10
10
10 | 9.8
9.8
9.9
10 | 9.4
9.4
9.6
10 | 14
16
13
14
16 | 350
377
374
364
321 | 440
438
410
420
431 | 392
408
526
475
383 | 90
88
78
72
75 | 55
52
50
47
45 | | 11
12
13
14
15 | 22
21
20
20
19 | 25
43
85
28
18 | 16
16
15
14
14 | 11
12
11
10 | 9.8
9.6
9.4
9.2
8.9 | 10
9.8
10
10 |
17
18
19
34
65 | 285
294
302
347
378 | 491
523
668
680
598 | 346
338
316
287
286 | 83
79
76
73
68 | 43
42
43
42
44 | | 16
17
18
19
20 | 19
18
18
18 | 18
19
18
18 | 28
77
51
14
14 | 9.8
9.6
9.4
9.6 | 8.6
8.2
7.9
7.8
7.8 | 12
12
12
12
12 | 61
52
36
25
21 | 411
457
544
598
619 | 532
468
534
610
642 | 289
251
225
222
222 | 64
69
64
57
54 | 42
43
42
42
44 | | 21
22
23
24
25 | 18
17
18
18 | 17
17
17
16
16 | 15
14
14
14
14 | 10
10
10
9.8
9.6 | 8.0
8.2
8.0
7.8
8.0 | 12
12
12
12
12 | 21
22
21
21
23 | 671
625
567
587
528 | 639
624
678
736
689 | 225
207
206
244
316 | 53
56
65
84
93 | 46
44
39
37
41 | | 26
27
28
29
30
31 | 19
19
19
19
19 | 16
16
17
17
16 | 14
14
13
13
12 | 9.7
10
10
10
11 | 8.2
8.4
8.5
8.6 | 12
12
12
12
12
12 | 50
52
67
89
154 | 534
538
469
401
363
329 | 651
563
532
576
538 | 371
294
248
208
203
172 | 97
90
83
77
74
72 | 38
37
35
34
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | 642
20.7
27
17
1270 | 85
16 | 564
18.2
77
12
1120 | 319.5
10.3
12
9.4
634 | 263.4
9.08
12
7.8
522 | 338.0
10.9
13
8.8
670 | 33.7
154
13 | 12891
416
671
182
25570 | 15827
528
736
282
31390 | 9629
311
526
172
19100 | 2582
83.3
154
53
5120 | 1390
46.3
73
32
2760 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 43.5
185
1962
18.8
1957 | 90.0
1962
12.4 | 19.4
60.0
1962
10.3
1989 | 15.1
35.0
1962
8.68
1981 | 13.6
35.0
1962
7.00
1948 | 13.5
40.0
1962
5.00
1948 | 31.3
104
1962
10.1
1983 | 318
704
1970
101
1983 | 860
1579
1978
415
1954 | 408
939
1957
81.3
1977 | 128
295
1983
42.2
1950 | 65.5
258
1961
23.5
1974 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALENI | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YEA | ARS 1946 | - 1992 | | LOWEST A
HIGHEST I
ANNUAL :
INSTANTA
INSTANTA
ANNUAL I
10 PERCI
50 PERCI | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 1040
8.6
8.8
91720
487
20
9.6 | Jun 12
Feb 20
Feb 16 | | 736
7.8
7.9
894
4.37
91460
440
22
9.8 | Jun 24
Feb 19
Feb 18
Jun 23
Jun 23 | | 162
258
78.6
2570
45.0
5.0
3270
5.08
117600
534
11 | Mar
Mar
Jun 1 | 1970
1977
5 1978
1 1948
1 1948
5 1978
5 1978 | a-Also occurred Mar 2-31, 1948. b-From rating curve extended above 1400 ${\rm ft}^3/{\rm s}$. ## 07086000 ARKANSAS RIVER AT GRANITE, CO LOCATION.--Lat 39°02'34", long 106°15'55", in SE¹/4SW¹/4 sec.31, T.11 S., R.79 W., Chaffee County, Hydrologic Unit 11020001, on right bank at Granite, 100 ft east of U.S. Highway 24, 100 ft downstream from county bridge, and 200 ft upstream from Cache Creek. DRAINAGE AREA. -- 427 mi². PERIOD OF RECORD.--April to October 1895, May to December 1897, August to September 1898, March to October 1899, April to May 1901 (gage heights and discharge measurements only in 1895, 1899, and 1901), April 1910 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS.--WSP 1117: Drainage area, WSP 1711: 1952, 1956 (M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,914.86 ft above National Geodetic Vertical Datum of 1929, supplementary adjustment of 1960. Prior to Apr. 6, 1910, nonrecording gages near present site at different datums. Apr. 6, 1910 to Oct. 25, 1917, water-stage recorder or nonrecording gage at site 832 ft upstream, at different datum. Oct. 26, 1917 to Oct. 26, 1960, water-stage recorder at site 168 ft downstream, at present datum. REMARKS.--Estimated daily discharges: Oct. 29 to Nov. 4, Nov. 13, 14, 19, 20, Dec. 4-10, 12, 13, 15, 16, 23, 24, 26-28, 30, and Jan. 3. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation of about 6,700 acres. Turquoise Lake and Twin Lakes Reservoir, on tributaries upstream from station, have a combined capacity of 269,700 acre-ft. Transmountain diversions from Colorado River basin to Arkansas River basin enter upstream from this station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | DISC | CHARGE, CUBI | C FEET PER | | | YEAR OCTO
VALUES | BER 1991 1 | TO SEPTEMB | ER 1992 | | | |--|---|------------------------------------|---|------------------------------------|--|---|---|--------------------------------------|---|--|--| | DAY O | OCT NO | / DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2
3
4 | 93 11
94 12
95 12
97 12
95 16 | 227
3 241
9 240 | 269
269
269
269
269 | 269
269
271
270
271 | 269
271
269
273
268 | 216
213
216
220
227 | 301
305
305
391
524 | 697
598
541
560
642 | 830
778
659
565
524 | 524
525
531
541
528 | 194
181
190
190
192 | | 7
8
9 | 95 16
93 16
96 16
97 16
97 16 | 9 205
0 207
3 212 | 269
272
272
267
264 | 268
267
265
265
265 | 269
269
273
273
269 | 231
234
203
183
183 | 560
596
636
616
603 | 727
819
764
748
631 | 527
530
590
727
724 | 516
524
536
542
554 | 187
185
176
168
146 | | 12
13
14 | 99 16
99 16
95 15
97 15
97 19 | 3 209
5 240
1 265 | 267
273
273
273
273 | 267
268
265
265
266 | 265
268
263
265
261 | 196
193
199
199
196 | 548
536
554
566
622 | 625
748
798
836
965 | 612
615
612
520
506 | 556
527
509
494
423 | 126
125
122
116
109 | | 17
18
19 | 97 25:
95 25:
95 25:
93 20:
90 20: | 7 245
3 238
3 245 | 273
270
269
268
268 | 265
265
265
263
265 | 249
248
250
244
244 | 199
206
177
163
152 | 715
777
776
790
919 | 1010
917
823
859
940 | 542
546
525
554
554 | 339
299
286
264
242 | 113
112
117
112
123 | | 22
23
24 1 | 90 220
91 213
95 200
00 200
19 210 | 3 231
9 230
9 230 | 269
273
273
271
269 | 267
262
266
265
270 | 246
245
216
199
203 | 147
147
147
144
149 | 1020
1110
1170
1110
1040 | 982
995
981
1010
1030 | 554
554
566
566
549 | 260
325
330
334
334 | 125
119
113
108
114 | | 27 1
28 1
29 1
30 1 | 17 21:
12 21:
12 21:
04 21:
20 22:
19 | 3 230
3 233
3 227
0 250 | 269
269
269
269
269
269 | 271
271
268
272 | 199
205
209
209
216
220 | 152
174
234
269
285 | 966
1010
993
900
800
754 | 1100
1270
1170
1090
870 | 579
522
507
528
521
511 | 307
266
219
204
199
195 | 116
110
110
111
110 | | MEAN 99
MAX 1
MIN
AC+FT 61 | 88 561:
6.6 18:
20 25:
90 11:
30 11136 | 7 232
7 265
9 205
0 14260 | 8365
270
273
264
16590 | 7746
267
272
262
15360 | 7627
246
273
199
15130 | 5854
195
285
144
11610 | 22513
726
1170
301
44650 | 25746
858
1270
541
51070 | 17997
581
830
506
35700 | 12233
395
556
195
24260 | 4120
137
194
108
8170 | | MEAN 1 | 56 12°
56 33°
77 198° | 7 448
3 1983
3 48.5 | 95.4
419
1983
39.8
1918 | 101
526
1985
45.0
1919 | 116
500
1985
55.0
1919 | 238
667
1962
97.1
1933 | 685
1711
1984
191
1935 | 1260
2146
1984
432
1934 | 892
2367
1983
217
1934 | 541
1239
1984
151
1934 | 248
546
1961
104
1990 | | SUMMARY STA | TISTICS | FOR 1 | .991 CALENI | AR YEAR | | FOR 1992 W | NATER YEAR | | WATER Y | EARS 1910 | - 1992 | | ANNUAL TOTA ANNUAL MEAN HIGHEST ANN LOWEST ANNU HIGHEST DAIL ANNUAL SEVE INSTANTANEO INSTANTANEO ANNUAL RUNO 10 PERCENT 50 PERCENT | UAL MEAN AL MEAN LY MEAN LY MEAN N-DAY MININ US PEAK FLO US PEAK ST. FF (AC-FT) EXCEEDS EXCEEDS | WC | 131408
360
1740
80
93
260600
777
261
99 | Jun 12
Mar 5
Oct 17 | | 128089
350
1270
a 90
93
1320
4.3
254100
757
265
113 | Jun 27
Oct 20
Oct 17
Jun 27 | | 382
687
188
4990
11
31
5360
7.2
276500
1040
163
73 | Mar 1
Jan 1
Jun 2 | 1984
1934
0 1957
5 1918
0 1918
8 1957
8 1957 | a-Also occurred Oct 21. ## 07086500 CLEAR CREEK ABOVE CLEAR CREEK RESERVOIR, CO LOCATION.--Lat 39°01'05",
long 106°16'38", in SE¹/4 sec.12, T.12 S., R.80 W., Chaffee County, Hydrologic Unit 11020001, on right bank 0.5 mi upstream from water line of Clear Creek Reservoir at elevation 8,875 ft, 1.5 mi downstream from unnamed tributary, and 1.9 mi southwest of Granite. DRAINAGE AREA .-- 67.1 mi2. PERIOD OF RECORD.--May 1946 to current year. Monthly discharge only for some periods, published in WSP 1241, and REVISED RECORDS.--WSP 2121: Drainage area. WDR CO-91-1: 1990 (M). GAGE.--Water-stage recorder. Elevation of gage is 8,885 ft above National Geodetic Vertical Datum of 1929, from topographic map. May 7, 1946, to Apr. 20, 1954, water-stage recorder at site 133 ft upstream at different datum. Apr. 21 1954 to May 28, 1958, water-stage recorder 333 ft upstream at different datum. Datum raised 2.19 ft, Apr. 21, 1954. REMARKS.--Estimated daily discharges: Oct. 29, Nov. 1-8, 12, 13, and Nov. 19 to Apr. 1. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 250 acres upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | - | DISCHARGE | , cubic | FEET PER | | | YEAR OCTOBER
VALUES | 1991 | то ѕертемве | R 1992 | | | |---|--------------------------------------|---|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|------------------------------------|--|-------------------------------------|--| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 26
26
25
24
23 | 14
14
14
15 | 16
16
16
17
17 | 10
10
10
10 | 14
13
13
12
12 | 11
11
11
11
10 | 9.4
9.8
9.8
9.8
9.8 | 50
55
61
66
76 | 108
98
108
134
143 | 122
104
92
92
92 | 55
52
52
47
46 | 81
75
75
70 | | 6
7
8
9 | 22
22
22
22
21 | 16
18
20
22
22 | 17
17
18
17
16 | 11
11
10
10 | 11
11
11
12
12 | 10
10
10
10
10 | 11
11
13
12
14 | 87
98
104
96
83 | 124
120
110
112
114 | 92
96
122
129
98 | 50
55
51
50
47 | 65
61
58
55
52 | | 11
12
13
14
15 | 21
20
20
20
20 | 22
19
19
19
20 | 15
14
13
12
11 | 11
11
10
10
9.8 | 12
12
12
11 | 9.0
8.4
8.0
8.0 | 15
15
19
21
21 | 73
75
75
81
87 | 148
148
167
173
162 | 89
85
85
75
73 | 64
65
56
56
52 | 50
48
47
46
52 | | 16
17
18
19
20 | 18
16
15
16
15 | 19
19
20
18
18 | 11
11
12
12
12 | 9.6
10
9.6
9.6 | 11
11
11
10 | 8.0
8.4
8.4
8.0 | 22
20
24
19
16 | 96
110
120
145
162 | 131
116
136
159
165 | 89
73
66
64
62 | 50
50
47
44
41 | 52
50
50
50
48 | | 21
22
23
24
25 | 15
15
15
16
19 | 19
18
18
17 | 12
12
12
12
11 | 11
12
11
11 | 11
11
12
11
10 | 8.0
8.2
8.4
8.6
8.8 | 15
15
15
14
15 | 189
176
153
167
151 | 165
162
167
170
167 | 61
59
64
98
96 | 40
40
50
59
83 | 47
44
41
38
38 | | 26
27
28
29
30
31 | 19
18
19
15
14 | 16
16
17
18
18 | 11
11
11
11
11 | 12
13
13
13
14 | 10
11
11
11 | 8.4
8.6
8.8
9.0 | 15
20
26
32
42 | 153
173
153
131
124
116 | 162
148
131
143
129 | 96
81
71
65
64
59 | 91
81
80
78
75
76 | 38
36
35
34
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | 592
19.1
26
13
1170 | 537
17.9
22
14
1070 | 415
13.4
18
11
823 | 338.6
10.9
14
9.6
672 | 330
11.4
14
10
655 | 280.4
9.05
11
8.0
556 | 510.6
17.0
42
9.4
1010 | 3486
112
189
50
6910 | 4220
141
173
98
8370 | 2614
84.3
129
59
5180 | 1783
57.5
91
40
3540 | 1549
51.6
81
32
3070 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | WATER YE | ARS 1946 | - 1992 | , BY WATER YE | EAR (W | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 29.8
71.2
1962
15.5
1979 | 33.7
1987
7.77 | 15.0
25.0
1962
8.50
1956 | 12.2
22.0
1962
5.50
1964 | 11.3
25.0
1962
5.00
1964 | 11.2
28.0
1962
5.00
1948 | 18.7
65.0
1962
6.50
1964 | 109
203
1984
40.2
1975 | 297
531
1952
89.4
1977 | 170
771
1957
41.8
1977 | 70.7
166
1984
30.6
1974 | 42.4
97.7
1970
17.8
1974 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAI | ₹ | WATER YEA | ARS 1946 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK STAGE
C-FT)
DS | | 18680.9
51.2
345
a7.0
8.8
37050
154
18
9.8 | Jun 12
Apr 30
Apr 25 | | 8.0
8.1
215 | May 21
Mar 13
Mar 12
May 21
May 21 | 3
2
1 | 67.5
134
29.3
1300
5.0
d1300
e5.22
48910
191
24 | Mar
Mar
Jun 2 | 1957
1977
9 1957
1 1948
1 1948
9 1957
0 1990 | a-Also occurred May 1. b-Also occurred Mar 13-17, 20, 21. c-Many days some years. d-Maximum daily discharge. e-Maximum gage height recorded, present site and datum. ## 07087200 ARKANSAS RIVER AT BUENA VISTA, CO LOCATION.--Lat $38^{\circ}50^{\circ}57^{\circ}$, long $106^{\circ}07^{\circ}27^{\circ}$, in $NW^{1}/4NW^{1}/4$ sec.9, T.14 S., R.78 W., Chaffee County, Hydrologic Unit 11020001, on right bank at northeast corner of Buena Vista city limits and 1.8 mi upstream from Cottonwood Creek. DRAINAGE AREA .-- 611 mi2. ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1964 to September 1980, October 1986 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,920 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 6-8, and Dec. 25 to Mar. 12. Records good except for estimated daily discharges, which are poor. Natural flow of steam affected by transmountain diversions (see elsewhere in this report), storage reservoirs, diversions upstream from station for irrigation of 7,400 acres, and return flow from irrigated areas. | | , | DISCHAR | GE, CUBI | C FEET PE | SECOND, | WATER
Y MEAN | YEAR OCTOBE | ER 1991 T | O SEPTEMB | ER 1992 | | | |---|--|--|--|--|------------------------------------|--|---|--|---------------------------------------|---|--|---| | DAY | OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 147
147
147
145
142 | 136
131
114
119
198 | 204
214
232
241
249 | 300
300
290
300
310 | 280
280
285
290
300 | 290
290
290
290
290 | 225
225
226
233
234 | 330
335
344
403
576 | 977
860
784
790
906 | 990
941
794
756
701 | 593
570
586
610
565 | 286
285
279
286
279 | | 6
7
8
9 | 142
138
138
138
138 | 183
186
169
179
182 | 240
230
220
219
222 | 310
290
280
270
280 | 290
290
290
300
300 | 285
280
280
270
270 | 235
245
223
184
188 | 645
702
796
814
820 | 944
993
932
882
789 | 713
736
782
939
968 | 569
579
590
584
599 | 295
382
374
366
337 | | 11
12
13
14
15 | 136
124
131
124
115 | 183
169
165
164
191 | 220
223
238
268
274 | 280
280
290
300
300 | 300
300
300
300
295 | 268
275
274
273
275 | 203
199
219
229
227 | 598
563
578
586
640 | 758
852
959
1060
1180 | 849
806
824
637
597 | 623
590
573
637
587 | 306
293
203
193
172 | | 16
17
18
19
20 | 115
115
114
112
110 | 277
280
280
220
211 | 272
274
274
278
265 | 310
310
310
300
290 | 290
290
290
290
290 | 271
262
267
263
260 | 229
245
223
210
197 | 753
839
888
888
1040 | 1230
1100
980
993
1150 | 633
599
539
572
573 | 495
448
416
394
369 | 177
172
173
173
173 | | 21
22
23
24
25 | 110
110
114
119
127 | 230
221
202
207
228 | 261
268
252
250
250 | 280
280
260
260
280 | 300
300
300
300
300 |
260
263
246
219
220 | 189
190
190
182
176 | 1220
1320
1410
1310
1230 | 1200
1230
1180
1200
1230 | 588
577
589
615
626 | 354
510
519
637
631 | 182
174
170
164
168 | | 26
27
28
29
30
31 | 129
122
122
120
119
129 | 217
217
216
214
207 | 250
250
255
260
277
290 | 280
280
280
280
280
280 | 300
290
290
290
 | 217
221
226
226
227
232 | 172
176
227
273
296 | 1160
1210
1250
1130
1080
1030 | 1300
1520
1430
1310
1080 | 669
600
548
594
607
575 | 418
381
316
301
293
290 | 175
164
159
159
147 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3939
127
147
110
7810 | 5896
197
280
114
11690 | 7720
249
290
204
15310 | 8940
288
310
260
17730 | 8520
294
300
280
16900 | 8080
261
290
217
16030 | 6470
216
296
172
12830 | 26488
854
1410
330
52540 | 31799
1060
1520
758
63070 | 21537
695
990
539
42720 | 15627
504
637
290
31000 | 6866
229
382
147
13620 | | STATIST | ICS OF MO | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 1965 | - 1992 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 194
397
1977
127
1992 | 171
303
1977
107
1978 | 127
249
1992
86.7
1977 | 133
288
1992
63.9
1977 | 134
307
1974
64.0
1977 | 153
398
1989
84.2
1977 | 293
635
1989
137
1973 | 861
1598
1970
314
1977 | 1605
2563
1980
629
1977 | 1146
2302
1965
222
1977 | 670
1027
1973
210
1977 | 314
605
1970
167
1977 | | SUMMARY | STATIST | ics | FOR : | 1991 CALEN | DAR YEAR | | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1965 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE | EAN EAN AN C MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 167497
459
a 2210
6110
112
332200
1050
280
142 | Jun 12
Oct 20
Oct 17 | | 151882
415
1520
5110
112
1580
4.01
301300
940
282
155 | Jun 27
Oct 20
Oct 17
Jun 27
Jun 27 | | 485
626
225
3780
57
58
3950
6.55
351100
1280
215
102 | Jan 2
Jan 2
Jun 1 | 1970
1977
12 1980
27 1977
27 1977
11 1980
11 1980 | a-Also occurred Jun 13. b-Also occurred Oct 21 and 22. c-Also occurred Jan 28, 1977. ARKANSAS RIVER BASIN 07087200 ARKANSAS RIVER AT BUENA VISTA, CO 07091200 ARKANSAS RIVER NEAR NATHROP, CO ## 07093700 ARKANSAS RIVER NEAR WELLSVILLE, CO LOCATION.--Lat 38°30'10", long 105°56'21", in SW¹/4NE¹/4 sec.14, T.49 N., R.9 E., Chaffee County, Hydrologic Unit 11020001, on right bank 50 ft upstream from Chaffee-Fremont County line, 2.0 mi northwest of Wellsville, 2.8 mi downstream from South Arkansas River, and 3.5 mi southeast of Salida. DRAINAGE AREA. -- 1, 485 mi2. PERIOD OF RECORD. -- April 1961 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,883.4 ft above National Geodetic Vertical Datum of 1929 (river-profile survey). REMARKS.—Estimated daily discharges: Nov. 24 to Feb. 7. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions for irrigation of about 26,000 acres, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBE VALUES | R 1991 T | O SEPTEM | MBER 1992 | | | |--|--|---|--|---|-------------------------------------|---|---|--|---------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 265
274
270
273
267 | 393
409
420
412
448 | 456
439
447
462
470 | 511
508
498
510
505 | 462
462
472
465
465 | 470
467
475
511
500 | 395
380
379
382
379 | 397
403
408
437
588 | 1110
987
898
866
973 | 1070
1030
929
874
827 | 728
696
703
722
693 | 579
565
533
526
510 | | 6
7
8
9 | 270
270
271
270
270 | 498
527
489
472
475 | 474
477
472
472
464 | 505
510
505
498
498 | 460
460
469
468
465 | 487
484
483
481
474 | 384
397
393
329
313 | 670
737
817
868
928 | 1050
1090
1060
987
957 | 815
832
854
984
1050 | 714
685
709
694
712 | 500
562
573
562
546 | | 11
12
13
14
15 | 276
275
272
275
280 | 478
476
454
453
489 | 472
472
465
472
494 | 507
515
500
49 2
49 5 | 465
467
465
465
465 | 469
470
474
473
474 | 322
320
320
344
354 | 690
609
636
645
680 | 928
1020
1140
1180
1270 | 949
863
968
805
748 | 763
731
707
744
748 | 488
473
415
375
357 | | 16
17
18
19
20 | 276
276
276
277
270 | 532
559
562
537
486 | 498
507
508
510
513 | 493
491
490
481
481 | 461
454
455
456
458 | 470
450
456
448
443 | 346
351
352
330
312 | 778
876
952
966
1100 | 1320
1170
1080
1020
1190 | 765
773
677
695
708 | 670
629
586
560
531 | 350
341
332
339
342 | | 21
22
23
24
25 | 270
270
271
276
287 | 500
507
449
454
4 70 | 508
505
498
488
480 | 481
480
480
482
487 | 462
468
462
464
461 | 446
453
451
406
397 | 297
290
294
291
269 | 1370
1440
1580
1480
1380 | 1230
1310
1240
1280
1330 | 712
699
723
778
798 | 497
591
652
994
1150 | 353
362
353
344
337 | | 26
27
28
29
30
31 | 295
294
297
305
325
346 | 470
472
477
474
473 | 481
468
464
475
474
491 | 476
475
475
477
472
465 | 469
466
472
468 | 393
392
400
403
395
403 | 262
247
280
342
359 | 1320
1390
1450
1300
1200
1170 | 1390
1590
1540
1390
1210 | 868
787
720
719
766
698 | 832
749
655
595
584
591 | 346
341
329
329
320 | | TOTAL
MEAN
MAX
MIN
AC-FT | 8689
280
346
265
17230 | 477
562
393
28390 2 | 4876
480
513
439
9510 | 15243
492
515
465
30230 | 13451
464
472
454
26680 | 13998
452
511
392
27770 | 10013
334
397
247
19860 | 29265
944
1580
397
58050 | 34806
1160
1590
866
69040 | 25484
822
1070
677
50550 | 21615
697
1150
497
42870 | 12682
423
579
320
25150 | | MEAN
MAX
(WY)
MIN
(WY) | 412
750
1985
229
1978 | 417
581
1983
242 | 367
636
1983
280
1978 | 332
576
1983
207
1977 | 327
729
1985
208
1977 | - 1992
312
606
1985
202
1978 | 394
896
1962
215
1977 | (EAR (WY)
1017
2344
1984
391
1977 | 2049
3930
1980
708
1977 | 1463
3066
1983
340
1977 | 901
1889
1984
278
1977 | 523
1031
1970
267
1977 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEN | DAR YEAR | | FOR 1992 WA1 | TER YEAR | | WATER YE | ARS 1961 | - 1992 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | CAN CAN IN MINIMUM CAK FLOW CAK STAGE (C-FT) CDS | | 24545
615
2390
263
268
45400
1140
488
291 | Jun 13
Sep 30
Sep 25 | | 214437
586
1590
247
270
1690
5.48
425300
1040
480
303 | Jun 27
Apr 27
Oct 1
Jun 27
Jun 27 | | 717
1135
358
5980
110
147
6240
8.02
519500
1560
428
254 | Jan
Jan
Jun | 1984
1977
12 1980
12 1963
11 1963
12 1980
12 1980 | a-Maximum gage height, 8.12 ft, Jun 10, 1984. ## 07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO LOCATION.--Lat 38°39'23", long 105°48'50", in NE¹/4NE¹/4 sec.24, T.51 N., R.10 E., Fremont County, Hydrologic Unit 11020001, on left bank 0.2 mi downstream from County Road 2, 0.9 mi upstream from Steer Creek, 14.2 mi north of Howard, and 14.5 mi upstream from mouth. DRAINAGE AREA. -- 106 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--December 1980 to September 1986,
October 1986 to October 1988 (seasonal only), at site 1,000 ft downstream. March 1989 to current year (seasonal only). Not equivalent because of seepage at previous site. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,780 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to October 28, 1988 at site 1,000 ft downstream, at different datum. REMARKS.--Estimated daily discharges: Oct. 5-31. Records fair except for discharges below 0.20 ft³/s, those for discharges above 20 ft³/s, and estimated daily discharges, which are poor. AVERAGE DISCHARGE.--5 years (water years 1981-86), 5.89 ft3/s; 4,270 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,360 ft³/s, Aug. 14, 1983, gage height, 8.22 ft, result of indirect determination of peak flow; no flow, July 17-23, 1989. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, 115 $\rm ft^3/s$ at 1545 Aug. 10, gage height, 4.30 ft; minimum daily, 0.11 $\rm ft^3/s$, July 7. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------------|---------------------|----------|-----|-----|-----|-----|-------|-------|-------|------|-------|-------| | 1 | . 62 | | | | | | 3.1 | 1.2 | 2.0 | .35 | .27 | 1.5 | | 2 | .58 | | | | | | 3.6 | 1.1 | 1.5 | .31 | .22 | 1.2 | | 3 | .56 | | | | | | 5.6 | 1.1 | 1.0 | .29 | .19 | .97 | | 4 | .54 | | | | | | 8.6 | 1.2 | 1.0 | .23 | .17 | .82 | | 5 | .53 | | | | | | 11 | 1.1 | .86 | .19 | .21 | .68 | | 6 | .52 | - | | | | | 15 | 1.0 | .83 | .14 | .23 | .60 | | 7 | .52 | | | | | | 17 | 1.0 | .78 | .11 | .29 | .57 | | 8 | .52 | | | | | | 13 | 1.2 | .83 | .20 | .27 | .53 | | 9 | .52 | | | | | | 12 | 1.5 | 1.1 | .27 | . 28 | .50 | | 10 | .52 | | | | | | 11 | 2.0 | 1.6 | .19 | 7.2 | .45 | | 11 | .52 | | | | | | 10 | 1.6 | 1.3 | .22 | 3.3 | .45 | | 12 | .52 | | | | | | 8.6 | 1.3 | 1.2 | .21 | 1.5 | .42 | | 13 | .52 | | | | | | 8.4 | 1.2 | .71 | .33 | 1.8 | .37 | | 14 | .52 | | | | | | 8.3 | 1.0 | .51 | .30 | 1.1 | .39 | | 15 | .53 | | | | | | 6.5 | .89 | .40 | .24 | .89 | .54 | | 16 | .52 | | | | | | 5.5 | .82 | .44 | .31 | 1.1 | .58 | | 17 | .52 | | | | | | 4.8 | .76 | .35 | .25 | 1.2 | .59 | | 18 | .52 | | | | | | 4.5 | .84 | .27 | .22 | .87 | .56 | | 19 | .53 | | | | | | 3.3 | .75 | .27 | .21 | .68 | .56 | | 20 | .53 | | | | | | 2.8 | .70 | .31 | .28 | .51 | .58 | | 21 | .55 | | | | | | 2.7 | .66 | .35 | .33 | .46 | .64 | | 22 | .57 | | | | | | 2.5 | .62 | .42 | .22 | .46 | .62 | | 23 | .56 | | | | | | 2.2 | .60 | .42 | .18 | .54 | .55 | | 24 | .59 | | | | | | 2.1 | 1.0 | . 94 | .18 | 3.7 | .53 | | 25 | .59 | | | | | | 1.9 | 1.4 | 1.3 | .25 | 8.1 | .50 | | 26 | .59 | | | | | | 1.8 | 1.3 | 2.4 | .43 | 3.5 | .47 | | 2 7 | .57 | | | | | | 1.6 | 1.9 | 1.2 | .44 | 1.9 | .51 | | 28 | . 5 6 | | | | | | 1.5 | 1.5 | .86 | .36 | 1.4 | .53 | | 29 | .54 | | | | | | 1.4 | 1.9 | .63 | .30 | 1.1 | .54 | | 30 | .54 | | | | | | 1.4 | 1.5 | .43 | .28 | 1.0 | .53 | | 31 | .54 | | | | | | | 2.1 | | .23 | 1.2 | | | TOTAL | 16.86 | | | | | | 181.7 | 36.74 | 26.21 | 8.05 | 45.64 | 18.28 | | MEAN | .54 | | | | | | 6.06 | 1.19 | .87 | .26 | 1.47 | .61 | | MAX | .62 | | | | | | 17 | 2.1 | 2.4 | .44 | 8.1 | 1.5 | | MIN | .52 | | | | | | 1.4 | .60 | .27 | .11 | .17 | .37 | | AC-FT | 33 | | | | | | 360 | 73 | 52 | 16 | 91 | 36 | 07093740 BADGER CREEK, UPPER STATION, NEAR HOWARD, CO 07093775 BADGER CREEK, LOWER STATION, NEAR HOWARD, CO #### 07094500 ARKANSAS RIVER AT PARKDALE, CO. LOCATION.--Lat 38°29'14", long 105°22'23", in NE¹/4NW¹/4 sec.18, T.18 S., R.71 W., Fremont County, Hydrologic Unit 11020001, on left bank at Parkdale, 100 ft upstream from Bumback Gulch, 300 ft upstream from bridge on U.S. Highway 50, and 0.9 mi upstream from Copper Gulch. DRAINAGE AREA. -- 2,548 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1945 to September 1955, October 1964 to current year. Monthly discharge only for October 1945 to May 1946, published in WSP 1311. REVISED RECORDS. -- WSP 1117: Drainage area. a-Maximum gage height, 9.13 ft, Jun 9, 1985. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,720 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1964, at site 600 ft downstream at different datum. REMARKS.--No estimated daily discharges. Records good except for winter period, which is fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 35,000 acres upstream from station, and return flow from irrigated areas. # 07094500 ARKANSAS RIVER AT PARKDALE, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD .-- January 1981 to September 1982, November 1986 to September 1990. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: November 1986 to current year. WATER TEMPERATURE: November 1986 to current year. INSTRUMENTATION. -- Water-quality monitor with satellite telemetry. REMARKS.--Records for daily specific conductance are good. Records for daily water temperature are good except those for May 13 to July 2, which are poor. Daily data that are not published are either missing or of unacceptable quality. Daily maximum and minimum specific conductance and mean daily water temperature data are available in the district office. EXTREMES FOR PERIOD OF RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 498 microsiemens, Aug. 6, 1990; minimum, 108 microsiemens, June 10, 1987. WATER TEMPERATURE: Maximum, 25.5°C, July 23, 1987; minimum, 0.0°C, many days during most winters. EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum, 367 microsiemens, Oct. 25; minimum, 134 microsiemens, May 23-24. WATER TEMPERATURE: Maximum 21.6°C, July 6; minimum, 0.0°C, many days during winter. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 5 7 17 221 22 139 317 217 147 ___ MEAN --- # 07094500 ARKANSAS RIVER AT PARKDALE, CO--Continued WATER-QUALITY RECORDS TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | | |----------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|---|--|--| | | OCTOBER | | NOV | EMBER | DEC | DECEMBER | | IUARY | FEB | RUARY | MARCH | | | | 1
2
3
4
5 | 16.3
16.4
16.5
13.7
12.8 | 11.5
11.7
11.5
10.9
8.4 | 1.5
.6
.4
.5
4.1 | .0
.0
.0 | .1
.1
.2
.3 | .0 | .2
.2
.2
.3 | .0 | 2.5
3.0
3.5
3.8
3.0 | .6
1.1
2.6
1.8
1.4 | 6.4
7.6
6.8
6.7
7.1 | 4.3
4.1
5.0
4.0
3.2 | | | 6
7
8
9
10 | 12.9
13.5
14.3
15.2
15.5 | 8.0
8.4
9.8

10.7 | 7.2
7.0
6.5
7.7
8.4 | 3.2
5.2
4.1
4.9
7.3 | .6
1.2
2.0
1.8
1.8 | .0
.0
.2
.6 | .4
.3
.5
.3 | .0 | 2.3
2.1
3.0
3.5
3.4 | .5
.1
.8
1.4
1.5 | 8.0
7.6
8.1
7.4
6.9 | 5.1
5.1
5.9
4.9
3.4 | | | 11
12
13
14
15 | 15.1
14.9
14.2
13.5
14.2 | 10.5
10.6
10.2
10.0
9.5 | 7.8
6.2
5.5
5.2
4.5 | 5.9
4.0
3.3
3.6
2.8 | 2.1
1.5
.3
.2 | 1.1
.5
.3
.0 | .3
.7
.2
.3 | .0
.1
.0
.0 | 3.5
3.9
3.1
4.8
4.2 | 2.1
1.6
2.0
1.8
2.2 | 8.0
8.0
9.1
9.7
9.3 | 4.7
4.7
5.5
6.3
6.4 | | | 16
17
18
19
20 | 14.2
14.7
13.2
11.3
11.8 | 9.7
10.3
10.1
8.4
7.8 | 2.8
4.2
3.9
5.2
3.1 | 1.5
1.6
3.0
3.1
1.6 | .1
.1
.6
1.5 | .0
.0
.0
.0 | .2
.2
.3
.3 | .0 | 3.1
2.9
2.4
2.7
3.7 | 1.9
.8
.2
.0
1.5 | 9.5
9.0
7.4
7.1
8.6 | 5.9
6.0
5.4
4.5
4.8 | | | 21
22
23
24
25 | 12.5
13.0
12.6
10.3
10.3 | 8.5
8.8
9.4
8.5
7.1 | 3.6
3.0
.4
.0
1.8 | 1.3
.4
.0
.0 | 1.3
1.1
.6
.2
.3 | .0
.6
.0
.0 | .2
.3
.3
.4 | .0
.0
.0 | 5.9
5.3
4.8
4.9
4.7 | 2.5
3.4
3.9
2.5
3.4 | 8.2
7.5
10.0
8.4
10.2 | 5.0
3.3
5.6
5.3
6.0 | | | 26
27
28
29
30
31 | 10.7
11.1
9.1
4.5
1.3
1.4 | 7.1
7.0
4.5
1.3 | 3.2
3.8
3.6
3.6
1.7 | .7
1.5
2.7
1.7
.0 | .2
.2
.2
.2
.2 | .0 | 1.1
1.6
1.5
1.8
2.3
2.6 | .0
.1
.0
.3
.4 | 5.3
6.7
7.2
7.0 | 2.5
3.4
4.2
4.0 | 10.0
9.9
8.6
10.2
11.2
9.9 | 6.3
7.5
7.5
6.9
7.2
6.9 | | | MONTH | 16.5 | | 8.4 | .0 | 2.1 | .0 | | | 7.2 | .0 | 11.2 | 3.2 | | | | APRIL | | RIL MAY | | JUNE | | J | JULY | | AUGUST | | SEPTEMBER | | | 1
2
3
4
5 | 10.6
11.6
12.4
12.4
12.2 | 6.0
7.3
7.4
8.4
9.0 | 18.7
15.8
16.1
16.9
17.0 | 13.2
12.7
11.4
12.0
13.0 | 12.2

15.5
16.6
17.2 | 10.3
10.5
12.5
13.9 | 19.2
18.0
19.2
19.5
20.1 | 16.3
15.7
15.4
16.4
15.6 | 19.1
20.1
20.0
19.7
19.2 | 16.5
16.1
17.1
16.8
16.9 | 16.5
16.0
17.5
17.9
17.2 | 13.3
13.8
13.0
15.1
13.5 | | | 6
7
8
9
10 | 13.0
13.0
14.3
14.9
15.8 | 8.5
9.4
9.5
10.4
10.7 | 16.5
16.4
15.4
14.6
12.9 | 12.4
12.7
12.5
12.0
10.4 |
16.4
14.3
14.0
15.9 | 13.4
13.3
12.1
12.6
12.1 | 21.6
20.1
19.0
19.8
19.2 | 17.4
17.6
16.4
16.3
16.6 | 18.4
20.5
21.4
21.5
20.3 | 16.8

17.8
17.9
18.0 | 17.9
17.7
17.8
17.8
17.5 | 14.0
14.4
14.0
14.6
14.2 | | | 11
12
13
14
15 | 14.4
14.2
15.7
17.4
15.7 | 11.4
10.9
11.0
13.0
12.5 | 14.6
14.8
17.5
17.3
18.2 | 9.4
12.1
12.0
13.5 | 16.7
18.4
18.5
18.4
18.3 | 13.7
12.9
15.5
14.2
14.7 | 20.3
18.1
18.2
18.4
18.4 | 16.9
16.7
15.2
15.6
16.2 | 20.1
18.6
19.5
19.2
19.8 | 16.7
16.4
16.2
16.5
16.0 | 18.0
18.3
18.1
18.0
19.4 | 14.2
15.4
15.0
14.4
15.3 | | | 16
17
18
19
20 | 14.6
14.3
13.2
9.8
10.2 | 11.1
10.4
9.8
7.8
6.5 | 17.0
16.9

17.0
16.6 | 12.5
13.1
12.6
13.7
13.8 | 16.8
17.9
18.8
19.0
18.0 | 12.7
12.3
15.6
15.9
14.6 | 18.5
18.7
19.0
19.0 | 15.3
15.7
15.9
15.6
16.4 | 19.4
20.1
20.2
21.3
20.9 | 16.7
16.9
17.1
17.5
17.4 | 19.2
18.7
16.6
17.7
15.9 | 15.5
15.2
14.2
14.5
13.2 | | | 21
22
23
24
25 | 12.6
16.5
16.0
16.1
17.5 | 6.4
8.9
10.3
9.8
10.9 | 17.2
14.9
13.3
15.0
13.8 | 13.4
12.1
12.1
12.6
11.7 | 18.7
18.5
17.7
18.0
18.2 | 14.3
14.8

15.4
15.2 | 20.2
19.2
19.3
20.1
19.4 | 16.5
16.8
16.6
16.5
17.8 | 20.8
21.3
17.5
16.8
14.1 | 17.9
16.8
12.6
11.3 | 15.5
15.9
17.2
18.0
17.0 | 12.9
12.1
12.9
13.9
14.0 | | | 26
27
28
29
30
31 | 17.7
18.7
18.1 | 12.3
13.8 | 15.4
14.6
12.3
14.4
13.7 | 11.6
12.2
10.9
11.3
12.0 | 18.9
17.4
17.2
19.8
19.0 | 15.2
15.2
14.6
15.3
16.0 | 20.2
21.1
20.7
19.1
19.9
19.6 | 17.1
17.6
17.8
17.0
16.1 | 16.6
17.0
17.1
16.6
17.4 | 13.4
13.4
13.7
14.5 | 15.0
14.9
15.2
15.5
15.7 | 11.6
10.7
11.5
11.3
11.9 | | | MONTH | | | | | | | 21.6 | 15.2 | 16.1
21.5 | | 19.4 | 10.7 | | ## 07095000 GRAPE CREEK NEAR WESTCLIFFE, CO LOCATION.--Lat 38°11'10", long 105°28'59", in NW¹/4NW¹/4 sec.31, T.21 S., R.72 W., Custer County, Hydrologic Unit 11020001, on left bank 0.5 mi upstream from water line of De Weese Reservoir at elevation 7,665 ft, 0.5 mi downstream from Swift Creek, and 3.6 mi northwest of Westcliffe. DRAINAGE AREA. -- 320 mi2. PERIOD OF RECORD.--October 1924 to September 1961, October 1962 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS. -- WSP 1117: Drainage area. WSP 1241: 1950 (M). WSP 1311: 1927 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,690 ft, from topographic map. Prior to Mar. 17, 1939, at site 30 ft upstream at present datum. REMARKS.--Estimated daily discharges: Oct. 30 to Mar. 25, and Apr. 2-9. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 250 acres upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER VALUES | 1991 Т | O SEPTEMBI | ER 1992 | | | |---|---|--------------------------------------|---|--------------------------------------|--|-----------------------------------|--|-------------------------------------|---|--------------------------------------|--| | DAY OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 15
2 15
3 13
4 12
5 12 | 18
24
28
33
36 | 27
27
28
28
29 | 17
18
19
20
19 | 31
30
30
29
29 | 34
35
36
34
36 | 203
160
128
94
84 | 49
39
38
40
34 | 88
112
64
57
51 | 37
33
31
28
23 | 45
40
35
32
36 | 78
63
56
48
42 | | 6 12
7 12
8 12
9 12
10 12 | 38
40
41
41
39 | 31
33
33
32
32 | 20
20
19
18 | 29
30
30
32
35 | 37
37
39
37
38 | 70
55
44
37
35 | 29
31
34
34
34 | 64
82
78
125
152 | 19
17
18
20
26 | 57
72
58
47
50 | 38
35
32
29
27 | | 11 12
12 11
13 8.0
14 7.4
15 7.4 | 40
40
40
39
40 | 30
28
27
24
23 | 17
17
16
16 | 35
36
36
36
34 | 39
41
43
46
50 | 34
37
39
43
50 | 46
32
28
21
19 | 112
113
106
87
68 | 33
29
29
23
21 | 70
63
64
49
47 | 26
18
15
16
22 | | 16 7.4
17 6.9
18 6.4
19 6.6
20 7.4 | 41
41
43
47
54 | 23
23
21
21
21 | 18
19
19
20
21 | 32
31
31
32
34 | 56
60
62
64
74 | 58
52
51
52
43 | 16
18
24
17
24 | 54
45
38
40
47 | 29
32
34
31
31 | 44
49
61
53
45 | 24
22
20
22
23 | | 21 8.0
22 11
23 11
24 12
25 12 | 54
44
37
34
33 | 20
20
20
19
19 | 22
22
24
24
25 | 34
34
34
31
31 | 75
82
93
150
220 | 38
34
32
29
33 | 31
38
52
55
54 | 66
73
55
47
62 | 35
29
36
43
39 | 41
36
39
197
462 | 22
20
19
17
15 | | 26 12
27 12
28 12
29 13
30 14
31 15 | 32
32
31
29
29 | 19
18
18
18
17 | 26
26
27
28
28
30 | 32
32
33
34 | 292
356
330
246
254
263 | 35
36
37
39
45 | 49
51
82
63
56
61 | 62
58
61
58
45 | 99
89
64
52
58
52 | 295
197
140
106
90
86 | 13
14
15
15
14 | | TOTAL 339.5
MEAN 11.0
MAX 15
MIN 6.4
AC-FT 673 | 5 4
18 | 746
24.1
33
17
1480 | 649
20.9
30
16
1290 | 937
32.3
36
29
1860 | 3259
105
356
34
6460 | 1727
57.6
203
29
3430 | 1199
38.7
82
16
2380 | 2170
72.3
152
38
4300 | 1140
36.8
99
17
2260 | 2706
87.3
462
32
5370 | 820
27.3
78
13
1630 | | STATISTICS OF MON | | DATA FOR | WATER YE | ARS 1925 | - 1992 | | | | | | | | MEAN 17.4
MAX 79.6
(WY) 1971
MIN 3.16
(WY) 1964 | 54.5
1971
4.80 | 14.8
28.2
1926
5.00
1935 | 13.3
23.5
1980
3.54
1959 | 16.2
32.3
1992
3.30
1959 | 32.3
105
1992
6.31
1959 | 9.48 | 56.4
383
1987
2.81
1963 | 85.9
374
1957
1.83
1934 | 48.3
356
1957
1.25
1946 | 36.6
177
1968
4.45
1956 | 19.2
95.6
1982
3.75
1956 | | SUMMARY STATISTIC | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | R YEAR | | WATER YEA | ARS 1925 | - 1992 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME HIGHEST ANDUAL ME HIGHEST DAILY ME LOWEST DAILY MEA ANNUAL SEVEN-DAY INSTANTANEOUS PEA INSTANTANEOUS PEA INSTANTANEOUS LOW ANNUAL RUNOFF (AC 10 PERCENT EXCEEL 50 PERCENT EXCEEL | AN MINIMUM AK FLOW AK STAGE V FLOW C-FT) SS | | 11600.7
31.8
252
6.0
7.1
23010
58
24
12 | Aug 5
Jul 1
Oct 14 | | 6.4
7.1
528 | Aug 25
Oct 18
Oct 14
Aug 25
Aug 25 | | 34.4
109
7.07
1740
10
5.56
7460
8.45
10
24950
72
16
5.5 | Jun 1
Jun 1
Aug
Aug | 1942
1963
23 1942
29 1936
16 1936
2 1966
2 1966
19 1936 | a-From rating curve extended above 320 ${\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow. b-Also occurred Jun 20-22, 1936. ## 07096000 ARKANSAS RIVER AT CANON CITY, CO LOCATION.--Lat 38°26'02", long 105°15'24", in SE¹/4SE¹/4 sec.31, T.18 S., R.72 W., Fremont County, Hydrologic Unit 11020002, on right bank 800 ft upstream from Sand Creek, 0.7 mi downstream from Grape Creek, and 0.7 mi upstream from First Street Bridge in Canon City. DRAINAGE AREA. -- 3.117 mi². PERIOD OF RECORD.--January 1888 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as "near Canyon" 1900-1906. REVISED RECORDS. -- WSP 1117: Drainage area. WSP 1311: 1897-98. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,342.13 ft above National Geodetic Vertical Datum of 1929. See WSP 1711 or 1731 for history of changes prior to Oct. 1, 1957. Oct. 1, 1957 to Nov. 15, 1962, water-stage recorder at present site at datum 1.49 ft, higher. REMARKS.--Estimated daily discharges: Dec. 23-31, Jan. 14-21, and Mar. 26 to Apr. 2. Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 250 acres upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | 541. | -7. | | | | | | | | | | | | |----------|-----------------------|------------|------------|------------------|------------|------------|---------------------|--------------|--------------|-------------|-------------|-----------------| | | | DISCHA | RGE, CUBI | C FEET PE | | | YEAR OCTOBE VALUES | R 1991 T | O SEPTE | MBER 1992 | | | | DAY |
ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 218 | 399 | 470 | 485 | 489 | 518 | 500 | 293 | 1100 | 1200 | 679 | 647 | | 2 | 213 | 430 | 456 | 471 | 504 | 502 | 490 | 334 | 1030 | 1140 | 679 | 623 | | 3 | 216 | 408 | 460 | 461 | 509 | 531 | 488 | 340 | 928 | 1040 | 671 | 600 | | 4 | 221 | 427 | 489 | 505 | 498 | 735 | 4 7 7 | 341 | 813 | 890 | 695 | 548 | | 5 | 230 | 442 | 505 | 512 | 512 | 713 | 462 | 399 | 841 | 850 | 687 | 526 | | 6
7 | 227 | 512 | 511 | 512 | 475 | 585 | 435 | 582 | 1020 | 800 | 664 | 498
505 | | 8 | 206
201 | 579
541 | 509
506 | 527
487 | 472
498 | 571
563 | 410
440 | 622
682 | 1040
1060 | 792
860 | 663
671 | 556 | | 9 | 199 | 509 | 498 | 476 | 499 | 588 | 376 | 761 | 992 | 977 | 668 | 540 | | 10 | 199 | 500 | 481 | 462 | 488 | 513 | 267 | 813 | 1020 | 1060 | 679 | 527 | | 11 | 221 | 494 | 484 | 493 | 477 | 497 | 274 | 711 | 924 | 1020 | 776 | 505 | | 12 | 232 | 487 | 481 | 517 | 470 | 476 | 308 | 524 | 1030 | 914 | 7 67 | 449 | | 13 | 210 | 462 | 444 | 470 | 470 | 484 | 300 | 499 | 1150 | 950 | 743 | 439 | | 14 | 206 | 458 | 431 | 470 | 464 | 483 | 296 | 485 | 1240 | 923 | 740 | 365 | | 15 | 211 | 495 | 507 | 470 | 464 | 491 | 405 | 509 | 1330 | 759 | 784 | 345 | | 16 | 208 | 512 | 519 | 465 | 457 | 502 | 451 | 572 | 1350 | 719 | 784 | 320 | | 17 | 207 | 563 | 515 | 465 | 451 | 527 | 426 | 649 | 1280 | 759 | 767 | 315 | | 18 | 207 | 561 | 517 | 465 | 446 | 531 | 416 | 779 | 1140 | 700 | 639 | 306 | | 19
20 | 211
209 | 561
487 | 554
555 | 455
455 | 433
469 | 558
533 | 386
344 | 831
965 | 1060
1180 | 644
695 | 604
542 | 312
318 | | | | | | | | | | | | | | | | 21 | 210 | 488 | 510 | 450 | 473 | 555 | 321 | 1240 | 1310 | 727 | 488 | 306 | | 22
23 | 210
212 | 516
466 | 506
495 | 495
464 | 495
486 | 615
584 | 298
280 | 1410
1530 | 1380
1370 | 703
694 | 456
603 | 322
300 | | 24 | 218 | 448 | 485 | 535 | 484 | 564 | 267 | 1480 | 1370 | 735 | 957 | 289 | | 25 | 223 | 465 | 480 | 533 | 475 | 512 | 246 | 1380 | 1440 | 759 | 1740 | 277 | | 26 | 230 | 475 | 475 | 534 | 485 | 510 | 225 | 1270 | 1530 | 887 | 1200 | 278 | | 27 | 235 | 473 | 470 | 510 | 476 | 510 | 218 | 1280 | 1690 | 878 | 957 | 282 | | 28 | 234 | 470 | 460 | 490 | 496 | 515 | 208 | 1420 | 1800 | 717 | 822 | 251 | | 29 | 245 | 476 | 460 | 508 | 498 | 515 | 224 | 1330 | 1620 | 658 | 695 | 250 | | 30 | 265 | 475 | 460 | 507 | | 505 | 266 | 1170 | 1500 | 711 | 661 | 245 | | 31 | 357 | | 470 | 501 | | 510 | | 1160 | | 695 | 695 | | | TOTAL | 6891 | 14579 | 15163 | 15150 | 13913 | 16796 | 10504 | 26361 | 36538 | 25856 | 23176 | 12044 | | MEAN | 222 | 486 | 489 | 489 | 480 | 542 | 350 | 850 | 1218 | 834 | 748 | 401 | | MAX | 357 | 579 | 555 | 535 | 512 | 735 | 500 | 1530 | 1800 | 1200 | 1740 | 647 | | MIN | 199 | 399 | 431 | 450 | 433 | 476 | 208 | 293 | 813 | 644 | 456 | 245 | | AC-FT | 13670 | 28920 | 30080 | 30050 | 27600 | 33310 | 20830 | 52290 | 72470 | 51290 | 45970 | 23890 | | STATIST | TICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1889 | - 1992 | , BY WATER | YEAR (WY) | | | | | | MEAN | 373 | 374 | 3 6 3 | 338 | 335 | 342 | 425 | 1102 | 2264 | 1464 | 854 | 451 | | MAX | 1195 | 620 | 623 | 609 | 781 | 711 | 1120 | 2667 | 4286 | 5541 | 2134 | 1411 | | (WY) | 1912 | 1924 | 1983 | 1983 | 1985 | 1989 | 1942 | 1984 | 1980 | 1957 | 1957 | 1909 | | MIN | 167 | 180 | 204 | 195 | 217 | 176 | 108 | 243 | 481 | 230 | 217 | 188 | | (WY) | 1978 | 1940 | 1940 | 1979 | 1978 | 1904 | 1940 | 1977 | 1902 | 1902 | 1977 | 1931 | | SUMMARY | Y STATIST | ICS | FOR 3 | 1991 CALEN | DAR YEAR | | FOR 1992 WAS | TER YEAR | | WATER YE | ARS 1889 | - 1992 | | ANNUAL | | | | 214952 | | | 216971 | | | | | | | ANNUAL | | | | 589 | | | 593 | | | 726 | | 1004 | | | I ANNUAL I | | | | | | | | | 1266 | | 1984 | | | ANNUAL MI
DAILY MI | | | 2460 | Jun 13 | | 1800 | Jun 28 | | 329
9480 | Jun | 1977
29 1957 | | | DAILY MEA | | | ā ₁₉₉ | Oct 9 | | a
199 | Oct 9 | | 69 | | 13 1959 | | | SEVEN-DAY | | | 208 | Oct 14 | | 208 | Oct 14 | | 07 | | 9 1940 | | | TANEOUS PI | | | | 000 11 | | 2030 | Aug 25 | | D1 9000 | Αυσ | 2 1921 | | | TANEOUS PI | | | | | | 7.28 | Aug 25 | | 13a10.70 | Aug | 2 1921 | | | RUNOFF (| | | 426400 | | | 430400 | | | 526000 | | | | 10 PERG | CENT EXCE | EDS | | 1050 | | | 1050 | | | 1700 | | | | | CENT EXCE | | | 497 | | | 503 | | | 405 | | | | 90 PER | CENT EXCE | EDS | | 244 | | | 251 | | | 238 | | | a-Also occurred Oct 10. b-Site and datum then in use, from rating curve extended above 5000 $\rm ft^3/s$. c-Maximum gage height, 8.58 ft, Jan 21, backwater from ice. d-From floodmark. 07096500 FOURMILE CREEK NEAR CANON CITY, CO #### 07097000 ARKANSAS RIVER AT PORTLAND, CO LOCATION.--Lat 38°23'18", long 105°00'56", in NE¹/4NE¹/4 sec.20, T.19 S., R.68 W., Fremont County, Hydrologic Unit 11020002, on right bank at bridge on State Highway 120 at Portland and 1 mi downstream from Hardscrabble Creek. DRAINAGE AREA. -- 4,024 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1939 to September 1952, October 1974 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,021.59 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1974, at site 400 ft downstream at datum 0.03 ft, lower. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions upstream from station for irrigation of about 60,000 acres and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARG | E, CUBI | C FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTO | DBER 1991 | TO SEPTE | MBER 1992 | | | |----------|------------|--------------------|----------------------------|--------------|------------|--------------------|------------|--------------|--------------|--------------------|----------------------|--------------| | DAY | OCT | VOИ | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 235 | 370 | 525 | 538 | 473 | 560 | 596 | 264 | 1330 | 1360 | 722 | 807 | | 2 | 234 | 403 | 551 | 540 | 481 | 556 | 529 | 303 | 1320 | 1270 | 726 | 772 | | 3 | 258 | 450 | 498 | 539 | 483 | 568 | 489 | 318 | 1270 | 1170 | 722 | 734 | | 4 | 245 | 410 | 519 | 544 | 482 | 692 | 464 | 337 | 1150 | 1010 | 762 | 671 | | 5 | 275 | 431 | 474 | 555 | 486 | 723 | 448 | 368 | 1160 | 970 | 747 | 661 | | 6 | 283 | 488 | 493 | 555 | 472 | 640 | 440 | 553 | 1330 | 892 | 711 | 648 | | 7
8 | 291
269 | 566
5 24 | 489
484 | 560
544 | 473
494 | 559 | 413
418 | 629
684 | 1360
1390 | 890
961 | 720
719 | 625
699 | | 9 | 257 | 492 | 480 | 534 | 494 | 561
5 98 | 448 | 797 | 1330 | 1050 | 719 | 676 | | 10 | 235 | 504 | 464 | 535 | 493 | 548 | 334 | 879 | 1340 | 1130 | 730 | 671 | | 11 | 264 | 505 | 463 | 536 | 496 | 549 | 314 | 861 | 1260 | 1110 | 860 | 633 | | 12 | 261 | 501 | 477 | 541 | 494 | 542 | 335 | 631 | 1360 | 1010 | 839 | 568 | | 13 | 236 | 472 | 455 | 544 | 495 | 542 | 327 | 603 | 1450 | 993 | 806 | 537 | | 14 | 242 | 462 | 440 | 519 | 517 | 544 | 322 | 595 | 1520 | 977 | 774 | 472 | | 15 | 248 | 499 | 476 | 524 | 544 | 548 | 380 | 610 | 1590 | 800 | 839 | 460 | | 16 | 220 | 541 | 486 | 519 | 549 | 532 | 475 | 671 | 1630 | 769 | 806 | 440 | | 17 | 219 | 600 | 474 | 525 | 544 | 518 | 436 | 779 | 1530 | 857 | 1370 | 427 | | 18 | 211 | 591 | 472 | 542 | 528 | 524 | 465 | 896 | 1400 | 771 | 854 | 418 | | 19
20 | 225
213 | 598
504 | 544
594 | 537
532 | 531
544 | 542
535 | 459
422 | 977
1080 | 1260
1310 | 709
749 | 672
598 | 414
418 | | | | | | | | | | | | - | | | | 21 | 224 | 493 | 573 | 549 | 547 | 540 | 386 | 1300 | 1490 | 793 | 539 | 404 | | 22
23 | 237
308 | 527
474 | 590
559 | 529
513 | 555 | 662 | 351
320 | 1480
1630 | 1560
1560 | 722
710 | 514
620 | 414
382 | | 24 | 323 | 422 | 522 | 512
518 | 560
557 | 701
672 | 305 | 1640 | 1530 | 731 | 987 | 364 | | 25 | 309 | 464 | 532 | 527 | 558 | 642 | 286 | 1590 | 1630 | 797 | 1740 | 369 | | | | | | | | | | | | | | | | 26
27 | 254 | 481 | 540 | 490 | 560 | 615 | 260 | 1500 | 1790 | 956 | 1380 | 364 | | 28 | 260
257 | 475
462 | 51 8
51 2 | 480
472 | 541
547 | 631
661 | 255
222 | 1510
1650 | 1810
1940 | 942
793 | 1090
9 6 7 | 369
351 | | 29 | 279 | 476 | 508 | 481 | 550 | 613 | 220 | 1570 | 1790 | 715 | 823 | 316 | | 30 | 298 | 467 | 530 | 478 | | 588 | 245 | 1380 | 1650 | 755 | 766 | 251 | | 31 | 350 | | 521 | 475 | | 608 | | 1370 | | 754 | 819 | | | TOTAL | 8020 | 14652 | 15763 | 16274 | 15049 | 18314 | 11364 | 29455 | 44040 | 28116 | 25930 | 15335 | | MEAN | 259 | 488 | 508 | 5 2 5 | 519 | 591 | 379 | 950 | 1468 | 907 | 836 | 511 | | MAX | 350 | 600 | 594 | 5 60 | 560 | 723 | 596 | 1650 | 1940 | 1360 | 1740 | 807 | | MIN | 211 | 370 | 440 | 472 | 472 | 518 | 220 | 264 | 1150 | 709 | 514 | 251 | | AC-FT | 15910 | 29060 | 31270 | 32280 | 29850 | 36330 | 22540 | 58420 | 87350 | 55770 | 51430 | 30420 | | STATIST | rics of M | ONTHLY MEAN | DATA FO | OR WATER YE | ARS 1939 | - 1992 | 2, BY WATE | R YEAR (WY |) | | | | | MEAN | 387 | 407 | 363 | 338 | 332 | 344 | 518 | 1143 | 2452 | 1564 | 942 | 445 | | MAX | 1083 | 748 | 693 | 626 | 774 | 683 | 1869 | 2680 | 4429 | 3636 | 2380 | 1008 | | (WY) | 1985 | 1985 | 1983 | 1983 | 1985 | 1989 | 1942 | 1984 | 1980 | 1983 | 1984 | 1982 | | MIN | 136 | 191 | 212 | 199 | 162 | 147 | 135 | 245 | 581 | 242 | 201 | 172 | | (WY) | 1978 | 1978 | 1978 | 1979 | 1978 | 1978 | 1981 | 1977 | 1977 | 1977 | 1977 | 1977 | | | STATIST: | ICS | FOR 1 | .991 CALEND | AR YEAR | | | WATER YEAR | | WATER YE | EARS 1939 | - 1992 | | ANNUAL | | | | 229798 | | | 242312 | | | | | | | ANNUAL
 | VD 3 34 | | 630 | | | 662 | | | 777 | | 1004 | | | ANNUAL M | | | | | | | | | 1315
315 | | 1984
1977 | | | DAILY M | | | 2770 | Jun 13 | | 1940 | Jun 28 | | 7460 | .Ture | 8 1942 | | | DAILY ME | | | 211 | Oct 18 | | 211 | Oct 18 | | 66 | | 28 1977 | | | | Y MINIMUM | | 221 | Oct 16 | | 221 | Oct 16 | | 76 | | 24 1977 | | | ANEOUS P | | | | | | 6730 | Aug 17 | | ^a 21100 | Jun | 5 1949 | | | | EAK STAGE | | | | | | 03 Aug 17 | | 12.12 | 2 Jun | 5 1949 | | | RUNOFF (| | | 455800 | | | 480600 | | | 563200 | | | | | ENT EXCE | | | 1190 | | | 1330 | | | 1830 | | | | | CENT EXCE | | | 462 | | | 542 | | | 442 | | | | JU PERC | CENT EXCE | CDD | | 279 | | | 304 | | | 214 | | | a-From rating curve extended above 5300 ft³/s. #### 07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1977 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1979 to current year. WATER TEMPERATURE: October 1979 to current year. INSTRUMENTATION. -- Water-quality monitor since November 1982. REMARKS.--Records for daily specific conductance and water temperature are good. Daily data that are not published are either missing or of unacceptable quality. Daily maximum and minimum specific conductance and mean water temperature data available in district office. Specific conductance data may not be representative of the cross section at the site during flash floods. EXTREMES FOR PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: Maximum daily observed, 1,380 microsiemens, Sept. 30, 1981; minimum, 111 microsiemens, June 22, 1984. WATER TEMPERATURES: Maximum, 26.0°C, July 27, 1987; minimum, 0.0°C, many days during winter months. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 776 microsiemens, Aug. 3; minimum, 220 microsiemens, May 23. WATER TEMPERATURES: Maximum, 25.0°C, Aug. 9; minimum, 0.0°C, many days during the winter months. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP MAR 379 627 Ś 372 7 474 372 377 457 277 442 1.3 17 257 23 267 249 ---379 539 ___ ___ ___ ___ MEAN # 07097000 ARKANSAS RIVER AT PORTLAND, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | TEMPERATURE, | | | | | | | | | | |----------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|--|--|--|--| | DAY | MAX | MIN | | | OCT | OBER | NOVE | MBER | DEC | EMBER | JANU | JARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 19.2
18.9
18.2
15.0
14.7 | 13.0
12.9
12.6
11.7
9.0 | 4.0
2.1
2.1
4.4
6.1 | .0
.0
.0 | .7
.9
.8
2.1
3.4 | .0
.0
.0 | 2.6
2.1
1.0
2.0
3.2 | .0 | 5.3
5.2
4.3
5.4
4.8 | 1.3
1.5
3.0
2.9
1.8 | 9.2
10.4
9.1
7.3
9.0 | 5.1
5.3
5.6
5.8
4.5 | | 6
7
8
9
10 | 14.9
15.7
16.6
17.3
17.5 | 8.3
9.2
10.7
11.8
11.5 | 8.8
9.0
9.1
10.1
9.4 | 3.2
5.6
4.8
5.8
7.8 | 4.5
4.4
4.0
4.5
3.2 | .5
.8
1.0
1.3
1.2 | 3.7
1.9
2.6
2.5
2.8 | .2
.9
.0
.0 | 5.0
4.8
4.7
6.1
5.9 | 1.0
.6
.6
1.1
1.9 | 10.4
10.1
10.0
9.1
8.7 | 5.6
5.9
6.2
5.0
3.5 | | 11
12
13
14
15 | 16.9
16.8
16.5
14.8
15.6 | 11.5
10.9
11.5
10.2
9.7 | 8.9
8.9
8.4
7.5
5.8 | 6.8
5.4
4.6
4.7
4.7 | 2.6
4.2
4.0
2.5
2.2 | 1.3
1.0
.9
.0 | 2.8
2.2
2.2
1.1
1.1 | .0 | 6.0
7.0
5.1
6.5
6.6 | 2.2
3.3
2.4
2.0
2.4 | 10.1
10.4
11.7
12.5
12.0 | 4.7
5.7
5.8
6.7
7.2 | | 16
17
18
19
20 | 16.6
16.6
14.9
13.3
13.7 | 10.4
10.8
10.7
8.8
8.4 | 4.8
6.3
6.1
7.0
6.5 | 3.2
2.9
4.2
4.2
2.6 | 2.8
1.8
1.2
2.9
2.2 | .0
.0
.5 | .7
1.1
2.1
1.9
2.0 | .0 | 4.0
5.3
5.2
5.5
6.2 | 2.3
1.7
.5
.2
2.0 | 11.7
11.0
10.0
9.3
10.6 | 6.9
6.9
6.9
5.9
4.9 | | 21
22
23
24
25 | 14.2
14.9
14.1
12.5
11.9 | 8.5
9.7
10.0
10.0
7.5 | 7.0
4.9
3.5
3.7
4.3 | 3.6
2.2
.3
.1 | 3.4
2.6
3.0
2.5
1.7 | .7
1.4
.4
.0 | 2.3
1.8
2.2
4.1
4.0 | .0
.0
.0 | 8.3
7.8
7.1
7.4
6.6 | 3.7
3.8
4.6
2.9
3.7 | 10.4
6.7
10.8
10.7
12.0 | 6.0
4.8
5.2
6.8
6.1 | | 26
27
28
29
30
31 | 12.5
12.8
9.7
5.8
2.8
3.4 | 7.0
7.6
5.0
3.2
.3 | 6.1
6.3
5.4
4.8
2.4 | 2.0
2.3
3.1
2.4
.0 | 1.7
1.1
.7
1.3
1.3 | .0 | 4.5
3.9
4.5
4.7
5.2
5.7 | .4
.0
.0
.1
.8 | 7.4
9.3
9.9
9.8 | 2.8
4.4
4.9
4.9 | 11.6
10.1
9.1
11.5
12.0
9.7 | 7.2
7.2
7.2
6.9
6.9
7.4 | | MONTH | 19.2 | .0 | 10.1 | .0 | 4.5 | .0 | 5.7 | .0 | 9.9 | .2 | 12.5 | 3.5 | | | AP | RIL | MA | Y | J | UNE | JU | JLY | AUG | GUST | SEPT | EMBER | | 1
2
3
4
5 | 11.7
12.3
14.2
14.9
14.0 | 6.1
7.3
7.9
9.3
9.3 | 22.1
19.2
19.4
20.7
20.9 | 14.2
13.5
12.7
13.3
13.3 | 13.4
17.5
17.1
19.4
19.9 | 12.0
11.6
14.1
14.5
15.9 | 21.4
20.9
21.5
21.9
22.3 | 16.9
16.6
17.5
17.1 | 22.9
23.3
22.4
22.9
22.6 | 17.5
17.5
18.2
17.9
18.1 | 19.4
19.2
20.2
20.7
19.7 | 14.7
15.1
14.7
16.1
14.9 | | 6
7
8
9
10 | 14.9
15.9
16.0
17.2
17.9 | 8.9
9.6
9.5
10.5
10.8 | 20.2
19.8
19.8
18.5
14.7 | 13.7
14.0
14.6
13.9
12.6 | 17.3
18.5
16.5
16.5
18.6 | 15.1
14.5
14.8
14.0
13.4 | 24.3
21.7
21.3
21.9
21.3 | 18.1
19.0
17.7
17.9
18.0 | 21.2
23.3
24.3
25.0
22.3 | 18.0
17.0
19.1
19.5
19.5 | 20.4
19.9
19.9
19.9
19.7 | 15.0
15.2
14.4
15.2
14.6 | | 11
12
13
14
15 | 17.5
14.0
18.6
18.4
18.6 | 11.4
11.8
10.4
12.8
13.5 | 17.6
18.2
20.0
20.9
20.8 | 10.9
13.2
13.5
14.7
14.4 | 19.4
20.0
20.8
19.7
19.1 | 15.1
15.6
16.8
16.0
16.0 | 22.5
20.9
20.4
22.1
21.5 | 18.2
18.0
16.2
16.8
16.9 | 22.6
21.3
21.2
22.1
22.4 | 18.1
17.8
17.8
17.7
17.3 | 20.3
20.7
20.1
20.1
21.9 | 14.7
16.1
15.9
15.1
16.1 | | 16
17
18
19
20 | 16.9
17.3
14.2
11.4
15.0 | 12.2
11.4
10.7
8.9
7.7 | 20.3
19.3
20.1
20.0
19.2 | 14.7
14.6
15.0
15.1
15.3 | 18.0
18.5
20.5
20.5
19.9 | 15.1
14.0
15.5
17.1
16.8 | 21.7
20.8
21.6
22.9
21.1 | 16.6
16.8
17.2
16.7
17.6 | 21.3
22.2
22.7
23.7
24.0 | 17.8
9.5
13.5
17.6
18.6 | 21.3
21.6
19.4
19.4
18.6 | 16.2
16.5
15.2
15.1
14.3 | | 21
22
23
24
25 | 15.8
16.4
16.3
17.1
17.6 | 7.7
9.6
10.0
10.4
10.3 | 18.5
16.7
14.3
17.4
15.3 | 15.3
14.3
13.6
13.4
12.4 | 19.9
19.5
21.0
19.2
19.7 | 17.0
16.4
16.1
16.0
16.2 | 22.8
21.2
21.9
22.9
20.6 | 17.8
18.1
18.0
17.6
19.1 | 23.2
24.8
21.3
18.4
15.2 | 18.5
18.9
18.4
15.2
12.9 | 18.5
19.2
20.1
20.0
18.0 | 14.1
13.2
13.9
14.8
15.4 | | 26
27
28
29
30
31 | 17.7
17.5
20.4
21.4
21.5 | 10.1
10.9
12.1
12.9
14.3 | 17.1
15.4
13.8
16.4
15.9 | 12.2
12.2
12.0
11.8
13.7
12.5 | | | 23.2
24.0
24.2
21.7
22.9
22.2 | 18.2
18.4
19.1
18.4
17.3
18.4 | 17.9
19.3
19.9
19.5
19.4
19.5 | 14.4
14.7
14.7
15.1
15.5
15.7 | 17.4
17.9
17.3
18.5
19.3 | 12.4
12.0
12.5
12.4
12.8 | | MONTH | 21.5 | 6.1 | 22.1 | 10.9 | | | 24.3 | | 25.0 | 9.5 | 21.9 | 12.0 | | - | - | | | | | | | | - | • | | - | #### 07099050 BEAVER CREEK ABOVE UPPER BEAVER CEMETARY, NEAR PENROSE, CO LOCATION.--Lat $38^{\circ}33^{\circ}42^{\circ}$, long $105^{\circ}01^{\circ}17^{\circ}$, in $SE^{1}/4NW^{1}/4NE^{1}/4$ sec.20, T.17 S., R.68 W., Fremont County, Hydrologic Unit 11020002, on left bank 40 ft upstream from bridge on Fremont County Road 132, 1 mi downstream from Banta Gulch, 1.3 mi northeast of Upper Beaver Cemetary, and 9.2 mi north of Penrose. DRAINAGE AREA .-- 122 mi2. AC-FT #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1991 to current year (seasonal record). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,020 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Natural flow of creek affected by storage reservoirs and diversions for municipal use by the City of Colorado Springs. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, 515 ft³/s, Sept. 4, 1991, gage height, 6.70 ft, from floodmark, from rating curve extended above 130 ft 3 /s, on basis of slope-area measurement of peak flow; minimum daily, 9.1 ft 3 /s, Oct. 30, 1991. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation,
119 $\rm ft^3/s$ at 0145 Apr. 18, gage height, 4.62 ft; minimum daily, 9.1 $\rm ft^3/s$, Oct. 30. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT Nov DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.5 9.5 15 27 31 ___ ___ ------___ ___ ___ ___ ---15 ---___ ___ ___ ___ 14 _------15 ---___ ---1.3 ___ ---<u>---</u> ---------67 ___ ___ 9.8 ___ ___ 25 22 14 ------___ ___ ---___ ---___ ---___ ___ 70 27 ---------___ ___ ---___ _---9.1 ___ 9.9 TOTAL 529.0 ------------------70.2 88.8 MEAN 17.1 ---___ 70.3 61.5 38.1 32.2 ___ ---9.1 ------MIN # 07099050 BEAVER CREEK ABOVE UPPER BEAVER CEMETERY NEAR PENROSE, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1991 to current year. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DI
CHARGI
INST
CUBIC
FEET
PER
SEC | E, SPE-
CIF.
CON-
DUCT
ANCI | IC WHOL
- FIEL
I- (STAN
E ARD | R
E
D TEMPER
D- ATURE | E DIS-
R SOLVE | MG/L
D AS | CALCIUM
L DIS-
SOLVEM
(MG/L | DIS-
D SOLVED | SODIUM,
DIS-
SOLVED
(MG/L
MG) AS | SODIUM | SODIUM
AD-
SORP-
TION
RATIO | |------------------|--------------|---|---|---|---|---|---|---|---|---|--|---| | MAY
12 | 1030 | 66 | | 82 7 | .2 11. | 0 9. | 2 30 | 8.9 | 1.9 | 3.8 | 21 | 0.3 | | JUL
27
SEP | 1145 | 56 | | 76 7 | .7 17. | 0 7. | 7 21 | 8.5 | 1.7 | 3.7 | 21 | 0.3 | | 09 | 1140
1130 | | | | .6 14.
.8 11. | | | | 1.8
1.8 | 4.0
3.8 | 21
21 | 0.3
0.3 | | DATI | Ε | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-PHORUS ORTHO TOTAL (MG/L AS P) | | MAY
12 | | 1.2 | 25 | 9.1 | 0.9 | 1.6 | 43 | <0.01 | <0.05 | 0.05 | <0.01 | 0.01 | | JUL
27
SEP | | 1.0 | 25 | 6.6 | 0.5 | 1.7 | 39 | <0.01 | <0.05 | <0.01 | 0.04 | 0.04 | | 09
28 | | 1.1 | 29
30 | 6.9
6.4 | 1.1 | 1.8
1.8 | 43
43 | <0.01
<0.01 | <0.05
<0.05 | <0.01
0.01 | <0.01
0.01 | <0.01
<0.01 | | | | | DATE | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | | | | | | MA | Y
12 | <1 | <0.1 | <1 | 1 | 510 | 170 | <1 | | | | | | JU | L
27 | <1 | <0.1 | <1 | <1 | 510 | 100 | <1 | | | | | | SEI
(| 9
09
28 | <1
<1 | <0.1
<0.1 | <1
<1 | <1
<1 | 360
150 | 100
6 5 | <1
<1 | | | | | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | | | | | MAY | 12 | 1 | 50 | 9 | <1 | 1 | <10 | 11 | | | | | | | 27 | 1 | 50 | 5 | <1 | <1 | <10 | 13 | | | | | | SEI
(| 9
9
28 | <1
<1 | 40
20 | 4
4 | <1
<1 | <1
<1 | <10
<10 | <3
<3 | | | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |-----------|------|--|---|--------------------------------------|-----------|------|--|---|--------------------------------------| | OCT 1991 | | | | | APR 1992 | | | | | | 15 | 1030 | 14 | 98 | 7.5 | 03 | 1150 | 17 | 99 | 8.5 | | NOV
13 | 1225 | 13 | 94 | 5.5 | 14
JUN | 1005 | 103 | 85 | 7.0 | | MAR 1992 | 1223 | 13 | 94 | 3.3 | 22 | 1150 | 105 | 73 | 15.5 | | 12 | 1310 | 9.2 | 112 | 5.5 | | | | | | #### 07099060 BEAVER CREEK ABOVE HIGHWAY 115 NEAR PENROSE, CO LOCATION.--Lat 38°29'21", long 104°59'49", in NE¹/4NE¹/4 sec.16, T.18 S., R.68 W., Fremont County, Hydrologic Unit 11020002, on left bank 300 ft downstream from Beaver Park Irrigation Company diversion dam, 1.8 mi upstream from Highway 115, and 4.7 mi north of Penrose. DRAINAGE AREA .-- 138 mi2. PERIOD OF RECORD. -- March 1991 to current year (seasonal record). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,659.08 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Nov. 2-6. Records fair except for estimated daily discharges, those below 0.2 ft³/s, and those above 110 ft³/s, which are poor. Natural flow of creek is affected by storage reservoirs, diversions for muncipal use by Colorado Springs, and diversions for irrigation, mainly by the Beaver Park Irrigation Company. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge during period of seasonal operation, 410 ft³/s, Sept. 4, 1991, gage height, 6.00 ft, from floodmark, from rating curve extended above 110 ft³/s; no flow many days. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period of seasonal operation, 139 ft^3/s at 1730 June 27, gage height, 4.28 ft, from rating curve extended above 110 ft^3/s ; no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------------|-------------------|-----------------|-----|-----|-----|-------------|-------------------|----------------|------------------------|----------------|------------|----------------| | 1
2
3 | .00
.00
.00 | 4.5
10
13 | | | | | 5.6
5.9
6.7 | 66
67
66 | 95
98
9 6 | 92
85
81 | .00
.00 | 38
37
36 | | 4
5 | .00 | 7.8
7.5 | | | | | 14
20 | 66
56 | 96
102 | 72
64 | .00 | 25
25 | | 6
7 | .00 | 7.0
8.4 | | | | | 19
26 | 54
49 | 109
109 | 58
53 | .00 | 25
17 | | 8 | .00 | 7.3 | | | | | 37 | 45 | 109 | 53 | .00 | 14 | | 9 | .00 | 8.9 | | | | | 44 | 45 | 124 | 52 | .00 | 10 | | 10 | .00 | 10 | | | | | 55 | 49 | 119 | 46 | .00 | 7.6 | | 11 | .00 | 11 | | | | | 63 | 44 | 124 | 42 | 4.7 | 6.7 | | 12
13 | .00 | 10
8.9 | | | | .00 | 62
72 | 34
61 | 119
109 | 37
35 | 5.0
2.6 | 2.3
.00 | | 13 | .00 | 8.1 | | | | .00 | 72
78 | 48 | 91 | 38
38 | 1.0 | .00 | | 15 | .00 | 18 | | | | .98 | 76
96 | 49 | 91 | 33 | .00 | 2.6 | | 10 | .00 | 10 | | | | . 30 | ,, | 7,7 | 7. | 33 | | 2.0 | | 16 | .00 | 14 | | | | 2.2 | 85 | 38 | 91 | 30 | .00 | .30 | | 17 | .00 | 13 | | | | 4.9 | 86 | 34 | 76 | 32 | 9.8 | .00 | | 18 | .00 | 4.9 | | | | 6.9 | 104 | 37 | 67 | 27 | 15 | .00 | | 19 | .00 | .26 | | | | 4.3 | 82 | 33 | 55 | 17 | 17 | .00 | | 20 | .00 | .23 | | | | 2.9 | 73 | 30 | 60 | 11 | 6.0 | 2.5 | | 21 | .00 | | | | | 4.6 | 63 | 29 | 62 | 8.3 | .17 | 1.1 | | 22 | .00 | | | | | 6.2 | 62 | 35 | 58 | 1.7 | .00 | .00 | | 23 | .00 | | | | | 5.0 | 52 | 49 | 54 | .00 | .00 | .00 | | 24 | .53 | | | | | 4.4 | 52 | 38 | 62 | .00 | 24 | .00 | | 25 | .00 | | | | | 3.6 | 51 | 39 | 62 | .00 | 93 | .00 | | 26 | .00 | | | | | 4.4 | 51 | 49 | 101 | 16 | 63 | .00 | | 27 | .00 | | | | | 6 .6 | 53 | 78 | 113 | 13 | 53 | .00 | | 28 | .00 | | | | | 9.8 | 58 | 82 | 121 | .56 | 45 | .00 | | 29 | .00 | | | | | 9.4 | 61 | 71 | 125 | .00 | 40 | .00 | | 30 | .00 | | | | | 7.8 | 64 | 69 | 105 | .00 | 37 | .00 | | 31 | .00 | | | | | 6.7 | | 80 | | 2.5 | 41 | | | TOTAL | 0.53 | | | | | | 1601.2 | 1590 | 2803 | 1000.06 | 457.27 | 250.10 | | MEAN | .017 | | | | | | 53.4 | 51.3 | 93.4 | 32.3 | 14.8 | 8.34 | | MAX | . 53 | | | | | | 104 | 82 | 125 | 92 | 93 | 38 | | MIN | .00 | | | | | | 5.6 | 29 | 54 | .00 | .00 | .00 | | AC-FT | 1.1 | | | | | | 3180 | 3150 | 5560 | 1980 | 907 | 496 | ## 07099230 TURKEY CREEK ABOVE TELLER RESERVOIR, NEAR STONE CITY, CO LOCATION.--Lat 38°27'54", long 104°49'33", in NE¹/4SW¹/4 sec.19, T.18 S., R.66 W., Pueblo County, Hydrologic Unit 11020002, on Fort Carson Military Reservation, on left bank, 0.7 mi northwest of intersection of military roads 9, and 1, 2.2 mi upstream from Teller Reservoir Dam, and 2.2 mi northeast of Stone City. DRAINAGE AREA .-- 62.3 m12. REVISED RECORDS. -- WDR CO-89-1: Drainage area. PERIOD OF RECORD.--Streamflow records, May 1978 to current year. Water-quality data available, May 1978 to September 1981. Prior to July 20, 1989, at site 0.6 mi
downstream, at different datum. GAGE.--Water-stage recorder and concrete control with V-notch sharp-crested weir. Elevation of gage is 5,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 20, 1989, at site 0.6 mi downstream, at different datum. REMARKS.--No estimated daily discharges. Records poor. Diversions upstream from gage for irrigation, amount unknown. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER | R 1991 T | О ЅЕРТЕМВЕ | R 1992 | | | |----------|------------------------|------------|---------------|-------------|----------------|------------|--------------|----------------|------------|--------------------|------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .00 | .00 | .00 | .35 | .37 | .43 | . 48 | 3.6 | 3.3 | 3.7 | .90 | .64 | | 2 | .00 | .00 | .00 | .36 | .36 | .45 | .48 | 3.5 | 3.6 | 3.3 | .81 | .57 | | 3 | .00 | .00 | .00 | .37 | .30 | . 44 | .50 | 3.8 | 3.3 | 3.1 | .76 | .52 | | 4 | .00 | .00 | .02 | .37 | .31 | .49 | .50 | 4.2 | 3.2 | 2.8 | .80 | .52 | | 5 | .00 | .00 | .04 | .36 | .32 | .45 | .52 | 4.5 | 3.1 | 2.4 | .72 | .47 | | 6
7 | .00 | .00 | .06
.07 | .38
.38 | .32
.33 | .46
.46 | .50
.50 | 4.7
4.8 | 3.0
3.1 | 2.2 | .67
.63 | .45
.44 | | 8 | .00 | .00 | .07 | .37 | .33 | .47 | .51 | 4.7 | 3.1 | 1.9 | .54 | .43 | | 9 | .00 | .00 | .09 | .38 | .33 | .45 | .50 | 4.5 | 3.2 | 2.5 | .59 | .39 | | 10 | .00 | .00 | .10 | .38 | . 33 | .46 | .50 | 4.1 | 3.4 | 2.3 | .61 | .39 | | 11 | .00 | .00 | .12 | .39 | .34 | .48 | .50 | 4.3 | 3.3 | 2.2 | .77 | .38 | | 12 | .00 | .00 | .14 | .38 | .34 | .48 | .51 | 4.0 | 3.3 | 1.9 | .75 | .32 | | 13
14 | .00 | .00 | .15 | .38 | .35 | .48 | .54 | 3.6 | 3.0 | 1.8 | .80 | .31 | | 15 | .00 | .00 | .17
.19 | .38
.37 | .35
.35 | .50
.48 | .53
.50 | 3.6
3.4 | 2.6
2.3 | 1.7
1.5 | .78
.64 | .31
.27 | | 16 | .00 | .00 | .21 | .38 | .36 | .48 | .50 | 3.3 | 2.1 | 1.4 | .52 | .24 | | 17 | .00 | .00 | . 22 | .36 | .37 | .48 | .50 | 3.0 | 1.9 | 1.9 | .66 | .23 | | 18 | .00 | .00 | . 23 | .36 | .39 | .48 | .51 | 2.9 | 1.7 | 1.8 | .67 | .21 | | 19 | .00 | .00 | . 25 | .39 | .41 | .46 | .50 | 2.7 | 1.7 | 1.6 | . 65 | .21 | | 20 | .00 | .00 | . 26 | .39 | .42 | .47 | 1.1 | 2.5 | 1.9 | 1.5 | .59 | . 22 | | 21 | .00 | .00 | .27 | .39 | .42 | .48 | 1.7 | 2.4 | 2.1 | 1.6 | .54 | .22 | | 22 | .00 | .00 | .29 | .39 | .42 | .46 | 2.2 | 2.4 | 2.1 | 1.5 | . 47 | .23 | | 23 | .00 | .00 | . 28 | .23 | .42 | .48 | 2.5 | 2.8 | 1.8 | 1.3 | . 44 | .23 | | 24 | .00 | -00 | .30 | .28 | .42 | .48 | 2.9 | 3.0 | 2.1 | 1.2 | . 96 | .21 | | 25 | .00 | .00 | .31 | .33 | .42 | .49 | 3.2 | 3.1 | 2.5 | 1.2 | 1.3 | .20 | | 26 | .00 | .00 | .31 | .34 | .42 | .48 | 3.3 | 3.1 | 3.3 | 1.4 | 1.5 | .20 | | 27 | .00 | .00 | .32 | .34 | .42 | .48 | 3.3 | 3.3 | 3.3 | 1.4 | 1.4 | .19 | | 28
29 | -00 | .00 | .33 | .36 | .43 | .48 | 3.2 | 3.5 | 4.5
4.4 | 1.2
1.1 | 1.1
.83 | .19
.19 | | 30 | .00 | .00 | .35 | .34
.36 | .43 | .47 | 3.3
3.4 | 3.3
3.0 | 4.4 | 1.1 | .03
.76 | .19 | | 31 | .00 | | .34 | .36 | | .51 | | 2.9 | | 1.0 | .71 | | | TOTAL | 0.00 | 0.00 | 5.83 | 11.20 | 10.78 | 14,64 | 39.68 | 108.5 | 86.4 | 57.5 | 23.87 | 9.57 | | MEAN | .000 | .000 | .19 | .36 | .37 | .47 | 1.32 | 3.50 | 2.88 | 1.85 | .77 | .32 | | MAX | .00 | .00 | . 35 | .39 | . 43 | .51 | 3.4 | 4.8 | 4.5 | 3.7 | 1.5 | .64 | | MIN | .00 | .00 | .00 | .23 | .30 | .43 | . 48 | 2.4 | 1.7 | 1.0 | . 44 | .19 | | AC-FT | .00 | .00 | 12 | 22 | 21 | 29 | 79 | 215 | 171 | 114 | 47 | 19 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | R WATER YE | ARS 1978 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN | 3.94 | 2.54 | 1.02 | .75 | .71 | .68 | 1.51 | 10.7 | 7.80 | 3.13 | 4.55 | 1.84 | | MAX | 44.6 | | 6.47 | 2.69 | 2.58 | 2.75 | 12.9 | 73.6 | 40.3 | 17.1 | 40.9 | 18.1 | | (WY) | 1985 | | 19 8 5 | 1985 | 1985 | 1985 | 1985 | 1980 | 1983 | 1985 | 1982 | 1982 | | MIN | .000 | | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | | (WY) | 1979 | 1979 | 1979 | 1979 | 1979 | 1979 | 1979 | 1979 | 1989 | 1978 | 1990 | 1978 | | SUMMARY | STATISTI | CS | FOR 19 | 991 CALENI | AR YEAR | | FOR 1992 WAT | ER YEAR | 1 | WATER Y | EARS 1978 | - 1992 | | ANNUAL | | | | 5.90 | | | 367.97 | | | | | | | ANNUAL | | | | .016 | 5 | | 1.01 | | | 3,38 | | | | | ANNUAL M | | | | | | | | | 13.1 | | 1985 | | | ANNUAL ME
DAILY ME | | | 3.5 | Do 6 20 | | * 6 | May 7 | | .00
353 | | 1991 | | | | | | a.35 | Dec 29 | | 4.8
b.00 | - | | 353 | Aug 2 | 0 1982
8 1978 | | | DAILY MEA
SEVEN-DAY | | | a.00
.00 | Jan 1
Jan 1 | | .00 | Oct 1
Oct 1 | | 0.0 | Mout 1 | 8 1978 | | | ANEOUS PE | | | .00 | Jan 1 | | 5.1 | May 7 | | ¹ 3640 | Aug 2 | 0 1982 | | | ANEOUS PE | | | | | | 6.04 | May 7 | | e _{11.51} | Aug 2 | 0 1982 | | | RUNOFF (A | | | 12 | | | 730 | | | 2450 | | | | | ENT EXCEE | | | .00 | | | 3.2 | | | 5.4 | | | | 50 PERC | ENT EXCEE | DS | | .00 | | | .45 | | | . 4 | | | | 90 PERC | ENT EXCEE | DS | | .00 | | | .00 | | | .00 | ט | | | | | 6 | | | | | | | | | | | a-No flow most of year. b-No flow many days. c-No flow many days during most years. d-From rating curve extended above 100 ft³/s, on basis of slope-area measurements at gage heights, 8.04 ft, and e-Maximum gage height, 11.88 ft, Jun 8, 1987, site and datum then in use. 07099233 TELLER RESERVOIR NEAR STONE CITY, CO 07099235 TURKEY CREEK NEAR STONE CITY, CO #### 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO LOCATION.--Lat $38^{\circ}16^{\circ}15^{\circ}$, long $104^{\circ}43^{\circ}30^{\circ}$, in $NE^1/4$ sec.36, T.20 S., R.66 W., Pueblo County, Hydrologic Unit 11020002, at dam on Arkansas River, 7 mi west of Pueblo. DRAINAGE AREA. -- 4,669 mi². PERIOD OF RECORD. -- January 1974 to current year. GAGE.--Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above National Geodetic Vertical datum of 1929. REMARKS.--Reservoir is formed by concrete and earthfill dam. Storage began Jan. 9, 1974; dam completed in August 1975. Capacity, 357,700 acre-ft at elevation 4,898.70 ft, crest of spillway. Dead storage, 3,730 acre-ft, below elevation 4,764.00 ft, invert of river outlet. Reservoir is terminal reservoir of the Fryingpan-Arkansas project and is used to provide flood control, municipal and industrial supplies, and to fulfill irrigation requirements in the Arkansas River valley. Figures given are total contents. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 295,480 acre-ft, Feb. 12, 1985, elevation, 4,886.94 ft; minimum since appreciable storage was attained, 22,680 acre-ft, Nov. 13, 1974, elevation, 4,790.50 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 168,080 acre-ft, Apr. 1, elevation, 4,856.47 ft; minimum, 75,920 acre-ft, Nov. 11, elevation, 4,823.35 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | Date | Elevation | Contents (acre-feet) | Change in contents
(acre-feet) | |--|--|---|---| | Sept. 30. | 4,824.47
4,823.56
4,829.87
4,839.76 | 78,380
76,380
90,950
116,810 | -2,000
+14,570
+25,860 | | CAL YR 1991 | | | -60 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 4,847.55
4,852.45
4,856.43
4,853.64
4,849.41
4,848.80
4,842.57
4,839.38
4,834.93 | 139,310
154,570
167,950
158,560
145,020
143,130
124,700
115,770
103,780 | +22,500
+15,260
-13,380
-9,390
-13,540
-1,890
-18,4300
-8,930
-11,990 | | WTR YR 1992 | | | +25,400 | #### 07099350 PUEBLO RESERVOIR NEAR PUEBLO CO--Continued ## WATER-QUALITY RECORDS REMARKS.--Samples and field measurements were collected at a number of transects located along the length of the reservoir. ## 381725104494400 PUEBLO RESERVOIR SITE 3B LOCATION.--Lat 38°17'25", long 104°49'44", in SW¹/4SW¹/4, sec. 19, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 100 ft downstream from Turkey Creek, and 6.7 mi upstream from Pueblo Dam. PERIOD OF RECORD .-- June 1988 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | (STAND-
ARD | TEMPER-
ATURE
WATER
(DEG C) | (SECCHI
DISK) | (YGEN,
DIS-
SOLVED
(MG/L) | |----------|----------------------|----------------------------------|---|----------------|--------------------------------------|------------------|------------------------------------| | MAY 199 | 1 | | | | | | | | 13 | 1345 | | | | | 0.6 | | | 13 | 1346 | 2.0 | 401 | 8.1 | 19.0 | | 9.0 | | 13 | 1347 | 4.0 | 398 | 7.9 | 17.5 | | 7.5 | | 13 | 1348 | 6.0 | 401 | 7.8 | 16.0 | | 6.4 | | 13 | 1349 | 8.0 | 402 | 7.7 | 16.0 | | 6.0 | | 13
13 | 1350
1351 | 10.0
12.0 | 400
391 | 7.9
7.9 | 14.5
14.0 | | 6.8
7.0 | | 13 | 1351 | 14.0 | 389 | 7.9 | 14.0 | | 7.1 | | JUN | 1332 | 14.0 | 303 | | 1110 | | | | 24 | 1320 | | | | | 0.2 | | | 24 | 1321 | 0.0 | 225 | 8.1 | 21.0 | | 7.6 | | 24 | 1322 | 2.0 | 215 | 8.1 | 20.5 | | 7.6 | | 24 | 1323 | 4.0 | 225 | 8.1 | 20.5 | | 7.5 | | 24 | 1324 | 6.0 | 224 | 8.1 | 20.0 | | 7.4 | | 24
24 | 1325
1
326 | 8.0
9.0 | 226
225 | 8.1
8.1 | 20.0
19.0 | | 7.6
7.5 | | 24 | 1326 | 9.0 | 225 | 0.1 | 19.0 | | 7.3 | | | WATER-QUALI | TY DATA, | WATER YEA | AR OCTOBE | R 1991 ' | TO SEPTEMBE | R 1992 | | TTN: 100 | | | | | | | | | JUN 199 | 1120 | | | | | 0.3 | | | 04 | 1121 | 0.0 | 341 | 8.1 | 15.0 | | 7.8 | | 04 | 1122 | 3.0 | 339 | 8.1 | 15.5 | | 7.6 | | 04 | 1123 | 6.0 | 339 | 8.1 | 15.0 | | 7.7 | | 04 | 1124 | 9.0 | 340 | 8.1 | 14.5 | | 7.8 | | 04 | 1125 | 12.0 | 340 | 8.1 | 14.5 | | 7.7 | | AUG | | | | | | | | | 04 | 1100 | | | | | <0.2 | | | 04 | 1101 | 0.0 | 415 | 7.9 | 20.0 | | 6.5 | | 04 | 1102 | 2.0 | 428 | 7.9 | 20.0 | | 6.5 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO CO--Continued WATER-QUALITY RECORDS # 381725104494400 PUEBLO RESERVOIR SITE 3B--Continued | | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | TUR-
BID-
ITY
(NTU) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | | |-----------------|-----------------------|--|---|---|---|---|--|--|---|--|---| | | 1 | Y 1991
3 | 1300
1320 | 2.0
13.0 | 3.5
4.7 | 160
150 | 44
43 | 11
11 | 90
91 | | | | | 2 | 24 | 1300
1319 | 1.0
7.0 | 35
35 | 94
94 | 28
28 | 5.8
5.8 | 62
61 | | | | DATE | TIME | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA | AMMONIA | PHOS- | | PHOS-PHORUS ORTHOTOTAL (MG/L AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | MAY 1991 | | | | | | | | | | | | | 13
13 | 1300
1 32 0 | 0.007
0.009 | 0.005
0.007 | 0.138
0.164 | 0.128
0.161 | 0.064
0.153 | 0.059
0.094 | 0.102
0.080 | 0.043
0.050 | 0.039
0.046 | 0.026
0.029 | | JUN
24
24 | 1300
1319 | 0.005
0.006 | 0.001
0.001 | 0.092
0.058 | 0.071
0.052 | 0.028
0.033 | 0.025
0.031 | 0.039
0.078 | 0.035
0.039 | 0.019
0.034 | 0.017
0.019 | | | DATE | TIME | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS- | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVEI
(UG/L
AS CU) | RECOV-
ERABLE
(UG/L | | (UG/L | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | | | MAY 1991 | | | • | · | | • | | | | | | | 13
13
JUN | 1300
1320 | <1
<1 | | 3
3 | | | | | 3
3 | | | | 24
24 | 1300
1319 | <1
<1 | | 3 | | | | | <1
<1 | | | | | TE (UAS | TAL N
COV-
ABLE S
G/L (| ESE, TO
DIS- RE
OLVED EF
UG/L (U | ECOV- DE
RABLE SO
JG/L (1 | CKEL, I
IS- F
OLVED E
UG/L (| ECOV-
CRABLE SO
UG/L (| LVER, S
DIS- I
OLVED I
UG/L | RECOV- E
ERABLE SO
(UG/L (U | INC,
DIS-
DIS-
DLVED
JG/L
S ZN)
<5
<5
<5
<5 | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO CO--Continued ## WATER-QUALITY RECORDS ## 381725104494400 PUEBLO RESERVOIR SITE 3B--Continued QUALITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 #### PHYTOPLANKTON [dashes indicate taxa not detected; sp., species are distinguishable but not identifiable; $^{1}/_{2}$, species identification probable but not positive; var., identifies a variation in the species] | Date | May 13, 1991 | June 24, 1991
1300 | | |--|------------------|-----------------------|--| | Time
Depth | 1300
2 ft. | 1300
1 ft. | | | Sampling method | Van-Dorn grab | Van-Dorn grab | | | TAXA | Count (cells/ml) | Count (cells/ml) | | | BACILLARIOPHYTA (Diatoms)
Order Centrales | | | | | Cyclotella | | | | | kuetzingiana
Melosira | 500 | | | | varians | 990 | | | | Order Pennales | | | | | Acnanthes
linearis | 820 | | | | minutissima | 2200 | 2000 | | | Amphora | 200 | 500 | | | perpusilla
Asterionella | 200 | 300 | | | formosa | 610 | | | | Cocconeis | | 500 | | | placentula var. euglypta
Cymbella | | 300 | | | minuta | 2600 | 3500 | | | minuta var. silesiaca
Fragilaria | | 1000 | | | crontonensis | 410 | | | | vaucheriae | | 6000 | | | Gomphonema
parvulum | | 2500 | | | sp. | 200 | | | | Hantzschia | 410 | | | | sp.
Navicula | 410 | | | | cryptocephala | 410 | 1000 | | | pelliculosa | | 500 | | | Nitzschia
acicularis | 200 | 3500 | | | dissipata | 1400 | 1500 | | | linearis | | 500 | | | Surirella
minuta | 410 | | | | Synedra | | 1000 | | | delicatissima
Tabellaria | | 1000 | | | fenestrata | 820 | 2000 | | | CHLOROPHYTA (Green algae) | | | | | Ankistrodesmus | | | | | falcatus | 140 | | | | Chlorella
ellipsoidea | | 9800 | | | Chlorococcum | | | | | humicola | | 9800 | | | CRYPTOPHYTA (Cryptomonads) | | | | | Cryptomonas | | 4.500 | | | erosa
Rhodomonas | | 1600 | | | minuta | 270 | 8200 | | | GVANODIN/MA (D) | | | | | CYANOPHYTA (Blue-green algae)
Aphanocapsa | | | | | delicatissima | 37000 | 220000 | | | Aphanothece
nidulans | | 6 500 | | | Chroococcus | | 4500 | | | sp. | | 11000 | | | Synechococcus sp. | 4500 | 16000 | | | sp. | 4300 | 10000 | | | EUGLENOPHYTA (Euglenoids) | | | | | Euglena
sp. | | 6 500 | | | | | | | | PYRRHOPHYTA (Dinoflagellates) | | | | | Glenosinium
sp | 1400 | | | | | | | | | TOTAL CELLS (m) | 55000 | 320000 | | | TOTAL CELLS/ml
NUMBER OF SPECIES | 20 | 23 | | | | - | | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued ## WATER-QUALITY RECORDS ## 381647104475300 PUEBLO RESERVOIR SITE 4B LOCATION.--Lat 38°16'47", long 104°47'53", in NW¹/4SE¹/4, sec. 29, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 1.3 mi upstream from Peck Creek, 2.2 mi downstream from Turkey Creek, and 4.5 mi upstream from Pueblo Dam. PERIOD OF RECORD .-- June 1988 to September 1991. WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | PH SPE- CIFIC CON- DUCT- ANCE (US/CM) | WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |-----------|--------------|----------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|---|-------------------------------------| | MAY 1991 | | | | | | | | | 13 | 1350 | | | | | 1.9 | | | 13 | 1351 | 3.0 | 493 | 8.3 | 17.5 | | 11.9 | | 13 | 1352 | 6.0
9.0 | 494 | 8.5 | 17.5 | | 11.7
10.3 | | 13
13 | 1353
1354 | 12 | 506
526 | 8.5
8.5 | 15.0
14.0 | | 9.8 | | 13 | 1355 | 15 | 527 | 8.5 | 14.0 | | 9.5 | | 13 | 1356 | 18 | 530 | 8.5 | 13.0 | | 9.2 | | 13 | 1357 | 21 | 531 | 8.5 | 13.0 | | 9.2 | | 13 | 1358 | 24 | 532 | 8.5 | 12.5 | | 8.9 | | 13 | 1359 | 27 | 531 | 8.5 | 12.0 | | 8.8 | | 13 | 1400 | 30
33 | 532
533 | 8.4 | 12.0 | | 8.4 | | 13
13 | 1401
1402 | 36 | 533 | 8.4
8.3 | 11.5
11.5 | | 7.6
7.4 | | 13 | 1403 | 38. | 533 | 8.3 | 11.0 | | 7.2 | | JUN | | ••• | 000 | 0.0 | | | | | 24 | 1430 | | | | | 1.2 | | | 24 | 1431 | 0.0 | 310 | 8.8 | 22.5 | | 10.0 | | 24 | 1432 | 3.0 | 309 | 8.8 | 22.5 | | 9.8 | | 24 | 1433
1434 | 6.0
9.0 | 317 | 8.6
8.6 | 22.0
21.0 | | 8.4
8.2 | | 24
24 | 1434 | 12 | 317
337 | 8.6 | 21.0 | | 8.0 | | 24 | 1436 | 15 | 349 | 8.5 | 21.0 | | 8.0 | | 24 | 1437 | 18. | 351 | 8.5 | 21.0 | | 7.9 | | 24 | 1438 | 21 | 340 | 8.5 | 20.5 | | 7.7 | | 24 | 1439 | 24 | 296 | 8.4 | 20.5 | | 7.6 | | 24 | 1440 | 27 | 280 | 8.4 | 20.0 | | 7.5 | | 24 | 1441 | 30. | 240 | 8.3 | 19.5 | | 7.1
6.8 | | 24
AUG | 1442 | 33. | 236 | 8.2 | 19.0 | | 0.0 | | 05 | 1215 | | | | | 1.2 | | | 05 | 1215
1216 | 0.0 | 390 | 9.0 | 25.0 | | 9.6 | | 05 | 1217 | 2.0 | 397 | 9.0 | 24.0 | | 9.8 | | 05 | 1218 | 4.0 | 399 | 9.0 | 24.0 | | 10.0 | | 05 | 1219 | 6.0 | 404 | 9.0 | 23.5 | | 10.5 | | 05
05 | 1220
1221 | 8.0
10 | 409
420 | 8.8
8.8 | 23.0
23.0 | | 9.2
8.6 | | 05 | 1222 | 12 | 412 | 8.7 | 23.0 | | 9.0 | | 05 | 1223 | 14 | 407 | 8.4 | 21.0 | | 7.0 | | 05 | 1224 | 15 | 406 | 8.3 | 20.0 | | 5.7 | | SEP | | | | | | | | | 23 | 1254 | | | | | 0.6 | | | 23 | 1255 | 0.0 | 554 | 8.5 | 20.0 | | 8.6 | | 23
23 | 1256
1257 | 2.0
4.0 | 558
562 | 8.6
8.7 | 19.0
18.5 | | 9.2
8.7 | | 23 | 1258 | 6.0 | 567 | 8.6 | 18.0 | | 8.2 | | 23 | 1259 | 8.0 | 570 | 8.6 | 18.0 | | 8.3 | | 23 | 1300 | 10 | 575 | 8.5 | 17.5 | | 7.7 | | 23 | 1301 | 12 | 673 | 8.7 | 15.5 | | 7.5 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381559104465500 PUEBLO RESERVOIR SITE 5B LOCATION.--Lat 38°15'59", long 104°46'55", in SW¹/4NE¹/4, sec. 33, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.1 mi upstream from Peck Creek, 1.2 mi upstream from Rock Creek, and 3.2 mi upstream from Pueblo Dam. PERIOD OF RECORD. -- June 1988 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) |
TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |--|--|--|---|---|--|---|---| | MAY 1991 13 | 1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151 | 3.0
6.0
9.0
12
15
18
21
24
27
30
33
36
39
42
45 | 508
517
523
525
530
532
532
533
535
534
534
534
534
535 | 8.66
8.66
8.66
8.66
8.66
8.66
8.65
8.55 | 16.0
15.5
15.0
14.5
14.0
12.5
11.0
11.0
11.0
10.5
10.5 | 2.3 |
10.6
10.3
10.0
9.9
9.7
9.4
9.3
8.5
8.0
7.9
7.9
7.9 | | 24
24
24
24
24
24
24
24
24
24
24
24
24
24 | 1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115 | 0.0
3.0
6.0
9.0
12
15
18
21
24
27
30
33
36
39
42
45 | 357
359
373
373
365
349
357
333
295
271
259
256
257
270
280 | 8.5
8.5
8.5
8.4
8.4
8.3
8.2
8.2
8.1
8.0
8.0 | 22.0
21.5
21.0
21.0
20.5
20.5
20.5
20.5
20.6
19.6
18.5
18.5
18.0 | | 8.3
8.5
8.0
7.9
7.7
7.4
7.3
7.4
7.0
6.9
6.4 | | 05
05
05 | 1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1200 | 0.0
3.0
6.0
9.0
12
15
18
21
24
25 | 400
399
400
400
404
405
410
420
448
451 | 8.8
8.8
8.7
8.6
8.6
8.5
8.2
8.1 | 24.0
23.5
23.0
22.5
23.0
23.0
23.0
22.5
21.5 | | 8.3
8.2
8.4
7.6
7.3
7.0
6.7
5.6
5.4 | | 23
23
23
23
23
23
23
23
23
23
23 | 1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055 | 0.0
2.0
4.0
6.0
8.0
10
12
14
16
18
20 | 542
541
543
542
543
543
543
543
544
585 | 8.2
8.2
8.2
8.3
8.3
8.3
8.3
8.2
8.2 | 19.0
19.0
18.5
18.5
18.5
18.5
18.5
18.5
18.0
18.0 |

 |
6.9
6.8
6.6
6.6
6.7
6.7 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381559104465500 PUEBLO RESERVOIR SITE 5B--Continued | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |----------------|--------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | JUN 1992
04 | 0945 | | | | | 2.3 | | | 04 | 0945 | 0.0 | 423 | 8.6 | 17.0 | 2.3 | 9.0 | | 04 | 0947 | 3.0 | 423 | 8.5 | 17.0 | | 9.1 | | 04
04 | 0948
0949 | 6.0
9.0 | 425
424 | 8.5
8.5 | 17.0
17.0 | | 9.1
9.0 | | 04 | 0950 | 12 | 423 | 8.5 | 17.0 | | 9.0 | | 04 | 0951 | 15 | 421 | 8.5 | 17.0 | | 8.9 | | 04 | 0952
0953 | 18
21 | 421
421 | 8.5
8.4 | 16.5
16.5 | | 8.7
8.4 | | 04 | 0954 | 24 | 420 | 8.4 | 16.5 | | 8.2 | | 04 | 0955 | 27 | 421 | 8.3 | 16.5 | | 8.0 | | 04 | 0956 | 30 | 426 | 8.3 | 16.5 | | 7.9 | | 04 | 0957
0958 | 33
36 | 424
420 | 8.3
8.2 | 16.5
16.0 | | 7.8
7.3 | | 04 | 0959 | 39 | 396 | 8.2 | 16.0 | | 7.2 | | 04 | 1000 | 42 | 373 | 8.1 | 15.0 | | 7.2 | | 04
04 | 1001
1002 | 45
48 | 342
333 | 8.1
8.0 | 14.5
14.0 | | 7.1
6.8 | | 04 | 1003 | 49 | 332 | 8.0 | 14.0 | | 6.7 | | AUG | 1000 | | | | | 1.0 | | | 04
04 | 1200
1201 | 0.0 | 388 | 8.6 | 23.0 | 1.8 | 7.7 | | 04 | 1202 | 3.0 | 388 | 8.6 | 23.0 | | 7.8 | | 04 | 1203 | 6.0 | 388 | 8.5 | 22.5 | | 7.5 | | 04 | 1204
1205 | 9.0
12 | 387
386 | 8.5
8.5 | 22.5
22.5 | | 7.3
7.0 | | 04 | 1206 | 15 | 386 | 8.4 | 22.5 | | 7.0 | | 04 | 1207 | 18 | 387 | 8.3 | 22.5 | | 6.5 | | 04
04 | 1208
1209 | 21
24 | 389
391 | 8.3
8.0 | 22.5
22.0 | | 6.1
4.7 | | 04 | 1210 | 27 | 393 | 7.8 | 22.0 | | 4.1 | | 04 | 1211 | 30 | 395 | 7.7 | 21.5 | | 3.8 | | 04
27 | 1212
1200 | 32 | 395 | 7.7 | 21.5 | 0.9 | 3.9 | | 27 | 1200 | 0.0 | 408 | 8.2 | 21.5 | | 6.4 | | 27 | 1202 | 3.0 | 408 | 8.2 | 21.5 | | 6.3 | | 27
27 | 1203
1204 | 6.0 | 408 | 8.2 | 21.5 | | 6.3 | | 27 | 1204 | 9.0
12 | 409
408 | 8.1
8.1 | 21.5
21.5 | | 6.1
5.9 | | 27 | 1206 | 15 | 408 | 8.1 | 21.5 | | 5.9 | | 27 | 1207 | 18 | 408 | 8.1 | 21.5 | | 5.8 | | 27
27 | 1208
1209 | 21
24 | 407
407 | 8.0
8.0 | 21.5
21.0 | | 5.7
5.7 | | 27 | 1210 | 27 | 408 | 8.0 | 21.0 | | 5.7 | | 27 | 1211 | 30 | 410 | 8.0 | 21.0 | | 5.7 | | 27
27 | 1212
1213 | 33
36 | 419
421 | 8.0
7.9 | 20.0
18.5 | | 5.8
5.9 | | 27 | 1214 | 38 | 422 | 7.8 | 18.5 | | 5.8 | | SEP | | | | | | | | | 29
29 | 1100
1101 | 0.0 | 451 | 8.2 | 18.5 | 1.2 | 7.6 | | 29 | 1101 | 3.0 | 451
451 | 8.2 | 18.5 | | 7.6 | | 29 | 1103 | 6.0 | 451 | 8.2 | 18.0 | | 7.7 | | 29 | 1104 | 9.0 | 453 | 8.2 | 18.0 | | 7.7 | | 29
29 | 1105
1106 | 12
15 | 453
453 | 8.2
8.2 | 18.0
18.0 | | 7.4
7.4 | | 29 | 1107 | 18 | 453 | 8.2 | 18.0 | | 7.4 | | 29 | 1108 | 21 | 452 | 8.2 | 18.0 | | 7.4 | | 29 | 1109 | 24 | 451 | 8.2 | 18.0 | | 7.2 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381559104465500 PUEBLO RESERVOIR SITE 5B--Continued | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | TUR-
BID-
ITY
(NTU) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | LAB
(MG/L
AS | |----------|------|----------------------------------|------------------------------|---|--|--|--------------------| | MAY 1991 | | | | | | | | | 13 | 1040 | 8.0 | 1.9 | 210 | 58 | 16 | 116 | | 13 | 1045 | 24 | 1.3 | 220 | 59 | 17 | 122 | | 13 | 1050 | 24 | 1.3 | 220 | 60 | 16 | 122 | | 13 | 1055 | 24 | 2.4 | 230 | 62 | 18 | 127 | | 13 | 1100 | 47 | 4.7 | 220 | 61 | 16 | 131 | | JUN | | | | | | | | | 24 | 1030 | 5.0 | 3.9 | 140 | 40 | 10 | 83 | | 24 | 1035 | 24 | 7.2 | 130 | 38 | 9.3 | 78 | | 24 | 1036 | 24 | 7.3 | 130 | 38 | 9.5 | 77 | | 24 | 1040 | 24 | 7.9 | 140 | 39 | 10 | 80 | | 24 | 1045 | 43 | 45 | 100 | 31 | 6.5 | 72 | | AUG | | | | | | | | | 05 | 1000 | 4.0 | 2.4 | 160 | 43 | 12 | 88 | | 05 | 1005 | 18 | 4.7 | 160 | 43 | 12 | 93 | | 05 | 1010 | 18 | 3.5 | 160 | 44 | 12 | 92 | | 05 | 1015 | 18 | 6.0 | 160 | 44 | 11 | 96 | | 05 | 1020 | 22 | 20 | 160 | 44 | 12 | 95 | | SEP | 1000 | 2.0 | | | | | | | 23 | 1000 | 3.0 | 6.8 | 200 | 5 6 | 14 | 113 | | 23 | 1010 | 14 | 9.7 | 200 | 57 | 14 | 112 | | 23 | 1020 | 18 | 9.6 | 200 | 57 | 14 | 118 | DATE | TIME | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-PHORUS ORTHO TOTAL (MG/L AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |----------|------|--|---|--|---|--|---|--|---|-------------------------------------|---| | MAY 1991 | | | | | | | | | | | | | 13 | 1040 | 0.003 | 0.003 | 0.027 | 0.013 | 0.030 | 0.027 | 0.038 | 0.024 | 0.020 | 0.017 | | 13 | 1045 | 0.004 | 0.003 | 0.084 | 0.079 | 0.061 | 0.055 | 0.026 | 0.021 | 0.014 | 0.012 | | 13 | 1050 | 0.004 | 0.003 | 0.088 | 0.076 | 0.064 | 0.057 | 0.031 | 0.021 | 0.017 | 0.014 | | 13 | 1055 | 0.013 | 0.006 | 0.089 | 0.079 | 0.077 | 0.062 | 0.008 | 0.007 | 0.001 | <0.001 | | 13 | 1100 | 0.004 | 0.003 | 0.134 | 0.128 | 0.096 | 0.089 | 0.033 | 0.022 | 0.019 | 0.016 | | JUN | | | | | | | | | | | | | 24 | 1030 | 0.005 | 0.004 | 0.050 | 0.047 | 0.047 | 0.043 | 0.030 | 0.022 | 0.014 | 0.012 | | 24 | 1035 | 0.005 | 0.003 | 0.055 | 0.041 | 0.039 | 0.033 | 0.028 | 0.017 | 0.015 | 0.004 | | 24 | 1036 | 0.006 | 0.004 | 0.066 | 0.048 | 0.033 | 0.030 |
0.040 | 0.022 | 0.012 | 0.008 | | 24 | 1040 | 0.010 | 0.004 | 0.058 | 0.060 | 0.030 | 0.025 | 0.025 | 0.004 | 0.012 | 0.001 | | 24 | 1045 | 0.005 | 0.002 | 0.100 | 0.080 | 0.072 | 0.056 | 0.050 | 0.022 | 0.042 | 0.014 | | AUG | | | | | | | | | | | | | 05 | 1000 | 0.008 | 0.008 | 0.022 | 0.016 | 0.020 | 0.014 | 0.051 | 0.024 | 0.019 | 0.004 | | 05 | 1005 | 0.007 | 0.007 | 0.046 | 0.043 | 0.032 | 0.019 | 0.038 | 0.015 | 0.013 | 0.004 | | 05 | 1010 | 0.008 | 0.007 | 0.056 | 0.046 | 0.044 | 0.025 | 0.041 | 0.020 | 0.019 | 0.004 | | 05 | 1015 | 0.011 | 0.009 | 0.041 | 0.041 | 0.008 | <0.002 | 0.008 | <0.001 | 0.002 | <0.001 | | 05 | 1020 | 0.007 | 0.007 | 0.074 | 0.060 | 0.021 | 0.020 | 0.044 | 0.016 | 0.030 | 0.006 | | SEP | | | | | | | | | | | | | 23 | 1000 | | | | | | | ~- | | | | | 23 | 1010 | | | ~- | | | | | | | | | 23 | 1020 | | | | | | | | | | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381559104465500 PUEBLO RESERVOIR SITE 5B--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | Dį | A TE | TIME | CADM
TOT
REC
ERA
(UG
AS | AL
OV-
BLE
/L | SOI
(UC | S-
VED | ERA
(UC | | COPP
DIS
SOL
(UG
AS | VED
/L | REC
ERA
(UC | ON,
TAL
COV-
ABLE
G/L
FE) | IROI
DI:
SOLI
(UG,
AS I | S-
VED
/L | LEA
TOT
REC
ERA
(UG
AS | AL
OV-
BLE
/L | LEAD
DIS
SOLV
(UG/
AS P | _
ED
L | |------------|-------------|--------------|--|------------------------|------------|-----------|------------|--------|---------------------------------|-----------|-------------------|--|-------------------------------------|-----------------|---------------------------------------|------------------------|-------------------------------------|--------------| | MAY | 1991 | | | | | | | | | | | | | | | | | | | 13. | | 1040 | | 1 | | 0.4 | | 3 | | 2 | | 70 | | 21 | | 3 | | 2 | | 13. | | 1045 | | <1 | | 0.3 | | ī | | 1 | | 70 | | 23 | | 2 | | 2 | | 13. | | 1050 | | 1 | | 0.5 | | 2 | | 1 | | 70 | | 14 | | 3 | | 2 | | 13. | ٠ | 1055 | | <1 | < | 0.1 | | 1 | | 1 | | 60 | | 10 | | 1 | | 1 | | 13. | | 1100 | | 1 | | 0.4 | | 3 | | 2 | | 130 | | 26 | | 3 | | 3 | | JUN | | | | _ | | | | | | | | | | _ | | _ | | _ | | 24. | | 1030 | | <1 | | 0.1 | | 2 | | 1 | | 100 | | <5 | | 2 | | 2 | | 24.
24. | | 1035 | | <1
<1 | _ | 0.1 | | 3 | | 1 2 | | 190 | | 11 | | 2
1 | | 2
1 | | 24. | | 1036
1040 | | <1 | | 0.1 | | 2
4 | | <1 | | 210
320 | | 10
15 | | 1 | | <1 | | 24. | | 1045 | | <1 | ` | 0.1 | | 6 | | <1 | | 790 | | 19 | | 3 | | 2 | | AUG | • • • | 1043 | | `1 | | 0,1 | | · | | -1 | | 730 | | 1, | | J | | 2 | | 05. | | 1000 | | <1 | | 0.2 | | 1 | | <1 | | 90 | | 10 | | 2 | | 1 | | 05. | | 1005 | | 1 | | 0.2 | | 2 | | <1 | | 180 | | <5 | | 3 | | 2 | | 05. | | 1010 | | 1 | | 0.2 | | 2 | | <1 | | 200 | | <5 | | 3 | | 2 | | 05. | | 1015 | | <1 | < | 0.1 | | 3 | | 1 | | 170 | | <3 | | | | <1 | | 05. | | 1020 | | 1 | | 0.3 | | 3 | | <1 | | 180 | | 6 | | 3 | | 2 | | SEP | | | | | | | | | | | | | | _ | | _ | | | | 23. | | 1000 | | 1 | | 0.8 | | 2 | | <1 | | 230 | | <5 | | 3 | | 2 | | 23. | | 1010 | | 1
<1 | | 0.3 | | 2
1 | | <1
<1 | | 270 | | <5
<5 | | 3 | | 3 | | 23. | • • • | 1020 | | \1 | | 0.3 | | 1 | | \1 | | 290 | | \ 3 | | 3 | | 3 | | | | | AANGA-
NESE, | MA | NGA- | NIC | KEL, | | | SILV | ÆR. | | | ZIN | IC. | | | | | | | | TOTAL | | SE, | | TAL | NICE | KEL. | TOT | | SILV | ER. | TOT | | ZIN | C, | | | | | 1 | RECOV- | | IS- | RE | cov- | DIS | | REC | OV- | | :s−` | REC | OV- | DI | | | | | | | RABLE | | LVED | | ABLE | | LVED | | BLE | | VED | | BLE | SOL | | | | | DATE | | (UG/L | | G/L | | G/L | | 3/L | | /L | | :/L | (UG | | (UG | | | | | | | AS MN) | AS | MN) | AS | NI) | AS | NI) | AS | AG) | AS | AG) | AS | ZN) | AS | ZN) | | | | MAY 19 | 91 | | | | | | | | | | | | | | | | | | | 13 | 71 | 36 | | 7 | | 8 | | 5 | | <1 | < | 0.5 | | <5 | | <5 | | | | 13 | | 26 | | 8 | | 6 | | 5 | | <1 | | 0.5 | | <5 | | <5 | | | | 13 | | 26 | | 7 | | 6 | | 5 | | <1 | < | 0.5 | | <5 | | <5 | | | | 13 | | 20 | | 4 | | 3 | | 2 | | <1 | | 2.0 | | <10 | | 3 | | | | 13 | | 77 | | 35 | | 7 | | 6 | | <1 | < | 0.5 | | <5 | | <5 | | | | JUN | | | | _ | | _ | | _ | | | | | | _ | | | | | | 24 | | 11 | | <5 | | 5 | | <2 | | <1 | | 0.5 | | <5 | | <5 | | | | 24 | | 25
23 | | <5 | | 4 | | <2 | | <1 | | 0.5 | | <5 | | <5 | | | | 24
24 | | <10 | | <5
2 | | 3
2 | | <2
2 | | <1
<1 | | 1.0 | | <5
<10 | | <5
3 | | | | 24 | | 120 | | 29 | | 3 | | <2 | | <1 | | 0.5 | | 20 | | <5 | | | | AUG | | 120 | | 2,7 | | , | | ~2 | | -,1 | ` | .0.5 | | 20 | | | | | | 05 | | 48 | | <5 | | 5 | | 5 | | <1 | < | 0.5 | | <5 | | <5 | | | | 05 | | 41 | | <5 | | 5 | | 4 | | 1 | | 0.6 | | <5 | | <5 | | | | 05 | | 42 | | <5 | | ٦ | | 5 | | 1 | | 0.5 | | <5 | | <5 | | | | 05 | | 40 | | 2 | | | | 1 | | <1 | < | 1.0 | | <10 | | 6 | | | | 05 | | 75 | | 11 | | 8 | | 5 | | 1 | | 0.6 | | <5 | | <5 | | | | SEP | | 4.0 | | ۰ | | 7 | | 6 | | -1 | | ·n 5 | | ~ 5 | | ~ 5 | | | | 2.4 | | Δ₽ | | | | ٠, | | 6 | | - | | 0 5 | | ~ 5 | | (5 | | 10 51 49 SEP 23... 23... 6 6 <1 <1 <1 <0.5 <0.5 <0.5 <5 <5 <5 <5 <5 <5 # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued # WATER-QUALITY RECORDS # 381559104465500 PUEBLO RESERVOIR SITE 5B--Continued # QUALITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 PHYTOPLANKTON [dashes indicate taxa not detected; sp., species are distinguishable but not identifiable; 1/2, species identification probable but not positive; var., identifies a variation in the species] | Date
Time
Depth | May 13, 1991
1040
8 ft | June 24, 1991
1030
5 ft | Aug. 20, 1991
1000
4 ft. | Sep. 23, 1991
1000
3 ft. | |--|------------------------------|-------------------------------|--------------------------------|--------------------------------| | Sampling method | Van-Dorn grab | Van-Dorn grab | Van-Dorn grab | Van-Dorn grab | | TAXA | Count (cells/ml) | Count (cells/ml) | Count (cells/ml) | Count (cells/ml | | | | | | | | CILLARIOPHYTA (Diatoms) Order Centrales | | | | | | Cyclotella | 170 | | | | | kuetzingiana
meneghiniana | 170 | | 1600 | 1000 | | Stephanodiscus | | | | | | astrea | |
 | | 1000
1000 | | astraea var. minitula
Unknown centric | | | 15 | | | Order Pennale | | | | | | Achnanthes
exigua | | | | 350 | | minutissima | 110 | 160 | | | | Asterionella | | 2222 | | 1000 | | formosa | 12000 | 9200 | | 1000 | | Cymbella
minuta | 110 | 160 | | | | Fragilaria | 01.00 | 2020 | | | | crotonensis
vaucheriae | 9100 | 2800
630 | | | | Gomphonema | | 030 | | | | parvulum | | 160 | | ~ | | Navicula | 110 | 160 | | 350 | | cryptocephala
Nitzschia | 110 | 100 | | | | acicularis | 110 | 1100 | 6600 | 350 | | palea | | | 290 | 1000 | | Nitschla
dissipata | | 320 | | | | Surirella | | | | | | minuta | 110 | | | | | Synedra
delicatissima | | | 720 | | | Unknown pennate | | | 570 | | | IT OD ODLINGS (Company of the co | | | | | | HLOROPHYTA (Green algae) Ankistrodesmus | | | | | | falcatus | 340 | | | | | Chlamydomonas | | 1600 | 20000 | 6300 | | sp.
Chlorella | | 1600 | 20000 | | | ellipsoidea | | 8200 | 1600 | 9400 | | Chlorococcum
humicola | | 1600 | 6500 | 3100 | | Oocystis | | 1000 | | | | borgei | | | 3300 | | | Pandorium | *** | | 6500 | | | morum | | _ | 0300 | | | RYSOPHYTA | | | 5500 | | | Unknown flagellate | | | 6500 | | | RYPTOPHYTA (Cryptomonads) | | | | | | Aphanocapsa | | | | | | delicatissima | | 290000 | | | | Cryptomonas
erosa | 170 | | 1600 | | | Rhodomonas | 170 | | | | | minuta | 500 | | 1600 | | | Synechococcus | | 20000 | | | | sp. | | 20000 | | | | ANOPHYTA (Blue-green algae) | | | | | | Aphanocapsa
delicatissima | 24000 | | 370000 | 420000 | | elachista | 24000 | | 11000 | | | Chroococcus | | | 2200 | | | sp. | | | 3300 | | | Synechococcus sp. | 1500 | | 4900 | | | Sp. | 1300 | | | | | JGLENOPHYTA (Euglenoids) | | | | | | Englena | 170 | 1600 | 3300 | | | sp. | 170 | 1000 | 2300 | | | RRHOPHYTA (Dinoflagellates) | | | | | | Glenodinium | 170 | | | | | sp.
Peridinium | 170 | | | | | | | | 6500 | | | wisconsineuse | | | 6300 | | | | 49000 | 340000 | 460000 | 480000 | ## 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued ## WATER-QUALITY RECORDS #### 381548104453300 PUEBLO RESERVOIR SITE 6C LOCATION.--Lat 38°15'48", long 104°45'33", in NE¹/4SE¹/4, sec. 34, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.2 mi downstream from Rock Creek, 1.2 mi downstream from Peck Creek, and 2.0 mi upstream from Pueblo Dam. PERIOD OF RECORD .-- June 1988 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | | WATER-QUAL | ITY DATA, | WATER YE | AR OCTOB | ER 1990 1 | O SEPTEM | BER 1991 | |-----------|--------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | | MAY 199 | | | | | | | | | 14
14 | 1300
1301 | 3.0 |
541 |
8.4 | 16.0 | 2.8
 |
9.5 | | 14 | 1301 | 6.0 | 543 | 8.5 | 15.5 | | 9.4 | | 14 | 1303 | 9.0 | 544 | 8.4 | 15.0 | | 9.4 | | 14
14 | 1304
1305 | 12
15 | 544
544 | 8.4
8.5 | 15.0
14.0 | | 9.6
9.7 | | 14 | 1306 | 18 | 545 | 8.4 | 13.5 | | 9.2 | | 14 | 1307 | 21 | 546 |
8.4 | 13.5 | | 9.2 | | 14
14 | 1308
1309 | 24
27 | 546
547 | 8.4
8.4 | 13.0
13.0 | | 9.1
9.0 | | 14 | 1310 | 30 | 547 | 8.4 | 12.5 | | 8.8 | | 14 | 1311 | 33 | 547 | 8.3 | 12.5 | | 8.6 | | 14
14 | 1312
1313 | 36
39 | 547
547 | 8.4
8.4 | 12.0
11.0 | | 8.4
8.3 | | 14 | 1314 | 42 | 547 | 8.4 | 11.0 | | 8.3 | | 14
14 | 1315
1316 | 45
48 | 547
547 | 8.3
8.4 | 10.5
10.5 | | 8.1
8.1 | | 14 | 1317 | 51 | 547 | 8.3 | 10.5 | | 8.0 | | 14 | 1318 | 54 | 546 | 8.3 | 10.0 | | 8.0
8.0 | | 14
14 | 1319
1320 | 57
60 | 546
546 | 8.3
8.3 | 10.0
10.0 | | 7.8 | | 14 | 1321 | 63 | 546 | 8.3 | 10.0 | | 7.7 | | 14
14 | 1322
1323 | 66
69 | 546
546 | 8.3
8.3 | 9.5
9.5 | | 7.7
7.6 | | 14 | 1324 | 72 | 546 | 8.3 | 9.5 | | 7.5 | | 14
14 | 1325
1326 | 75
77 | 546
547 | 8.3
8.3 | 9.5
9.5 | | 7.2
7.1 | | JUN | 1320 | • • • | 347 | 0.3 | 9.3 | | /.1 | | 26 | 1315 | | | | | 2.3 | | | 26
26 | 1316
1317 | 0.0
3.0 | 388
391 | 8.4
8.4 | 21.0
21.0 | | 7.8
7.8 | | 26 | 1318 | 6.0 | 389 | 8.4 | 21.0 | | 7.8 | | 26
26 | 1319
1320 | 9.0
12 | 389
388 | 8.4
8.4 | 21.0
21.0 | | 7.6
7.6 | | 26 | 1321 | 15 | 388 | 8.3 | 20.5 | | 7.2 | | 26 | 1322 | 18 | 388 | 8.3 | 20.5 | | 7.0 | | 26
26 | 1323
1324 | 21
24 | 389
390 | 8.3
8.3 | 20.5
20.5 | | 6.8
6.9 | | 26 | 1325 | 27 | 382 | 8.2 | 20.0 | | 6.8 | | 26
26 | 1326
1327 | 30
33 | 370
373 | 8.2
8.2 | 20.0
20.0 | | 6.6
6.6 | | 26 | 1328 | 36 | 371 | 8.2 | 20.0 | | 6.5 | | 26
26 | 1329
1330 | 39
42 | 369
348 | 8.0
7.9 | 19.0
19.0 | | 5.8
5.7 | | 26 | 1331 | 45 | 346 | 7.9 | 18.5 | | 5.6 | | 26 | 1332 | 48 | 314 | 7.9 | 18.0 | | 5.3 | | 26
26 | 1333
1334 | 51
54 | 309
309 | 7.8
7.8 | 18.0
18.0 | | 5.2
5.1 | | 26 | 1335 | 57 | 312 | 7.8 | 17.5 | | 5.0 | | 26
26 | 1336
1337 | 60
63 | 321
324 | 7.8
7.8 | 17.5
17.0 | | 5.0
4.9 | | 26 | 1338 | 66 | 329 | 7.7 | 17.0 | | 4.7 | | 26 | 1339 | 69 | 350 | 7.7 | 17.0 | | 4.4 | | 26
AUG | 1340 | 72 | 354 | 7.7 | 16.5 | | 4.1 | | 05 | 1310 | | | | | 1.8 | | | 05
05 | 1311
1312 | 0.0
3.0 | 396
396 | 8.6
8.7 | 24.5
24.0 | | 7.9
8.1 | | 05 | 1313 | 6.0 | 396 | 8.7 | 23.0 | | 8.3 | | 05 | 1314 | 9.0 | 397 | 8.6 | 23.0 | | 7.3 | | 05
05 | 1315
1316 | 12
15 | 399
399 | 8.5
8.5 | 22.5
22.5 | | 6.7
6.7 | | 05 | 1317 | 18 | 401 | 8.5 | 22.5 | | 6.5 | | 05 | 1318
1319 | 21 | 405
414 | 8.3
8 1 | 22.5
22.5 | | 6.0
5.0 | | 05
05 | 1319 | 24
27 | 411 | 8.1
7.9 | 22.5 | | 3.5 | | 05 | 1322 | 33 | 412 | 7.7 | 22.0 | | 2.7 | | 05
05 | 1323
1324 | 36
39 | 421
421 | 7.7
7.7 | 22.0
21.5 | | 2.4
2.0 | | 05 | 1325 | 42 | 424 | 7.6 | 21.5 | | 2.1 | | 05
05 | 1326 | 45 | 428 | 7.6
7.8 | 21.5 | | 2.5
4.3 | | 05 | 1327
1328 | 48
51 | 442
442 | 7.8
7.8 | 21.0
21.0 | | 4.3 | | 05 | 1329 | 54 | 442 | 7.B | 20.5 | | 3.0 | | 05 | 1330 | 55 | 444 | 7.7 | 20.5 | | 3.4 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued # WATER-QUALITY RECORDS # 381548104453300 PUEBLO RESERVOIR SITE 6C--Continued | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |------|----------------------------------|--|---|--|---|-------------------------------------| | | | | | | | | | 1345 | | | | | 1.0 | | | 1346 | 0.0 | | | | | 6.8 | | | | | | | | 7.0 | | | 6.0 | | | 19.0 | | 6.4 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.2 | | | | | | | | 6.3 | | | | | | | | 6.4 | | | | | | | | 6.4 | | | | | | | | 6.4 | | | | | | | | 6.3 | | | | | | | | 6.2 | | | | | | | | 6.1 | | 1403 | 51 | 550 | 8.1 | 18.5 | | 5.0 | | | 1345 | TIME DEPTH (FEET) 1345 1346 0.0 1347 3.0 1348 6.0 1351 15 1352 18 1353 21 1354 24 1355 27 1356 30 1357 33 1358 36 1359 39 1400 42 1401 45 1402 48 | TIME PLING DUCT-ANCE (FEET) (US/CM) 1345 1346 0.0 541 1347 3.0 539 1348 6.0 540 1349 9.0 541 1351 15 541 1351 15 541 1352 18 542 1353 21 543 1354 24 543 1355 27 543 1356 30 544 1357 33 544 1358 36 544 1359 39 544 1400 42 549 1401 45 550 1402 48 546 | SPE- WATER WHOLE CIFIC | SPE | SPE- | WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |--|--|--|---|---|--|---|--| | JUN 1992 04 04 04 04 04 04 04 04 04 04 04 04 04 | 1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238 | 0.0
6.0
12
18
24
30
36
42
48
54
60
66
72
78 | 454
449
448
456
460
475
473
463
452
440
424
402
421
435 | 8.5
8.5
8.3
8.3
8.2
8.1
8.1
8.1
8.7
7.8 | 17.5
17.0
16.5
16.5
16.0
15.5
15.5
15.5
15.5
15.0
14.0
13.5 |

 | 8.5
8.5
7.5
7.2
6.6
6.3
6.3
6.3
6.3
6.3
6.3 | | AUG 04 04 04 04 04 04 04 04 04 04 27 | 1405
1406
1407
1408
1410
1411
1412
1413
1414
1415
1205
1206
1207
1208
1209
1211
1211
1212
1213
1214
1215
1216
1217 | 0.0
6.0
12
18
24
30
36
42
48
54
60
64

0.0
6.0
12
12
12
43
30
36
42
48
54
60
60
63 | 380
380
381
384
384
390
393
393
395
396
408
408
407
407
407
407
407
407
408
413
421
420
420 | 8.55
8.42
8.20
7.66
7.55
7.54
8.10
8.00
7.7
8.11
8.00
7.7
7.8 | 23.0
23.0
22.5
22.5
22.5
21.5
21.5
21.0
21.0
21.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 1.2 | 7.5
7.5
7.5
7.5
7.5
7.7
5.7
4.4
3.3
2.3
1.9
1.4
5.6
5.5
5.5
4.4
4.9
4.9
4.7
8 | |
29
29
29
29
29
29
29
29
29
29 | 1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441 | 0.0
6.0
12
18
24
30
36
42
48.
54 | 438
437
440
440
441
442
446
447
456
473
487 | 8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0 | 20.0
19.0
18.5
18.5
18.5
18.0
18.0
17.5 | 1.2 | 7.2
7.5
6.4
6.2
6.2
6.3
6.4
6.1
5.6 | ## 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued ## WATER-QUALITY RECORDS # 381602104435200 PUEBLO RESERVOIR SITE 7B LOCATION.—Lat $38^{\circ}16^{\circ}02^{\circ}$, long $104^{\circ}43^{\circ}52^{\circ}$, in $SW^{1}/4NE^{1}/4$, sec. 36, T. 20 S., R. 66 W., Pueblo County, Hydrologic Unit 11020002, at approximate center of transect, approximately 0.3 mi downstream from Boggs Creek, and 0.4 mi upstream from Pueblo Dam. PERIOD OF RECORD.--June 1988 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 | | WATER-QUAL | ITY DATA, | WATER Y | EAR OCTOB | BER 1990 | TO SEPTEM | IBER 1991 | |-----------|--------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | | MAY 199 | | | | | | | | | 14 | 1110 | | | . | | 3.3 | | | 14
14 | 1111
1112 | 3.0
6.0 | 545
546 | 8.4
8.4 | 15.0
15.0 | | 9.0
8.9 | | 14 | 1113 | 9.0 | 546 | 8.5 | 15.0 | | 8.9 | | 14 | 1114 | 12 | 547 | 8.5 | 14.5 | | 8.9 | | 14 | 1115 | 15 | 547 | 8.4 | 14.5 | | 8.9 | | 14 | 1116 | 18 | 546 | 8.4 | 14.0 | | 8.8 | | 14
14 | 1117
1118 | 21
2 4 | 546
546 | 8.4
8.4 | 13.5
13.5 | | 8.8
8.7 | | 14 | 1119 | 27 | 545 | 8.4 | 13.5 | | 8.8 | | 14 | 1120 | 30 | 546 | 8.4 | 13.0 | | 8.5 | | 14 | 1121 | 33 | 547 | 8.4 | 12.0 | | 8.4 | | 14 | 1122
1123 | 36 | 553
551 | 8.4 | 12.0 | | 8.3
8.2 | | 14
14 | 1123 | 39
42 | 551
545 | 8.4
8.5 | 11.5
11.0 | | 8.3 | | 14 | 1125 | 45 | 545 | 8.4 | 10.5 | | 8.2 | | 14 | 1126 | 48 | 544 | 8.5 | 10.5 | | 8.0 | | 14 | 1127 | 51 | 544 | 8.5 | 10.5 | | 8.1 | | 14
14 | 1128
1129 | 5 4
57 | 544
544 | 8.4
8.5 | 10.5
10.0 | | 8.0
8.0 | | 14 | 1130 | 60 | 544 | 8.4 | 10.0 | | 8.0 | | 14 | 1131 | 63 | 545 | 8.4 | 10.0 | | 7.9 | | 14 | 1132 | 66 | 545 | 8.4 | 10.0 | | 7.8 | | 14
14 | 1133
1134 | 69
72 | 545
544 | 8.4
8.4 | 10.0
9.5 | | 7.8
7.8 | | 14 | 1135 | 75 | 544 | 8.4 | 9.5 | | 7.7 | | 14 | 1136 | 78 | 544 | 8.4 | 9.5 | | 7.7 | | 14 | 1137 | 81 | 544 | 8.4 | 9.5 | | 7.6 | | 14
14 | 1138
1139 | 84
87 | 544
544 | 8.3
8.3 | 9.5
9.5 | | 7.5
7.5 | | 14 | 1140 | 90 | 544 | 8.3 | 9.5 | | 7.5 | | 14 | 1141 | 93 | 544 | 8.3 | 9.5 | | 7.3 | | 14 | 1142 | 96 | 544 | 8.2 | 9.5 | | 6.8 | | 14
JUN | 1143 | 97 | 550 | 8.2 | 9.5 | | 6.1 | | 25 | 1000 | | | | | 2.9 | | | 25 | 1001 | 0.0 | 358 | 8.4 | 22.5 | | 7.6 | | 25 | 1002 | 3.0 | 351 | 8.5 | 21.5 | | 7.7
7.8 | | 25
25 | 1003
1004 | 6.0
9.0 | 366
370 | 8.5
8.5 | 21.5
21.5 | | 7.8 | | 25 | 1005 | 12 | 376 | 8.5 | 21.0 | | 7.9 | | 25 | 1006 | 15 | 384 | 8.5 | 20.0 | | 7.8 | | 25
25 | 1007
1008 | 18 | 388 | 8.4 | 20.5 | | 7.6
7.2 | | 25 | 1009 | 21
24 | 387
389 | 8.4
8.3 | 20.0
20.0 | | 6.9 | | 25 | 1010 | 27 | 391 | 8.3 | 20.0 | | 6.8 | | 25 | 1011 | 30 | 392 | 8.3 | 19.5 | | 6.5 | | 25
25 | 1012
1013 | 33
36 | 390 | 8.2
8.1 | 19.5
18.5 | | 6.3
6.3 | | 25 | 1013 | 39 | 399
388 | 8.1 | 19.0 | | 6.6 | | 25 | 1015 | 42 | 366 | 8.0 | 18.5 | | 6.1 | | 25 | 1016 | 45 | 354 | 8.0 | 18.5 | | 5.9 | | 25 | 1017 | 48 | 336 | 8.0 | 18.0 | | 5.8 | | 25
25 | 1018
1019 | 51
54 | 338
329 | 7.9
7.9 | 17.0
17.0 | | 5.9
6.2 | | 25 | 1020 | 57 | 307 | 7.9 | 17.0 | | 6.9 | | 25 | 1021 | 60 | 304 | 7.8 | 17.5
17.0 | | 5.6 | | 25
25 | 1022 | 63
66 | 301 | 7.8 | 17.0 | | 5.4
5.4 | | 25 | 1023
1024 | 66
69 | 299
325 | 7.8
7.8 | 17.0
16.5 | | 5.3 | | 25 | 1025 | 72 | 332 | 7.8 | 16.5 | | 5.1 | | 25 | 1026 | 75 | 374 | 7.7 | 16.5 | | 4.5 | | 25 | 1027 | 78
81 | 402 | 7.8
7.7 | 16.0 | | 5.7 | | 25
25 | 1028
1029 | 81
84 | 423
475 | 7.7 | 15.5
14.5 | | 4.0
2.7 | | 25 | 1030 | 87 | 502 | 7.7 | 14.0 | | 2.2 | | 25 | 1031 | 90 | 512 | 7.6 | 13.0 | | 1.4 | | 25
25 | 1032
1033 | 93
94 | 518
563 | 7.5
7.5 | 13.0
13.0 | | 0.8
0 | | 23 | 1033 | 77 | 202 | 1.5 | 13.0 | | J | 197 # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |-----------|--------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | AUG 1991 | | | | | | | | | 06 | 1125 | | 404 | | | 1.4 | | | 06
06 | 1126
1127 | 0.0
3.0 | 404
405 | 8.5
8.5 | 24.5
23.0 | | 7.0
6.6 | | 06 | 1128 | 6.0 | 406 | 8.5 | 22.5 | | 5.9 | | 06 | 1129 | 9.0 | 409 | 8.3 | 22.5 | | 5.3 | | 06 | 1130 | 12 | 408 | 8.2 | 22.5 | | 5.5 | | 06 | 1131 | 15 | 408 | 8.2 | 22.5 | | 5.6 | | 06
06 | 1132
1133 | 18
21 | 408
408 | 8.2
8.2 | 22.5 | | 5.6 | | 06 | 1134 | 24 | 408 | 8.2 | 22.5
22.0 | | 5.7
5.5 | | 06 | 1135 | 27 | 409 | 8.1 | 22.0 | | 5.1 | | 06 | 1136 | 30 | 409 | 8.0 | 22.0 | | 5.5 | | 06 | 1137 | 33 | 409 | 8.0 | 22.0 | | 4.7 | | 06
06 | 1138
1139 | 36
39 | 409
409 | 7.9
7.9 | 22.0 | | 4.5 | | 06 | 1140 | 42 | 410 | 7.9 | 22.0
22.0 | | 4.5
4.5 | | 06 | 1141 | 45 | 411 | 7.9 | 22.0 | | 4.4 | | 06 | 1142 | 48 | 413 | 7.9 | 22.0 | ~- | 4.3 | | 06 | 1143 | 51 | 418 | 7.7 | 21.5 | | 2.9 | | 06
06 | 1144
1145 | 5 4
57 | 423
422 | 7.6
7.6 | 21.0
20.5 | | 1.8
1.2 | | 06 | 1146 | 60 | 423 | 7.6 | 20.5 | | 0.9 | | 06 | 1147 | 63 | 423 | 7.6 | 20.0 | | 0.8 | | 06 | 1148 | 66 | 428 | 7.6 | 19.5 | | 0.3 | | 06 | 1149 | 69 | 425 | 7.6 | 19.5 | | 0 | | 06 | 1150 | 72
74 | 422 | 7.6 | 19.0 | | 0 | | 06
SEP | 1151 | 74 | 422 | 7.6 | 18.5 | | 0 | | 24 | 1030 | | | | | 0.8 | | | 24 | 1031 | 0.0 | 542 | 8.2 | 19.0 | | 5.9 | | 24 | 1032 | 3.0 | 542 | 8.2 | 18.5 | | 6.0 | | 24 | 1033 | 6.0 | 542 | 8.2 | 18.5 | | 5.9 | | 24
24 | 1034
1035 | 9.0
12 | 542
542 | 8.1
8.0 | 18.5
18.5 | | 5.8
5.8 | | 24 | 1036 | 15 | 542 | 8.0 | 18.5 | | 5.7 | | 24 | 1037 | 18 | 542 | 8.0 | 18.5 | | 5.7 | | 24 | 1038 | 21 | 542 | 8.0 | 18.5 | | 5.7 | | 24
24 | 1039
1040 | 24
27 | 542
542 | 8.0 | 18.5 | | 5.7
5.7 | | 24 | 1040 | 30 | 542
542 | 8.0
8.0 | 18.5
18.5 | | 5.7 | | 24 | 1042 | 33 | 542 | 8.0 | 18.5 | | 5.7 | | 24 | 1043 | 36 | 542 | 8.0 | 18.5 | | 5.7 | | 24 | 1044 | 39 | 542 | 8.0 | 18.5 | | 5.7 | | 24 | 1045 | 42 | 541 | 8.0 | 18.5 | | 5.7 | | 24
24 | 1046
1047 | 45
48 | 541
541 | 8.0
8.0 | 18.5
18.5 | | 5.7
5.7 | | 24 | 1048 | 51 | 541 | 8.0 | 18.5 | | 5.8 | | 24 | 1049 | 54 | 541 | 8.0 | 18.5 | | 5.8 | | 24 | 1050 | 57 | 541 | 8.0 | 18.5 | | 5.7 | | 24 | 1051 | 60 | 541 | 8.0 | 18.0 | | 5.8 | | 24
24 | 1052
1053 | 63
66 | 541
541 | 8.0 | 18.0
18.0 | | 5.8
5.7 | | 24 | 1053 | 69 | 541
541 | 8.0
8.0 | 18.0 | | 5.7
5.6 | | 24 | 1055 | 72 | 542 | 8.0 | 18.0 | | 5.5 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |----------|--------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | JUN 1992 | | | | | | | | | 04 | 1315 | | | | | 2.1 | | | 04 | 1316 | 0.0 | 477 | 8.4 | 17.5 | | 8.4 | | 04 | 1317 | 3.0 | 477 | 8.4 | 17.5 | | 8.0 | | 04 | 1318 | 6.0 | 477 | 8.4 | 17.0 | | 8.0 | | 04 | 1319 | 9.0 | 477 | 8.4 | 17.0 | | 7.9 | | 04 | 1320 | 12 | 476 | 8.4 | 16.5 | | 7.8 | | 04 | 1321 | 15 | 474 | 8.3 | 16.5 | | 7.6 | | 04 | 1322 | 18 | 472 | 8.3 | 16.5 | | 7.5 | | 04 | 1323 | 21 | 473 | 8.3 | 16.0 | | 7.1 | | 04 | 1324 | 24 | 474 | 8.3 | 16.0 | | 7.2 | | 04 | 1325 | 27 | 475 | 8.3 | 16.0 | | 7.2 | | 04 | 1326 | 30 | 476 | 8.3 | 16.0 | | 7.2 | | 04 | 1327 | 33 | 476 | 8.3 | 16.0 | | 7.2 | | 04 | 1328
1329 | 36
39 | 475
472 | 8.3
8.3 | 16.0
16.0 | | 7.2
7.1 | | 04 | 1330 | 42 | 472 | 8.2 | 16.0 | | 7.1 | | 04 | 1331 | 45 | 470 | 8.2 | 16.0 | | 7.0 | | 04 | 1331 | 48 | 469 | 8.2 | 16.0 | | 7.0 | | 04 | 1332 | 51 | 464 | 8.2 | 16.0 | | 6.8 | | 04 | 1334 | 54 | 465 | 8.2 | 16.0 | | 6.8 | | 04 | 1335 | 57 | 467 | 8.2 | 16.0 | | 6.6 | | 04 | 1336 | 60 | 463 | 8.1 | 15.0 | | 6.1 | | 04 | 1337 | 63 | 455 | 8.0 | 15.0 | | 5.9 | | 04 | 1338 | 66 | 453 | 8.0 | 14.5 | | 5.5 | | 04 | 1339 | 69 | 452 | 7.9 | 14.0 | | 5.2 | | 04 | 1340 | 72
 470 | 7.9 | 14.0 | | 4.9 | | 04 | 1341 | 75 | 488 | 7.9 | 14.0 | | 4.6 | | 04 | 1342 | 78 | 508 | 7.9 | 13.5 | | 4.3 | | 04 | 1343 | 81 | 520 | 7.9 | 12.5 | | 4.0 | | 04 | 1344 | 84 | 524 | 8.0 | 11.5 | | 3.9 | | 04 | 1345 | 87 | 526 | 8.0 | 11.0 | | 3.9 | | 04 | 1346 | 90 | 526 | 8.0 | 10.5 | | 3.4 | | 04 | 1347 | 93 | 529 | 8.0 | 10.0 | | 2.8 | 199 # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS # 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |----------|----------------------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | AUG 1992 | | | | | | | | | 04 | 1345 | | 375 | | 22.0 | 2.7 | 7.1 | | 04 | 1346
1347 | 0.0
3.0 | 3/5 | 8.5
8.5 | 23.0
22.5 | | 7.1 | | 04 | 1348 | 6.0 | 380 | 8.5 | 22.5 | | 7.2 | | 04 | 1349 | 9.0 | 380 | 8.4 | 22.0 | | 6.9 | | 04 | 1350 | 12 | 381 | 8.4 | 22.0 | | 6.7 | | 04 | 1351
1352 | 15
18 | 382
381 | 8.3
8.3 | 22.0
22.0 | | 6.5
6.4 | | 04 | 1353 | 21 | 381 | 8.3 | 22.0 | | 6.2 | | 04 | 1354 | 24 | 381 | 8.3 | 22.0 | | 6.2 | | 04 | 1355 | 27 | 380 | 8.3 | 22.0 | | 6.4
6.0 | | 04
04 | 1356
1357 | 30
33 | 382
383 | 8.2
8.1 | 22.0
22.0 | | 5.6 | | 04 | 1358 | 36 | 384 | 8.0 | 21.5 | | 5.2 | | 04 | 1359 | 39 | 384 | 8.0 | 21.5 | | 4.9 | | 04 | 1400
1401 | 42
45 | 386
385 | 7.9
7.9 | 21.5
21.5 | | 4.7
4.6 | | 04
04 | 1401 | 48 | 385 | 7.9 | 21.5 | | 4.6 | | 04 | 1403 | 51 | 389 | 7.6 | 21.5 | | 3.4 | | 04 | 1404 | 54 | 391 | 7.5 | 21.0 | | 2.8 | | 04
04 | 1405
1406 | 57
60 | 392
393 | 7.5
7.5 | 21.0
21.0 | | 2.6
2.4 | | 04 | 1407 | 63 | 394 | 7.4 | 20.5 | | 2.0 | | 04 | 1408 | 66 | 394 | 7.4 | 20.5 | | 1 9 | | 04 | 1409 | 69
72 | 391
392 | 7.4 | 20.0 | | 1.5 | | 04
04 | 1410
1411 | 72
75 | 392
393 | 7.4
7.4 | 20.0
20.0 | | 1.2 | | 04 | 1412 | 78 | 396 | 7.4 | 19.0 | | 0.4 | | 04 | 1413 | 81 | 398 | 7.4 | 18.5 | | 0.1 | | 04 | 1414
1415 | 84
88 | 401
401 | 7.5
7.5 | 18.0
18.0 | | 0 | | 27 | 1255 | | | | | 1.2 | | | 27
27 | 1256 | 0.0 | 408 | 8.1 | 22.0 | | 5.4 | | 27 | 1257 | 3.0 | 407 | 8.1 | 22.0 | | 5.4 | | 27
27 | 1258
1259 | 6.0
9.0 | 408
409 | 8.0
7.9 | 21.5
21.5 | | 5.3
4.9 | | 27 | 1300 | 12 | 410 | 7.9 | 21.0 | | 4.6 | | 27 | 1301 | 15 | 410 | 7.8 | 21.0 | | 4.6 | | 27
27 | 1302
1303 | 18
21 | 412
412 | 7.8
7.8 | 21.0
21.0 | | 4.6
4.6 | | 27 | 1303 | 24 | 412 | 7.8 | 21.0 | | 4.5 | | 27 | 1305 | 27 | 412 | 7.8 | 21.0 | | 4.3 | | 27 | 1306 | 30 | 414 | 7.7 | 21.0 | | 4.0 | | 27 | 1307
1308 | 33
36 | 415
418 | 7.7
7.6 | $\frac{21.0}{21.0}$ | | 4.0
3.7 | | 27 | 1309 | 39 | 419 | 7.6 | 21.0 | | 3.7 | | 27 | 1310 | 42 | 420 | 7.6 | 21.0 | | 3.5 | | 27
27 | 1311
1312 | 45
48 | 422
423 | 7.6
7.6 | 21.0
21.0 | | 3.5
3.4 | | 27 | 1312 | 51 | 428 | 7.6 | 21.0 | | 3.1 | | 27 | 1314 | 54 | 431 | 7.4 | 20.5 | | 2.2 | | 27 | 1315 | 57 | 435 | 7.4 | 20.5 | | | | 27
27 | 131 6
1317 | 60
63 | 441
444 | 7.4
7.5 | 20.5
20.0 | | | | 27 | 1317 | 66 | 444 | 7.4 | 20.0 | | | | 27 | 1319 | 69 | 450 | 7.5 | 19.5 | | | | 27 | 1320 | 72 | 440 | 7.6 | 19.5 | | | | 27
27 | 1321
1322 | 75
78 | 438
446 | 7.6
7.6 | 19.5
19.0 | | | | 27 | 1323 | 81 | 449 | 7.6 | 18.5 | | | | 27 | 1324 | 84 | 450 | 7.7 | 18.0 | | | | 27 | 1325 | 87 | 452 | 7.5 | 18.5 | | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | 29 1234 9.0 438 7.9 18.0 5.9
29 1235 12 438 7.9 18.0 5.9 | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(M) | OXYGEN,
DIS-
SOLVED
(MG/L) | |---|----------|------|----------------------------------|---|---|--------------------------------------|---|-------------------------------------| | 29 1231 0.0 436 7.9 19.0 6.1 29 1232 3.0 436 7.9 19.0 6.1 29 1233 6.0 434 7.9 18.5 5.9 29 1234 9.0 438 7.9 18.0 5.9 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.9 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 | SEP 1992 | | | | | | | | | 29 1231 0.0 436 7.9 19.0 6.1 29 1232 3.0 436 7.9 19.0 6.1 29 1233 6.0 434 7.9 18.5 5.9 29 1234 9.0 438 7.9 18.0 5.9 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.9 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 | 29 | 1230 | | | | | 0.9 | | | 29 1232 3.0 436 7.9 19.0 5.9 29 1234 9.0 438 7.9 18.0 5.9 29 1235 12 438 7.9 18.0 5.9 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.9 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1245 42 439 7.9 18 | | | 0.0 | 436 | 7.9 | 19.0 | | 6.1 | | 29 1234 9.0 438 7.9 18.0 5.9 29 1235 12 438 7.9 18.0 5.9 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.8 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1245 42 439 7.9 18. | | 1232 | 3.0 | | 7.9 | | | 6.1 | | 29 1235 12 438 7.9 18.0 5.9 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.9 29 1238 21 439 7.9 18.0 5.8 29 1239 24 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 | 29 | 1233 | 6.0 | 434 | 7.9 | 18.5 | | 5.9 | | 29 1236 15 438 7.9 18.0 5.9 29 1237 18 439 7.9 18.0 5.9 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.8 29 1248 51 438 7.9 18.0 | 29 | 1234 | 9.0 | 438 | 7.9 | 18.0 | | 5.9 | | 29 1237 18 439 7.9 18.0 5.8 29 1238 21 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.0 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.8 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 5.9 29 1249 54 439 7.9 18.0 6.0 29 1250 <td>29</td> <td>1235</td> <td>12</td> <td>438</td> <td>7.9</td> <td>18.0</td> <td></td> <td>5.9</td> | 29 | 1235 | 12 | 438 | 7.9 | 18.0 | | 5.9 | | 29 1238 21 439 7.9 18.0 5.8 29 1239 24 439 7.9 18.0 5.9 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.5 5.8 29 1246 45 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.8 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 5.9 29 1249 54 439 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 | | | 15 | 438 | 7.9 | 18.0 | | 5.9 | | 29 1239 24 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.5 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.0 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.1 29 1254 <td>29</td> <td></td> <td></td> <td>439</td> <td></td> <td></td> <td></td> <td></td> | 29 | | | 439 | | | | | | 29 1240 27 439 7.9 18.0 5.8 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439 7.9 18.5 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 5.9 29 1249 54 439 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.0 29 1252 63 438 7.9 18.0 6.1 29 1253 66< | | | | | | | | | | 29 1241 30 440 7.9 18.0 5.8 29 1242 33 439 7.9 18.0 5.8 29 1243 36 439 7.9 18.5 5.8 29 1244 39 439 7.9 18.5 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 5.9 29 1249 54 439 7.9 18.0 6.0 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 5.9 29 1252 63 438 7.9 18.0 5.9 29 1253 66 441 7.9 18.0 6.0 29 1254 69< | | | | | | | | | | 29 1242 33 439 7.9 18.0 | | | | | | | | | | 29 1243 36 439 7.9 18.0 5.8 29 1244 39 439
7.9 18.5 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 5.9 29 1249 54 439 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 5.9 29 1251 60 440 7.9 18.0 6.0 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1253 66 441 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.5 29 1255 75 465 7.8 18.0 5.2 29 1256 75< | | | | | | | | | | 29 1244 39 439 7.9 18.5 5.8 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 6.0 29 1249 54 439 7.9 18.0 6.0 29 1250 57 438 7.9 18.0 6.9 29 1251 60 440 7.9 18.0 6.9 29 1252 63 438 7.9 18.0 6.0 29 1253 66 441 7.9 18.0 6.0 29 1253 66 441 7.9 18.0 6.0 29 1255 72 456 7.8 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 5.2 29 1257 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 29 1245 42 439 7.9 18.0 5.8 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 6.0 29 1249 54 439 7.9 18.0 6.0 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 5.9 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> | | | | | | | | | | 29 1246 45 438 7.9 18.0 5.9 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 6.0 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.1 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.5 29 1255 75 465 7.8 18.0 5.2 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1247 48 438 7.9 18.0 5.9 29 1248 51 438 7.9 18.0 6.0 29 1249 54 439 7.9 18.0 6.0 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.1 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1248 51 438 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.1 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1249 54 439 7.9 18.0 5.9 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.7 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1250 57 438 7.9 18.0 6.0 29 1251 60 440 7.9 18.0 5.9 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1251 60 440 7.9 18.0 5.9 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1252 63 438 7.9 18.0 6.1 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.7 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1253 66 441 7.9 18.0 6.0 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.6 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1254 69 445 7.9 18.0 5.5 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.7 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1255 72 456 7.8 18.0 5.2 29 1256 75 465 7.8 18.0 4.7 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1256 75 465 7.8 18.0 4.7 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | 29 | | | | | | | | | 29 1257 78 483 7.8 18.0 4.6 29 1258 81 482 7.8 18.0 4.6 29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1258 81 482 7.8 18.0 4.6
29 1259 84 482 7.8 18.0 4.6 | | | | | | | | | | 29 1259 84 482 7.8 18.0 4.6 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued # WATER-QUALITY RECORDS 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | TUR-
BID-
ITY
(NTU) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | | | |-----------------------------------|--------------------------------------|--|---|--|---|--|---|--|---|--|---| | | 1
1
1 | Y 1991
4
4 | 1030
1040
1050 | 12
36
95 | 1.2
1.2
2.7 | 210
220
210 | 59
60
56 | 16
16
16 | 123
126
124 | | | | | 2 | 5
5 | 0940
0945
0950 | 9.0
69
90 | 1.3
20
20 | 150
130
200 | 43
38
55 | 11
9.2
15 | 91
78
114 | | | | | 0 | 6
6 | 1000
1010
1020 | 5.0
51
73 | 3.0
14
41 | 160
160
170 | 46
45
48 | 12
12
12 | 91
92
98 | | | | | 2
2
2
2 | 4
4
4
4 | 0935
0940
0945
0950
1000 | 3.0
3.0
3.0
36
68 | 11
11
6.7
11
45 | 200
200
230
200
200 | 58
56
63
55
56 | 14
14
17
14 | 119
116
120
113 | | | | DATE | TIME | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMMONIA | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED | PHOS-PHORUS ORTHOTOTAL (MG/LAS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | MAY 1991
14
14
14
JUN | 1030
1040
1050 | 0.005
0.004
0.004 | 0.004
0.004
0.004 | 0.044
0.087
0.085 | 0.036
0.078
0.082 | 0.059
0.067
0.115 | 0.050
0.065
0.113 | 0.029
0.023
0.032 | 0.021 | 0.014
0.014
0.016 | 0.012
0.012
0.014 | | 25
25
25
AUG | 0940
0945
0950 | 0.005
0.032
0.035 | 0.004
0.027
0.003 | 0.071
0.147
0.360 | 0.068
0.121
0.297 | 0.038
0.064
0.031 | 0.032
0.053
0.022 | 0.033
0.049
0.066 | 0.028 | 0.011
0.026
0.054 | 0.009
0.015
0.023 | | 06
06
SEP | 1000
1010
1020 | 0.009
0.003
0.003 | 0.007
0.002
0.002 | 0.108
0.261
0.325 | 0.105
0.243
0.273 | 0.026
0.037
0.049 | 0.014
0.018
0.027 | 0.029
0.031
0.058 | 0.013
0.020
0.053 | 0.012
0.018
0.021 | 0.006
0.004
0.015 | | 24
24
24
24 | 0935
0940
0945
0950
1000 | 0.002 | 0.002
 | 0.261
 | 0.254 |
0.038
 | 0.032 | 0.027 | 0.006 | 0.012 | 0.002 | | | DATE | TIME | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVE!
(UG/L
AS FE | (UG/L | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | | | | MAY 1991
14
14
14
JUN | 1030
1040
1050 | <1
<1
<1 | 0.3
0.4
0.4 | 3
2
4 | 2
2
2 | 70 | 3:
2:
1 | 0 3 | 2
3
3 | | | | 25
25
25
AUG | 0940
0945
0950 | <1
<1
<1 | 0.1
0.1
0.1 | 1
1
1 | <1
1
1 | 290 | 2
1 | | 2
2
2 | | | | 06
06
06
SEP | 1000
1010
1020 | 1
2
<1 | 0.2
0.3
0.3 | 1
2
2 | <1
<1
<1 | 330 | <br </td <td>5 3</td> <td>2
2
3</td> <td></td> | 5 3 | 2
2
3 | | | | 24
24
24
24 | 0935
0940
0945
0950
1000 | 1
1
<1
<1
1 | 0.3
0.3
0.1
0.3
0.4 | 2
1
2
1
3 | <1
<1
<1
<1
<1 | 230
220
230 | <br </td <td>5 3
3 1
5 4</td> <td>2
3
<1
3
3</td> <td></td> | 5 3
3 1
5 4 | 2
3
<1
3
3 | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued WATER-QUALITY RECORDS 381602104435200 PUEBLO RESERVOIR SITE 7B--Continued | DATE | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN, | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | |----------|---|--|---|--|---
--|---|--| | MAY 1991 | | | | | | | | | | 14 | 9 | 8
7 | 7 | 6 | <1 | <0.5 | <5 | <5 | | 14 | 14 | 7 | 9
6 | 6
5
6 | <1 | <0.5 | <5 | <5 | | 14 | 130 | 77 | 6 | 6 | <1 | <0.5 | <5 | <5 | | JUN | | | | | | | | | | 25 | <5 | <5 | 3
3 | 2 | <1 | <0.5 | <5 | <5 | | 25 | 45 | <5 | 3 | <2
3 | <1 | <0.5 | 9 | <5 | | 25 | 390 | 300 | 4 | 3 | <1 | <0.5 | 9 | <5 | | AUG | | | | | | | | | | 06 | 23 | <5 | 5 | 5 | 1 | 0.5 | <5 | <5 | | 06 | 49 | 17 | 7 | 5
5
5 | 1 | <0.5 | <5 | <5 | | 06 | 270 | 200 | 8 | 5 | <1 | <0.5 | <5 | <5 | | SEP | | | | | | | | | | 24 | 95 | 66 | 6 | 5 | <1 | <0.5 | <5 | <5 | | 24 | 93 | 66 | 6
6
2 | 5
6
1 | <1 | <0.5 | <5 | <5 | | 24 | 70 | 44 | 2 | 1 | <1 | <1.0 | <10 | <3 | | 24 | 87 | 55 | 7 | 6
6 | <1 | <0.5 | <5 | <5 | | 24 | 150 | 110 | 8 | 6 | <1 | <0.5 | <5 | <5 | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued ## WATER-QUALITY RECORDS ## 381602104435200 PUEBLO RESERVOIR SITE 7C--Continued # QUALITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 PHYTOPLANKTON [dashes indicate taxa not detected; sp., species are distinguishable but not identifiable; 1/2, species identification probable but not positive; var., identifies a variation in the species] | Date
Time | May 14 | , 1991 | June 25 | 1991 | Aug. (| 5, 1991 | Sep. 24 | , 1991 | |--|-----------|-----------------------------|--|--------------|---|---------|----------------------------------|--------| | Depth | 103 | ft. | 9 ft | ,
: • | 5 1 | īt. | 3 f | t. | | Sampling method | Van-Dor | n grab | Van-Dorn | grab | Van-Doi | n grab | Sep. 24
094
3 f
Van-Dor | n grab | | | Count (ce | lls/ml) | Count (ce) | ls/ml) | Count (ce | lls/ml) | Count (cel | ls/ml) | | TAXA | A | В | A | В | A | В | Α | В | | BACILLARIOPHITA (DISTORS) | | | | | | | | | | Order Centrales | | | | | | | | _ | | cyclotella
meneghiniana | | | 330 | | 1600 | | | | | Cyclotella
meneghiniana
Stephanodiscus
astrea
astrea var. minutula | | | 330 | 3 | 1600

50 | 52 | | 6 | | astrea | | | | | | | 2600 | | | astrea var. minutula | | | | | 50 | | | | | Order Pennales | | | | | | | | | | Acnanthes | | | | | | 3 | | | | minutissima | 80 | 2500

620 | 90 | | 50 | | | | | Amphora | | | | | 50 | | | | | perpusilla
Asterionella | 5200 | 2500 | 23 | 790 | | 32 | | 40 | | formosa | 5200 | 2300 | 2600 | 790 | 320 | | | _ | | Cymbella | | | | 6 | | | | - | | minuta | 42 | | | | | | | | | minuta var. silesiaca | | 620

 | 23 | | | | | | | Fragillaria | | 620 | | 120 | | 86 | | _ | | crotonensis | 3300 | | 110 | | 3800 | | | | | vaucheriae | | | 23 | | | | | 11 | | Frustulia
Gomphonema | | | | | | | | | | parvulum | | | 23 | | 50 | | | _ | | Melosira | | | | 49 | | | | | | Navicula | | 6

3
 | | 9 | | 55 | | _ | | cyptocephala | | | | | 50 | | | | | Nitzschia | | 3 | | | | 55 | | 20 | | acicularis | | | | | 5200 | | | | | palea | | | | | 100 | | | -6 | | Pinnularia | | | <u></u> | | | | | | | Staurastrum
Synedra | | | | | | 1000 | | 51. | | delicatissima | | | | | 1400 | | | _ | | Tabellaria | | | | | | | | | | fenestrata | | | | | 50

50

320

3800

50

50
100

1400
320 | | | | | CHLOROPHYTA (Green algae) | | | | | | | | | | Actinastrum | | | | | | 17 | | | | Ankistrodesmus | | 9
9 | | 69 | | 34 | | _ | | Chlamydomonas | | | 650

330 | 69
26
 | 1.000 | | | | | sp. | | 23 | 650 | 34 | 1600 | | | 11 | | Chlorella | | 23
 | 330 | 34 | 8200 | | | | | ellipsoidea
Chlorococcum | | 9 | 330 | 20 | 5200 | 29 | | 40 | | humicola | 400 | | 330 | | 8200 | == | 2600 | | | Chlorogonium | | | | 46 | | | | | | Cosmarium | | | | 6 | | | | | | Cylinderocystis | | | | 9 | | | | 11 | | Haematococcus | | | | | | 80 | | | | Kirchneriella | | | | 12 | | | | 11 | | Mesotaenium | | | 330

330

 | 30
T \ | 8200

8200

 | 2 to | | 29 | | Oocystis
Oophilia | | | | 47 | | 12 | | | | Pandorina | | | | 34 | | 230 | | 46 | | Phacus | | | | | | - 6 | ~- | | | Scenedesmus | | | | | | 92 | | 11 | | bi juga | | | | | 3300 | | | | | Schroderia | | 17 | | | | | | | | Sphaerocystis | | | | 23 | | 160 | | | | Tetraedron | | | | 20 | | 40 | | _ | | Ulothrix | | | | | | 40 | | | | CHRYSOPHYTA | | 22 | | 400 | | | ~- | | | Dinobryon | | 20
 | 1600 | 400 | | | | | | divergens
Unknown flagellate | | | 2600 | | 4900 | | 5200 | | | - | | | | | | | | | | CRYPTOPHYTA (Cryptomonads) Chrytomonas | | | | | | | ~- | | | erosa | | | | | | | 2600 | | | Chroomonas | | | | | | | | | | erosa | 270 | | | | | | | | | Rhodomonas | | | | | 2200 | | | | | minuta | 400 | | | | 3300 | | | | | | | | | | | | | | # 07099350 PUEBLO RESERVOIR NEAR PUEBLO, CO--Continued #### WATER-QUALITY RECORDS #### 381602104435200 PUEBLO RESERVOIR SITE 7C--Continued ## QUALITATIVE ANALYSES OF BIOLOGICAL DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 # PHYTOPLANKTON--Continued [dashes indicate taxa not detected; sp., species are distinguishable but not identifiable; $^{1}/_{2}$, species identification probable but not positive; var., identifies a variation in the species] | Date
Time
Depth
Sampling method | 103 | ft. | June 25
094
9 f
Van-Dor | io
Et. | 10
5 | 6, 1991
000
ft.
orn grab | Sep. 24, 1991
0940
3 ft.
Van-Dorn grab | | | |--|----------|----------|----------------------------------|-----------|----------|-----------------------------------|---|----------|--| | | Count (c | ells/ml) | Count (ce | ells/ml) | Count (c | cells/ml) | Count (ce | ells/ml) | | | TAXA | A | В | A | В | A | В | A | В | | | CYANOPHYTA (Blue-green algae) | | | | | | | | | | | Aphanocapsa | | 5600 | | | | | | | | | delicatissima | 15000 | | 47000 | | 290000 | | 390000 | | | | Chroococcus | | 1900 | | 1000 | | 11000 | | 3400 | | | Dactylococopsis | | 17 | | 23 | | | | 9 | | | Gleocapsa | | 550 | | | | | | | | | Gleothece | | | | 17 | | 7000 | | 20 | | | Ostcillatoria | | 92 | | | | , | | | | | Polycystis | | 4800 | | 4900 | | 1800 | | 3100 | | | Synechococcus | | | | 23 | | | | 46 | | | sp. | 950 | | 4900 | | 9800 | | 10000 | | | | DINOPHYCEAE | | | | | | | | | | | Ceratium | | | | | | 14 | | | | | Glenodinium | | | | | | | | 20 | | | Peridinium | | | | | | 86 | | | | | EUGLENOPHYTA (Euglenoids) | | | | | | | | | | | Ceratium | | | | | | 11 | | | | | Codonella | | | | | | 6 | | | | | Euglena | | | | | | | | | | | sp. | 270 | | 650 | | | | 2600 | | | | Trachelomonas | | | | | | 160 | | 17 | | | PYRRHOPHYTA | | | | | | | | | | | Peridinium | | | | | | | | | | | wisconsinense | | | | | 1600 | | | | | | ROTIFERA | | | | | | | | | | | Keratella | | | | 3 | | | | | | | Polyarthra | | | | | | 9 | | | | | TOTAL CELLS/ml | 26000 | 16000 | 61000 | 7700 | 340000 | 22000 | 420000 | 6900 | | | NUMBER OF SPECIES | 10 | | 16 | | 21 | | 7 | | | Any use of firm names is for descriptive purposes only and does not contstitute endorsement by the U.S. Geological Survey. A - Phytoplankton identified to the species level by Chadwick and Associates Laboratory. B - Phytoplankton identified to the genus level by City of Colorado Springs Water Treatment Laboratory. #### 07099400 ARKANSAS RIVER ABOVE PUEBLO, CO LOCATION (REVISED).--Lat 38°16'18", long 104°43'03", in sE¹/4NE¹/4 sec.36, T.20 s., R.66 W., Pueblo County, Hydrologic Unit 11020002, on left bank 200 ft downstream from NE corner of Arkansas River bridge, 0.4 mi downstream from Pueblo Dam, and 7 mi west of Pueblo. DRAINAGE AREA. -- 4,670 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Streamflow records, October 1965 to current year. Water-quality data available, October 1965 to September 1970, Dec. 1985 to current year. Sediment data available October 1965 to September 1970. Statistical summary computed for 1975 to current year. GAGE.--Water-stage recorder. Elevation of gage is 4,740 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 23, 1967, at site 730 ft upstream at datum 1.23 ft, higher. May 24, 1974 to Feb. 24, 1975, at site 1,500 ft downstream, at different datum. Since Feb. 25, 1975, at or within 50 ft of present location at present datum. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, diversions upstream from station for irrigation of about 88,000 acres and return flow from irrigated areas. Flow completely regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | Surv | ey. | | | | | | | | | | | | |---------------|--------------------------|-------------|-------------|---------------------|-------------|--------------|------------------|--------------------|---------------|--|--------------|------------------| | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTE | 1BER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 241 | 323 | 129 | 140 | 254 | 174 | 497 | 718 | 1140 | 1330 | 869 | 738 | | 2 | 223 | 352 | 131 | 140 | 254 | 187 | 474 | 717 | 1170 | 1300 | 993 | 816 | | 3
4 | 206 | 352 | 131 | 140 | 254 | 277 | 480 | 701 | 1250 | 1260 | 1080 | 792 | | 5 | 202
202 | 411
451 | 129
129 | 140
142 | 254
256 | 278
277 | 491
491 | 782
834 | 1240
1190 | 1100
1130 | 1070
1020 |
689
640 | | 6 | 254 | 508 | 130 | | 256 | 275 | 449 | 895 | 1050 | 1110 | 939 | 640 | | 7 | 282 | 509 | 131 | 142
141 | 256 | 273 | 402 | 992 | 1020 | 968 | 900 | 709 | | 8 | 251 | 468 | 131 | 173 | 256 | 274 | 370 | 1030 | 1090 | 928 | 789 | 1040 | | 9 | 276 | 443 | 133 | 194 | 257 | 292 | 360 | 1010 | 1240 | 1290 | 647 | 977 | | 10 | 299 | 444 | 131 | 194 | 258 | 318 | 338 | 864 | 1310 | 1570 | 744 | 894 | | 11 | 281 | 444 | 132 | 195 | 259 | 318 | 326 | 954 | 1280 | 1630 | 844 | 840 | | 12
13 | 250
251 | 382
315 | 133
133 | 196
196 | 257
258 | 316
315 | 328
353 | 807
6 55 | 1300
1400 | 1600
1570 | 905
842 | 822
751 | | 14 | 250 | 219 | 132 | 196 | 257 | 314 | 406 | 635 | 1500 | 1460 | 724 | 408 | | 15 | 277 | 124 | 133 | 196 | 258 | 260 | 468 | 635 | 1570 | 1210 | 680 | 576 | | 16 | 304 | 124 | 133 | 196 | 258 | 260 | 560 | 663 | 1690 | 1070 | 656 | 844 | | 17 | 311 | 125 | 133 | 196 | 257 | 278 | 675 | 668 | 1750 | 1030 | 666 | 841 | | 18
19 | 281
263 | 126
127 | 133
134 | 196
196 | 258
259 | 297
334 | 685
690 | 778
974 | 1660
1460 | 679
676 | 1240
777 | 820
784 | | 20 | 228 | 127 | 135 | 197 | 258 | 367 | 750 | 1110 | 1270 | 679 | 772 | 784 | | 21 | 195 | 127 | 135 | 198 | 226 | 377 | 781 | 1320 | 1200 | 680 | 705 | 607 | | 22 | 187 | 127 | 135 | 198 | 205 | 376 | 762 | 1500 | 1200 | 635 | 643 | 366 | | 23 | 185 | 127 | 135 | 199 | 209 | 408 | 724 | 1630 | 1350 | 572 | 775 | 375 | | 24
25 | 187
203 | 127
128 | 135
136 | 199
201 | 209
210 | 421
410 | 677
656 | 1660
1630 | 1500
1580 | 580
718 | 855
1550 | 358
338 | | | | | | | | | | | | | | | | 26
27 | 213
213 | 128
129 | 137
137 | 201
201 | 210
210 | 411
394 | 655
636 | 1550
1450 | 1640
1690 | 792
861 | 1730
1200 | 329
329 | | 28 | 202 | 129 | 137 | 202 | 194 | 385 | 611 | 1360 | 1690 | 952 | 948 | 318 | | 29 | 194 | 129 | 137 | 202 | 174 | 385 | 676 | 1320 | 1650 | 969 | 724 | 296 | | 30
31 | 208
245 | 129 | 139
140 | 234
255 | | 408
453 | 719
 | 1200
1130 | 1500 | 946
898 | 589
610 | 220 | | | | | | | | | | | | | | | | TOTAL
MEAN | 7364
238 | 7654
255 | 4139
134 | 57 96
187 | 6981
241 | 10113
326 | 16490
550 | 32172
1038 | 41580
1386 | 32193
1038 | 27486
887 | 18941
631 | | MAX | 311 | 509 | 140 | 255 | 259 | 453 | 781 | 1660 | 1750 | 1630 | 1730 | 1040 | | MIN | 185 | 124 | 129 | 140 | 174 | 174 | 326 | 635 | 1020 | 572 | 589 | 220 | | AC-FT | 14610 | 15180 | 8210 | 11500 | 13850 | 20060 | 32710 | 63810 | 82470 | 63850 | 54520 | 37570 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX | 375
1103 | 249
505 | 153
553 | 189 | 235
837 | 297 | 548 | 1112 | 2306 | 1651 | 1038 | 463 | | (WY) | 1985 | 1985 | 1987 | 558
1985 | 1985 | 718
1985 | 1389
1985 | 2564
1984 | 4219
1980 | 3204
1983 | 2716
1984 | 1040
1982 | | MIN | 121 | 77.0 | 58.8 | 55.6 | 55.9 | 81.1 | 125 | 374 | 645 | 428 | 200 | 118 | | (WY) | 1979 | 1979 | 1980 | 1980 | 1979 | 1978 | 1978 | 1978 | 1977 | 1977 | 1977 | 1977 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WA | TER YEAR | | WATER Y | EARS 1975 | - 1992 | | ANNUAL | | | | 209910 | | | 210909 | | | 2 | | | | ANNUAL | | | | 575 | | | 576 | | | a ₇₂₀ | | | | | ANNUAL M
ANNUAL ME | | | | | | | | | 1227
_ 265 | | 1984
1977 | | | DAILY ME | | | 2780 | Jun 14 | | 1750 | Jun 17 | | b5640 | Jul | 8 1983 | | | DAILY MEA | | | 80 | Apr 25 | | ^C 124 | Nov 15 | | b ₅₆₄₀ | | 10 1980 | | | SEVEN-DAY | | | 94 | Apr 20 | | 126 | Nov 15 | | 49 | | 10 1980 | | | TANEOUS PE
TANEOUS PE | | | | | | 3230
5.41 | Aug 18
Aug 18 | | e ₁₀₁₀₀
f _{9.4} | Aug | 1 1966
1 1966 | | | RUNOFF (A | | | 416400 | | | 418300 | Aug 18 | | 521300 | 0 Aug | 1 1300 | | 10 PERC | CENT EXCER | EDS | | 1560 | | | 1280 | | | 1820 | | | | | CENT EXCE | | | 299 | | | 389 | | | 382 | | | | 90 PERC | CENT EXCE | EDS | | 129 | | | 135 | | | 87 | | | a-Average discharge for 8 years (water years 1966-73), 643 ft³/s; 465900 acre-ft/yr, prior to completion of Pueblo Dam. b-Also the maximum daily discharge for period of record. c-Also occurred Nov 16. d-Minimum daily discharge for period of record, 28 ft³/s, May 11, 1967. e-Present site and datum, from rating curve extended above 1600 ft³/s, on basis of slope-area measurement of peak flow. f-From floodmarks. #### 07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD .-- December 1985 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: December 1985 to current year. WATER TEMPERATURE: December 1985 to current year. INSTRUMENTATION .-- Water-quality monitor. REMARKS.--Records for daily specific conductance and water temperature are excellent. Daily data not published is either missing or of unacceptable quality. Daily maximum and minimum specific conductance and daily mean water temperature data are available in the district office. Specific conductance data may not be representative of the river at the site during periods of transient hydrologic conditions caused by abrupt flow changes from Pueblo Reservoir. EXTREMES FOR PERIOD OF RECORD.-SPECIFIC CONDUCTANCE: Maximum, 814 microsiemens, Nov. 14, 1990; minimum, 223 microsiemens, July 13, 1986. WATER TEMPERATURE: Maximum, 22.1°C, Aug. 30, 1989, Aug. 31 and Sept. 17, 1991; minimum, 1.4°C, Feb. 7, 8, 1989, and Jan. 22, 1992. MEAN --- --- EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 686 microsiemens, Oct. 22; minimum, 390 microsiemens, July 17. WATER TEMPERATURE: Maximum, 21.6°C, Aug. 18; minimum, 1.4°C, Jan. 22. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES DAY OCT NOV JUN DEC JAN FEB MAR APR MAY JUL AUG SEP ---628 559 485 445 ------------------------650 553 415 ___ ------650 556 555 470 419 557 657 615 575 **8** 57**7** 559 552 42R 07099400 ARKANSAS RIVER ABOVE PUEBLO, CO--Continued MAX MIN MAX MIN MAX MIN DAY MAX MIN TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MAX MIN MAX MIN | | OCT | OBER | МОЛ | 'EMBER | DEC | EMBER | TAN | IUARY | ppp | RUARY | MA | DCH | |---|--|---|---|--|--|--|---|--|--|--|--|--| | | | | | | | | | | | | | | | 1
2 | | | 11.2
10.2 | 10.1
9.6 | 6.0
 | 5.2 | 3.8
3.8 | 3.0
2.6 | 2.7 | 2.1
2.2 | 4.7
5.0 | 3.6
4.1 | | 3 | | | 10.0 | 9.4 | | | 3.2 | 2.4 | 2.6 | 2.3 | 5.0 | 4.0 | | 4
5 | | | 9.7
9.4 | 8.9
8.6 | | | 3.4
3.0 | 2.5
2.2 | 2.9
2.9 | 2.3
2.2 | 4.3
4.8 | 3.9 | | | | | 9.4 | | | | 3.0 | 2.2 | 2.9 | 2.2 | 4.0 | 4.1 | | 6
7 | | | 8.9 | 8.0 | | | 3.4 | 2.5 | 2.9 | 2.2 | 5.4 | 4.2 | | 8 | | | 8.7
8.6 | 8.0
8.1 | | | 3.0
2.9 | 2.5
2.4 | 2.8
2.9 | 2.2
2.2 | 5.5
5.5 | 4.8
4.7 | | 9 | | | 8.8 | 8.1 | | | 3.0 | 2.4 | 3.1 | 2.3 | 5.6 | 4.9 | | 10 | | | 8.5 | 8.1 | | | 3.1 | 2.2 | 3.0 | 2.3 | 5.6 | 4.9 | | 11 | 16.6 | 15.8 | 8.4 | 8.1 | 4.0 | | 3.0 | 2.4 | 3.1 | 2.4 | 5.7 | 4.8 | | 12 | 16.5 | 15.7 | 8.7 | 8.1 | 4.0
4.3
4.3 | 3.5 | 2.8 | 2.3 | 3.2 | 2.7 | 5.5 | 4.8 | | 13
14 | 16.5
16.4 | 15.7
15.7 | 8.6
8.6 | 8.0
8.0 | 4.3 | 3.5
3.3 | 2.7
2.8 | 2.2
2.1 | 3.1
3.5 | 2.6
2.6 | 5.7
6.0 | 4.8
5.0 | | 15 | 16.3 | 15.5 | 8.2 | 7.9 | 3.9 | 3.2 | 2.6 | 2.0 | 3.4 | 2.7 | 6.2 | 5.3 | | 16 | 16.2 | 15.5 | 7.9 | 7.6 | 4.1 | | 2 6 | 1.9 | 3.2 | 2.9 | 6.1 | 5.2 | | 17 | 16.2 | 15.2 | | 7.6 | 4.1
3.5
3.6 | 3.2 | 2.6
2.2
2.5 | 2.0 | 3.5 | 2.8 | 6.0 | 5.0 | | 18 | 15.8 | 15.2 | 8.1 | 7.3 | 3.6 | 3.2 | 2.5 | 2.0 | 3.5 | 2.7 | 5.7 | 5.0 | |
19
20 | 15.7
15.4 | 15.0
14.3 | 7.9
7.9 | 7.2
7.0 | 4.0
3.8 | 3.5
3.3 | 2.6
2.4 | 1.9
1.9 | 3.4
3.6 | 2.6
2.7 | 5.7
6.2 | 5.1
5.1 | | | | | | | | | | 1.5 | 3.0 | | | | | 21
22 | 15.3
15.4 | 14.6
14.5 | 8.0
7.7 | 7.1
6.8 | 4.1 | 3.5
3.6 | 2.6 | 1.9
1.4 | 3.8
3.7 | 3.1
2.9 | 6.2
5.9 | 5.2 | | 23 | 15.7 | 14.0 | 7.3 | 6.4 | 4.1
3.9
3.8 | 3.2 | 2.2 | 1.6 | 3.7 | 3.1 | 6.5 | 5.2
5.4 | | 24 | 15.1 | 14.0 | 7.0 | 6.3 | 3.7
3.4 | 2.9 | 2.6 | 1.8 | 3.8 | 3.1 | 7.0 | 5.6 | | 25 | 14.7 | 14.0 | 7.1 | 6.4 | 3.4 | 2.8 | 2.6 | 1.9 | 3.8 | 3.1 | 6.5 | 5.8 | | 26 | | 13.7 | 7.2 | 6.3 | 3.5 | 2.8 | 2.7 | 2.0 | 3.8 | 3.0 | 6.6 | 5.9 | | 27
28 | 14.3 | 13.6
12.8 | 7.2
7.1
6.7 | 6.3
6.2 | 3.5
3.6
3.6
3.8 | 2.9
3.0 | 2.7 | 1.9 | 4.2 | 3.4 | 6.6 | 6.0
6.1 | | 29 | 13.6
13.1 | 12.4 | 6.5 | 5.8 | 3.8 | 2.9 | 2.8
2.7 | 1.9
2.0 | 4.6
4.7 | 3.7 | 6.6
7.0 | 6.2 | | 30 | 12.5 | 11.7 | 6.1 | 5.6 | 3.6 | 2.9 | 2.7 | 2.0 | | 3.0
3.4
3.4
3.7 | 6.9 | 5.9 | | 31 | 12.0 | 11.1 | | | 3.6 | 3.0 | 2.8 | 2.1 | | | 6.8 | 6.3 | | MONTH | | | 11.2 | 5 .6 | | | 3.8 | 1.4 | 4.7 | 2.1 | 7.0 | 3.6 | DAY | MAX | MIN | MAX | MIN | XAM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | | DAY | | MIN
RIL | MAX
M | | | MIN
UNE | MAX
J | | | MIN
GUST | MAX
SEPT | | | | AP | RIL | м | ΥΑ | J | UNE | J | ULY | UA | GUST | SEPT | EMBER | | DAY
1
2 | AP | RIL | | | | | | | | GUST | | | | 1
2
3 | 7.1
7.1
7.1 | 6.2
6.3
6.3 | 8.8
9.3
9.2 | 7.8
8.1
8.4 | J
14.0
14.4
14.2 | 13.4
13.6
13.6 | 17.9
18.2
18.1 | 17.1
17.3
17.6 | AU
20.6
20.8
20.8 | GUST
19.9
19.9
20.2 | SEPT
20.2
20.3
20.1 | 19.4
19.5
19.4 | | 1
2
3
4 | 7.1
7.1
7.1
7.1
7.0 | 6.2
6.3
6.3
6.3 | 8.8
9.3
9.2
9.2 | 7.8
8.1
8.4
8.5 | J
14.0
14.4
14.2
14.4 | 13.4
13.6
13.6
13.8 | 17.9
18.2
18.1
17.9 | 17.1
17.3
17.6
17.6 | AU
20.6
20.8
20.8
21.0 | 19.9
19.9
20.2
20.4 | SEPT
20.2
20.3
20.1
19.9 | 19.4
19.5
19.4
19.4 | | 1
2
3
4
5 | 7.1
7.1
7.1
7.0
6.9 | 6.2
6.3
6.3
6.3
6.5 | 8.8
9.3
9.2
9.2
9.4 | 7.8
8.1
8.4
8.5
8.7 | 14.0
14.4
14.2
14.4
14.7 | 13.4
13.6
13.6
13.8
14.0 | J
17.9
18.2
18.1
17.9
18.2 | 17.1
17.3
17.6
17.6
17.4 | AU
20.6
20.8
20.8
21.0
20.9 | 19.9
19.9
20.2
20.4
20.3 | SEPT
20.2
20.3
20.1
19.9
20.2 | 19.4
19.5
19.4
19.4
19.4 | | 1
2
3
4
5 | 7.1
7.1
7.1
7.0
6.9 | 6.2
6.3
6.3
6.3
6.5 | 8.8
9.3
9.2
9.2
9.4 | 7.8
8.1
8.4
8.5
8.7 | J
14.0
14.4
14.2
14.4
14.7 | 13.4
13.6
13.6
13.8
14.0 | J
17.9
18.2
18.1
17.9
18.2 | 17.1
17.3
17.6
17.6
17.4 | AU
20.6
20.8
20.8
21.0
20.9 | 19.9
19.9
20.2
20.4
20.3 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 | 19.4
19.5
19.4
19.4
19.4 | | 1
2
3
4
5 | 7.1
7.1
7.1
7.0
6.9 | 6.2
6.3
6.3
6.3
6.5 | 8.8
9.3
9.2
9.2
9.4 | 7.8
8.1
8.4
8.5
8.7 | J
14.0
14.4
14.2
14.4
14.7 | 13.4
13.6
13.6
13.8
14.0 | J
17.9
18.2
18.1
17.9
18.2 | 17.1
17.3
17.6
17.6
17.4 | 20.6
20.8
20.8
21.0
20.9
20.9 | 19.9
19.9
20.2
20.4
20.3 | SEPT
20.2
20.3
20.1
19.9
20.2 | 19.4
19.5
19.4
19.4
19.4
19.4 | | 1
2
3
4
5
6
7
8 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.9 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.5
18.5
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0 | 20.6
20.8
20.8
21.0
20.9
21.0
21.1
21.1 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 | 19.4
19.5
19.4
19.4
19.4
19.4
19.3
19.3
19.3 | | 1
2
3
4
5
6
7
8 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.8 | 8.8
9.3
9.2
9.4
10.4
9.5
10.2 | 7.8
8.1
8.4
8.5
8.7
9.2 | 14.0
14.4
14.2
14.4
14.7
14.7 | 13.4
13.6
13.6
13.8
14.0 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.5
18.5
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8 | 20.6
20.8
20.8
21.0
20.9
20.9
21.0
21.1 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 | 19.4
19.5
19.4
19.4
19.4
19.4
19.3
19.3 | | 1
2
3
4
5
6
7
8
9
10 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.8 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
15.0
15.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0
18.2 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 | 19.4
19.5
19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5
7.4 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
15.0
15.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0
18.2 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.3
20.4 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 | 19.4
19.5
19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.8 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.9
15.0
15.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0
18.2 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3 | 20.2
20.3
20.1
19.9
20.2
20.1
19.9
19.9
19.9
19.8 | 19.4
19.5
19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5
7.5
7.4 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.6 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1 | J
14.0
14.2
14.4
14.7
14.7
14.7
15.0
15.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0
18.2 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.3
20.4 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.9 19.8 19.8 20.0 | 19.4
19.5
19.4
19.4
19.4
19.3
19.3
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 7.1
7.1
7.1
7.0
6.9
7.2
7.5
7.5
7.5
7.4
7.5
7.5
7.4 | 6.2
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.9
7.0 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.5
10.6
10.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.2
9.3 | J
14.0
14.2
14.4
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.4
15.7 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
14.8
15.0
14.9 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
18.9
19.2
19.3
19.4 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2 |
19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.5
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 20.0 19.9 19.8 | 19.4
19.5
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP 7.1 7.1 7.0 6.9 7.2 7.4 7.5 7.4 7.5 7.4 7.8 7.8 7.8 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
6.8
6.9 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.1
9.8
10.5
10.5
10.6
10.8
10.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
17.6
17.6 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
18.9
19.2
19.3
19.4
19.4 | ULY 17.1 17.3 17.6 17.6 17.4 17.7 17.6 17.8 18.0 18.2 18.3 18.4 18.6 18.7 18.6 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2 | 19.9
19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.6
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 19.8 20.0 19.9 19.8 20.3 | 19.4
19.5
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP 7.1 7.1 7.0 6.9 7.2 7.4 7.5 7.4 7.5 7.4 7.5 7.6 7.8 7.6 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.8
6.9
6.8
6.9
7.0
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.4
17.7 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
19.9
19.2
19.3
19.4
19.4 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.3 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.5
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 20.0 19.9 19.8 20.3 | 19.4
19.5
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | AP 7.1 7.1 7.0 6.9 7.2 7.4 7.5 7.4 7.5 7.4 7.8 7.8 7.8 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
6.8
6.9 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.1
9.8
10.5
10.5
10.6
10.8
10.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7 | J
14.0
14.4
14.2
14.4
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
17.6
17.6 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.0
14.1
14.6 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
18.9
19.2
19.3
19.4
19.4 | ULY 17.1 17.3 17.6 17.6 17.4 17.7 17.6 17.8 18.0 18.2 18.3 18.4 18.6 18.7 18.6 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2 | 19.9
19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.6
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 19.8 20.0 19.9 19.8 20.3 | 19.4
19.5
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 7.1
7.1
7.1
7.0
6.9
7.2
7.5
7.5
7.4
7.5
7.4
7.5
7.8
7.8
7.8 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
6.8
6.9
7.0
7.2
7.3
7.2 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
10.8
10.9
11.7
11.9 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.7
17.8
17.7 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3 | 17.9 18.2 18.5 18.5 18.8 18.9 19.2 19.3 19.4 19.4 19.1 19.3 19.3 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2 | 19.9
19.9
20.2
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.5
20.6
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.8 20.0 19.9 19.8 20.3 20.3 20.3 20.3 20.3 219.9 19.8 | 19.4
19.4
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.2
19.1
19.2
19.5
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.4
7.5
7.7
7.8
7.7
7.8
7.8
7.8 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.0
7.2
7.2
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
11.2
10.9
11.7
11.9 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.1
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
17.7
17.6
17.7
17.6
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
14.0
14.1
14.6
14.8
15.0
14.9
15.3
15.8
16.1
16.3
16.3 | J
17.9
18.2
18.5
18.5
18.8
18.8
18.9
19.2
19.3
19.4
19.2
19.4
19.1
19.3
19.3 | 17.1
17.3
17.6
17.6
17.4
17.7
17.6
17.8
18.0
18.2
18.3
18.4
18.6
18.7
18.6 | 20.6
20.8
20.9
21.0
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | 19.9
19.9
19.9
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.6
20.6
20.6
20.6
20.6
20.6 | 20.2
20.3
20.1
19.9
20.2
20.1
19.9
19.9
19.8
20.0
19.8
20.3
20.3
20.3
20.2
19.9
19.8 | 19.4
19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | AP 7.1 7.1 7.0 6.9 7.2 7.5 7.5 7.4 7.5 7.4 7.5 7.8 7.8 7.8 7.8 7.9 8.0 7.9 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
7.0
7.2
7.3
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
10.8
11.2
10.9
11.7
11.9 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
15.8
17.7
17.6
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3
16.3
16.3
16.3 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.9
19.2
19.3
19.4
19.4
19.2
19.3
19.4
19.1
19.3
19.4
19.1
19.3
19.6
19.6 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.8 18.8 18.8 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 20.0 19.9 19.8 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 | 19.4
19.5
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.2
19.2
19.3
19.2
19.2
19.1
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
24 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.4
7.5
7.7
7.8
7.7
8.0
7.9
8.0
7.9 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.0
7.2
7.3
7.3
7.3 | 8.8
9.3
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
11.2
10.9
11.7
11.9
12.6
13.1
12.8
13.1 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
17.7
17.6
17.4
17.1
17.1
17.1 | 13.4
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.3
15.8
16.4
16.3
16.3
16.4
16.4 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
18.9
19.2
19.3
19.4
19.2
19.4
19.3
19.4
19.2
19.4
19.6
19.6
19.6
19.6 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 17.8 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.4 18.7 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 19.9 20.4 20.3 20.4 20.3 20.4 20.3 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9
20.2 20.1 19.9 19.8 19.8 20.0 19.9 19.8 20.3 20.3 20.2 19.9 19.8 19.6 19.5 19.5 | 19.4
19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.3
19.2
19.1
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | AP 7.1 7.1 7.0 6.9 7.2 7.5 7.5 7.4 7.5 7.4 7.5 7.8 7.8 7.8 7.8 7.9 8.0 7.9 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.0
7.2
7.3
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
10.8
11.2
10.9
11.7
11.9 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
15.8
17.7
17.6
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3
16.3
16.3
16.3 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.9
19.2
19.3
19.4
19.4
19.2
19.3
19.4
19.1
19.3
19.4
19.1
19.3
19.6
19.6 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.8 18.8 18.8 | 20.6
20.8
20.8
21.0
20.9
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.9 19.8 20.0 19.9 19.8 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 | 19.4
19.4
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.2
19.1
19.2
19.5
19.5
19.5
19.5
19.5
19.5
19.5
19.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.4
7.5
7.8
7.8
7.8
7.7
8.0
7.9
8.0
7.9 | 6.2
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
7.0
7.2
7.2
7.3
7.3 | 8.8
9.3
9.2
9.4
10.4
10.5
10.5
10.5
10.6
10.8
10.8
11.9
12.6
13.1
13.6
13.5 | 7.8
8.1
8.4
8.5
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
17.6
17.4
17.1
17.1
17.1
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
14.0
14.1
14.6
14.8
15.0
14.9
15.3
15.8
16.4
16.3
16.3
16.3
16.4
16.5
16.7 | 17.9 18.2 18.1 17.9 18.2 18.5 18.8 18.9 19.9 19.4 19.4 19.4 19.2 19.3 19.4 19.4 19.9 20.1 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.8 18.8 18.9 19.0 19.2 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 19.9 20.4 20.3 20.4 20.3 20.4 20.3 20.4 20.5 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.8 19.8 20.3 20.3 20.3 20.3 20.9 19.9 19.8 19.8 19.8 20.3 | 19.4
19.4
19.4
19.4
19.4
19.2
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.1
19.2
19.3
19.3
19.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 1 2 3 4 4 5 6 7 8 9 10 11 21 3 14 15 16 17 18 9 20 21 22 34 25 26 27 | 7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.7
7.8
7.7
7.8
7.8
7.7
8.0
7.9
8.2 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.0
7.2
7.3
7.2
7.2 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
11.2
10.9
11.7
11.9
12.6
13.1
12.8
13.1
13.6 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.4
17.7
17.6
17.4
17.0
17.1
17.1
16.9
17.3
17.3
17.3 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3
15.8
16.1
16.3
16.3
16.4
16.4
16.5
16.7 | J
17.9
18.2
18.1
17.9
18.2
18.5
18.8
18.8
18.9
19.2
19.3
19.4
19.4
19.1
19.3
19.4
19.1
19.3
19.3
19.6
19.6
19.8
19.9
20.1
20.2 | ULY 17.1 17.3 17.6 17.6 17.4 17.7 17.6 17.8 18.0 18.2 18.3 18.4 18.6 18.8 18.8 18.4 18.7 18.6 | 20.6
20.8
20.9
21.0
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 20.2 20.4 20.3 20.4 20.3 20.4 20.3 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.8 20.0 19.9 19.8 20.3 20.3 20.3 20.2 19.9 19.8 19.8 19.8 20.1 19.8 20.1 19.8 20.1 20.3 20.3 20.3 20.2 20.3 20.3 20.3 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 | 19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.3
19.2
19.2
19.3
19.2
19.5
19.5
19.3
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5
7.4
7.5
7.8
7.8
7.8
7.8
7.8
7.9
8.0
7.9
8.0 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
7.0
7.2
7.3
7.3
7.3
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
10.5
10.5
10.5
10.6
10.8
10.8
11.9
12.6
13.1
12.8
13.1
13.6 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.1
10.5
10.6 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
17.6
17.4
17.1
17.1
17.1
17.1
17.1
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
14.1
14.6
14.8
15.0
14.9
15.3
16.4
16.3
16.3
16.4
16.5
16.7 | 17.9 18.2 18.1 17.9 18.2 18.5 18.8 18.8 18.9 19.2 19.3 19.4 19.4 19.4 19.1 19.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 20.1 20.2 20.4 20.5 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.8 18.8 18.8 18.9 19.0 19.2 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | 19.9
19.9
19.9
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.8 19.8 20.3 20.3 20.3 20.3 20.3 20.1 19.9 19.8 19.8 20.3 20.3 20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 | 19.4
19.4
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.3
19.2
19.1
19.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 1 2 3 4 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 9 2 0 2 1 2 2 3 4 2 5 2 6 2 7 2 8 2 9 3 0 | 7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.4
7.5
7.7
7.8
7.7
7.8
7.7
8.0
7.9
8.2
 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.2
7.2
7.2
7.2
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
11.2
10.9
11.7
11.9
12.6
13.1
12.8
13.1
13.6
13.5
14.1
13.8
14.2
13.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.1
10.5
10.6
10.7
11.1
12.5
12.7 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.4
17.7
17.6
17.4
17.0
17.1
17.1
16.9
17.0
17.1
17.1
17.1
17.3
17.3
17.3
17.5
17.5
17.5
17.5
17.5
17.5 | 13.4
13.6
13.6
13.8
14.0
13.9
14.0
14.1
14.6
14.8
15.0
14.9
15.3
16.4
16.3
16.3
16.4
16.4
16.5
16.7 | 17.9 18.2 18.5 18.2 18.5 18.8 18.9 19.2 19.3 19.4 19.4 19.3 19.4 19.1 19.3 19.6 19.6 19.6 19.8 19.9 20.1 20.2 20.4 20.5 20.5 | ULY 17.1 17.3 17.6 17.6 17.4 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.4 18.7 18.8 18.9 19.2 19.6 19.6 19.9 | 20.6
20.8
20.9
21.0
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 20.2 20.4 20.3 20.4 20.3 20.4 20.3 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.9 19.8 20.0 19.9 19.8 20.3 20.2 19.9 19.8 20.3 20.2 19.9 19.8 19.8 20.3 | 19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.5
19.3
19.5
19.3
19.5
19.3
19.5
19.3
19.3
19.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 7.1
7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.5
7.4
7.5
7.8
7.8
7.8
7.8
7.8
7.9
8.0
7.9
8.0 | 6.2
6.3
6.3
6.3
6.5
6.5
6.6
6.6
6.6
6.6
6.9
7.0
7.2
7.3
7.3
7.3
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
10.5
10.5
10.5
10.6
10.8
10.8
11.9
12.6
13.1
12.8
13.1
13.6 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.1
10.5
10.6 |
14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
15.0
15.1
15.5
15.4
15.7
17.6
17.4
17.1
17.1
17.1
17.1
17.1
17.1
17.1 | 13.4
13.6
13.6
13.8
14.0
14.1
14.6
14.8
15.0
14.9
15.3
16.4
16.3
16.3
16.4
16.5
16.7 | 17.9 18.2 18.1 17.9 18.2 18.5 18.8 18.8 18.9 19.2 19.3 19.4 19.4 19.4 19.1 19.3 19.6 19.6 19.6 19.6 19.6 19.6 19.6 20.1 20.2 20.4 20.5 | ULY 17.1 17.3 17.6 17.6 17.6 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.8 18.8 18.8 18.8 18.9 19.0 19.2 | 20.6
20.8
20.9
20.9
21.0
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | 19.9
19.9
19.9
20.4
20.3
20.4
20.3
20.4
20.3
20.4
20.6
20.6
20.6
20.6
20.6
20.6
20.6
20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.8 19.8 20.3 20.3 20.3 20.3 20.3 20.1 19.9 19.8 19.8 20.3 20.3 20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 | 19.4
19.4
19.4
19.4
19.4
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.3
19.2
19.1
19.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | | 1 2 3 4 4 5 6 7 8 9 10 11 2 13 14 15 16 7 18 9 2 0 2 1 2 2 3 4 2 5 2 6 2 7 2 8 2 9 3 0 | 7.1
7.1
7.0
6.9
7.2
7.4
7.5
7.4
7.5
7.7
7.8
7.7
7.8
7.7
8.0
7.9
8.2
 | 6.2
6.3
6.3
6.3
6.5
6.6
6.6
6.6
6.6
6.8
6.9
7.2
7.2
7.2
7.2
7.2
7.3 | 8.8
9.3
9.2
9.2
9.4
10.4
9.5
10.2
10.1
9.8
10.5
10.6
10.8
11.2
10.9
11.7
11.9
12.6
13.1
12.8
13.1
13.6
13.5
14.1
13.8
14.2
13.8 | 7.8
8.1
8.4
8.5
8.7
8.6
8.7
9.2
9.3
9.1
9.5
9.3
9.7
9.6
9.8
10.5
10.5
10.5
10.5
12.7 | 14.0
14.4
14.2
14.4
14.7
14.7
14.7
14.7
14.9
15.0
15.1
15.5
15.4
17.7
17.6
17.4
17.0
17.1
17.1
16.9
17.0
17.1
17.1
17.1
17.3
17.3
17.3
17.5
17.5
17.5
17.5
17.5
17.5 | 13.4
13.6
13.6
13.8
14.0
14.0
14.1
14.6
14.8
15.3
15.3
15.8
16.1
16.3
16.3
16.4
16.4
16.5
16.7 | 17.9 18.2 18.5 18.2 18.5 18.8 18.9 19.2 19.3 19.4 19.4 19.3 19.4 19.1 19.3 19.6 19.6 19.6 19.8 19.9 20.1 20.2 20.4 20.5 20.5 | ULY 17.1 17.3 17.6 17.6 17.4 17.7 17.6 18.0 18.2 18.3 18.4 18.6 18.7 18.6 18.8 18.4 18.7 18.8 18.9 19.2 19.6 19.6 19.9 | 20.6
20.8
20.9
21.0
20.9
21.1
21.2
20.9
21.2
21.2
21.2
21.2
21.2
21.2
21.2
21 | GUST 19.9 19.9 20.2 20.4 20.3 20.4 20.3 20.4 20.3 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 | SEPT 20.2 20.3 20.1 19.9 20.2 20.1 19.9 19.8 19.8 20.3 20.3 20.3 20.3 20.3 20.1 19.9 19.8 19.8 20.3 20.3 20.1 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3 | 19.4
19.4
19.4
19.4
19.3
19.3
19.2
19.2
19.2
19.2
19.3
19.2
19.3
19.2
19.5
19.3
19.5
19.3
19.5
19.3
19.5
19.3
19.3
19.3 | ### 07099969 ARKANSAS RIVER AT ST CHARLES MESA DIVERSION AT PUEBLO, CO ### WATER-QUALITY RECORDS LOCATION.--Lat 38°15'13", long 104°36'20", in SW¹/4NW¹/4 sec.6, T.21 S., R.64 W., Pueblo County, Hydrologic Unit 11020002, on right bank 10 ft upstream from intake of Saint Charles Mesa Water Association, 150 ft downstream from Santa Fe Avenue bridge, and 1.1 mi upstream from Fountain Creek. DRAINAGE AREA. -- 4.778 mi². PERIOD OF RECORD.--October 1988 to current year. Prior to October 1989, published as Arkansas River at Moffat Street at Pueblo (07099970). PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1988 to current year. INSTRUMENTATION .-- Water-quality monitor. REMARKS.--Records for daily specific conductance are excellent except those for Mar. 13 to Apr. 6, which are good. Daily data not published is either missing or of poor quality. Daily maximum and minimum specific conductance data available in the district office. Specific conductance data is not representative of the cross section at the site. Specific conductance data representative of the cross section at the site is published as Arkansas River at Moffat Street at Pueblo (07099970) for water year 1991. EXTREMES FOR PERIOD OF RECORD.--SPECIFIC CONDUCTANCE: Maximum, 1,980 microsiemens Nov. 24, 1988; minimum, 270 microsiemens Jul. 10, 1990. SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEC. C) WATER YEAR OCTORER 1991 TO SERTEMERER 1992 EXTREMES FOR CURRENT YEAR .-- SPECIFIC CONDUCTANCE: Maximum, 1,030 microsiemens Nov. 26; minimum, 338 microsiemens Aug. 24. | | SPECIFIC | C CONDUCTA | ANCE, (N | MICROSIEMEN | | EAN VALUE | | YEAR OCTO | BER 1991 : | TO SEPTEM | BER 1992 | | |--------|----------|------------|-------------|-------------|-----|--------------|-----|-------------|------------|-----------|-------------|-------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 718 | 752 | 892 | 846 | 718 | 703 | 665 | 675 | 562 | 545 | 524 | 562 | | 2 | 723 | 732 | 923 | 847 | 715 | 694 | 668 | 665 | 639 | 573 | 527 | 55 9 | | 2
3 | 728 | 742 | 930 | 836 | 729 | 682 | 669 | 660 | 615 | 589 | 530 | 560 | | 4 | 726 | 739 | 925 | 829 | 727 | 652 | 666 | 675 | 583 | 556 | 552 | 565 | | 5 | 722 | 732 | 893 | 817 | 720 | 711 | 660 | 676 | 572 | 549 | 551 | 559 | | 6 | 712 | 729 | 894 | 821 | 720 | 724 | 673 | 669 | 592 | 563 | 538 | 561 | | 7 | 718 | 727 | 902 | 870 | 712 | 708 | 683 | 657 | 606 | 576 | 536 | 561 | | 8 | 736 | 730 | 851 | 800 | 705 | 711 | 698 | 634 | 632 | 580 | 53 8 | 570 | | 9 | 744 | 737 | 846 | 740 | 711 | 697 | 700 | 632 | 664 | 548 | 534 | 602 | | 10 | 730 | 730 | 873 | 750 | 702 | 688 | 704 | 653 | 662 | 495 | 519 | 630 | | 11 | 744 | 736 | 842 | 7 57 | 705 | 692 | 687 | 649 | 644 | 476 | 550 | 600 | | 12 | 766 | 736 | 866 | 762 | 715 | 693 | 690 | 658 | 695 | 473 | 540 | 5 98 | | 13 | 767 | 744 | 86 3 | 751 | 713 | 689 | 699 | 657 | 697 | 475 | 551 | 599 | | 14 | 757 | | 846 | 750 | 720 | 688 | 690 | 658 | 626 | 505 | 560 | 583 | | 15 | 734 | | 848 | 771 | 706 | 691 | 683 | 659 | 636 | 526 | 551 | 608 | | 16 | 732 | | 874 | 766 | 697 | 695 | 636 | 654 | 618 | 535 | 547 | 610 | | 17 | 741 | | 879 | 741 | 749 | 679 | 667 | 643 | 604 | 537 | 555 | 611 | | 18 | 727 | | 874 | 740 | 715 | 6 8 3 | 622 | 649 | 642 | 550 | 536 | 616 | | 19 | 731 | | 872 | 746 | 689 | 678 | 633 | 648 | 666 | 542 | 555 | 589 | | 20 | 740 | | 865 | 739 | 714 | 679 | 677 | 633 | 668 | 526 | 55 6 | 611 | | 21 | 765 | | 864 | 738 | 705 | 671 | 701 | 610 | 682 | 551 | 559 | 599 | | 22 | 784 | | 850 | 73 8 | 707 | 676 | 701 | 598 | 665 | 527 | 557 | 599 | | 23 | 771 | | 847 | 732 | 706 | 674 | 711 | 591 | 645 | 549 | 557 | 608 | | 24 | 759 | | 825 | 73 5 | 699 | 659 | 709 | 5 88 | 619 | 560 | 489 | 618 | | 25 | 765 | 969 | 817 | 737 | 703 | 666 | 705 | 593 | 606 | 539 | 563 | 616 | | 26 | 761 | 971 | 824 | 734 | 702 | 665 | 676 | 600 | 573 | 550 | 545 | 594 | | 27 | 772 | 971 | 840 | 733 | 709 | 656 | 688 | 612 | 541 | 558 | 575 | 590 | | 28 | | 896 | 815 | 73 2 | 706 | 654 | 689 | 622 | 513 | 547 | 571 | 603 | | 29 | | 883 | 813 | 735 | 707 | 650 | 695 | 622 | 540 | 523 | 571 | 593 | | 30 | | 882 | 822 | 729 | | 658 | 692 | 638 | 571 | 521 | 571 | 620 | | 31 | 815 | | 847 | 720 | | 653 | | 606 | | 522 | 563 | | | MEAN | | | 862 | 766 | 711 | 681 | 681 | 638 | 619 | 538 | 547 | 593 | ### 07099970 ARKANSAS RIVER AT MOFFAT STREET, AT PUEBLO, CO LOCATION.--Lat $38^{\circ}15^{\circ}13^{\circ}$, long $104^{\circ}36^{\circ}20^{\circ}$, in $SW^{1}/4NW^{1}/4$ sec.6, T.21 S., R.64 W., Pueblo County, Hydrologic Unit 11020002, on right bank 10 ft upstream from intake of Saint Charles Mesa Water Association, 150 ft downstream from Santa Fe Avenue bridge, and 1.1 mi upstream from Fountain Creek. DRAINAGE AREA .-- 4,778 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1988 to current year. REVISED RECORDS: WDR CO-90-1: 1989(M). GAGE.--Water-stage recorder and concrete control. Elevation of gage is 4,653 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 15-21. Records good except for estimated daily discharges, which are poor. Records do not include diversion for municipal supply of Saint Charles Mesa Water Association. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions, and diversions for irrigation and municipal use. Flow almost completely regulated by Pueblo Reservoir. | | | DISCHARGE | , CUBIC | FEET PE | R SECOND,
DAIL | WATER
Y MEAN | YEAR OCTOBE
VALUES | R 1991 | TO SEPTEM | BER 1992 | | | |-------------|-------------------------|------------|------------------|----------------------|-------------------|-----------------|-----------------------|--------------------|--------------|---------------------|--------------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 132 | 171 | 58 | 73 | 162 | 123 | 448 | 591 | 1170 | 1340 | 730 | 600 | | 2
3 | 127 | 214 | 47 | 71 | 164 | 125 | 442 | 598 | 1160 | 1290 | 830 | 674 | | 3
4 | 121
126 | 210
242 | 46
53 | 70
70 | 171
162 | 197
228 | 424
428 | 602
634 | 1270
1270 | 1240
1030 | 938
965 | 664
584 | | 5 | 120 | 307 | 53 | 77 | 169 | 213 | 430 | 691 | 1180 | 1020 | 885 | 526 | | _ | 1.55 | 250 | | 20 | | | 4.03 | 25.0 | 265 | 1000 | 7.00 | 506 | | 6
7 | 155
178 | 353
371 | 54
4 7 | 75
64 | 177
184 | 204
208 | 401
331 | 75 <i>2</i>
851 | 967
883 | 1000
8 37 | 7 98
751 | 526
545 | | 8 | 164 | 341 | 52 | 80 | 182 | 210 | 2 9 7 | 874 | 940 | 7 9 1 | 683 | 896 | | 9 | 166 | 313 | 52 | 120 | 181 | 207 | 264 | 892 | 1120 | 1180 | 529 | 838 | | 10 | 197 | 315
| 41 | 124 | 184 | 236 | 250 | 746 | 1240 | 1630 | 606 | 763 | | 11 | 180 | 316 | 45 | 120 | 180 | 240 | 229 | 808 | 1210 | 1730 | 717 | 701 | | 12 | 157 | 269 | 51 | 120 | 185 | 246 | 247 | 711 | 1200 | 1700 | 764 | 678 | | 13
14 | 165 | 198
135 | 47
58 | 121 | 186 | 244 | 263
297 | 546 | 1290 | 1660 | 738 | 663 | | 15 | 172
187 | 50 | 54 | 123
122 | 186
186 | 243
200 | 378 | 507
498 | 1410
1460 | 1550
1150 | 626
569 | 303
404 | | | | | | | | | | | | | | | | 16
17 | 237
272 | 50
50 | 54
58 | 122
127 | 184
185 | 190
199 | 492
585 | 520
548 | 1580
1610 | 960
908 | 541
541 | 712
702 | | 18 | 254 | 50 | 56
56 | 126 | 183 | 225 | 623 | 635 | 1470 | 587 | 1170 | 695 | | 19 | 233 | 50 | 65 | 123 | 182 | 270 | 613 | 833 | 1210 | 558 | 614 | 696 | | 20 | 210 | 50 | 70 | 124 | 187 | 292 | 658 | 1040 | 1010 | 573 | 626 | 687 | | 21 | 179 | 51 | 67 | 125 | 169 | 314 | 689 | 1410 | 912 | 579 | 557 | 578 | | 22 | 136 | 52 | 77 | 125 | 148 | 323 | 665 | 1650 | 938 | 549 | 501 | 284 | | 23 | 111 | 46 | 71 | 125 | 147 | 332 | 619 | 1830 | 1120 | 491 | 594 | 286 | | 24
25 | 119
134 | 43
44 | 69
68 | 125
120 | 147
150 | 372
363 | 563
549 | 1880
1840 | 1400
1560 | 459
614 | 813
1450 | 273
260 | | | | | | | | | | | | | | | | 26
27 | 138
131 | 44 | 66 | 122 | 161 | 355
352 | 548
524 | 1740
1640 | 1660
1750 | 688 | 1910
1210 | 259 | | 28 | 99 | 44
54 | 67
71 | 122
121 | 159
144 | 347 | 324
489 | 1520 | 1790 | 729
802 | 846 | 253
232 | | 29 | 76 | 63 | 69 | 118 | 123 | 344 | 532 | 1420 | 1750 | 829 | 637 | 214 | | 30 | 81 | 58 | 72 | 141 | | 348 | 5 95 | 1230 | 1610 | 811 | 502 | 160 | | 31 | 107 | | 71 | 159 | | 397 | | 1110 | | 770 | 494 | | | TOTAL | 4864 | 4554 | 1829 | 3455 | 4928 | 8147 | 13873 | 31147 | 39140 | 30055 | 24135 | 15656 | | MEAN | 157 | | 59.0 | 111 | 170 | 263 | 462 | 1005 | 1305 | 970 | 779 | 522 | | MAX
MIN | 272
76 | 371
43 | 77
41 | 159
64 | 187
123 | 397
123 | 689
229 | 1880
498 | 1790
883 | 1730
459 | 1910
494 | 896
160 | | AC-FT | 9650 | | 3630 | 6850 | 9770 | 16160 | 27520 | 61780 | 77630 | 59610 | 47870 | 31050 | | STATIST | TCS OF MO | NTHIY MEAN | DATA FOR | WATER V | FARS 1989 | - 1993 | 2, BY WATER | VEAR (WY | '\ | | | | | | | | | | | | • | | | 1 22 0 | 700 | 204 | | MEAN
MAX | 20 8
375 | | 32.7
59.0 | 77.0
1 6 1 | 164
178 | 255
409 | 368
574 | 742
1005 | 1530
1949 | 1339
1662 | 789
985 | 2 94
522 | | (WY) | 1991 | | 1992 | 1991 | 1990 | 1989 | 1989 | 1992 | 1991 | 1989 | 1989 | 1992 | | MIN | 125 | 87.9 | 16.1 | 16.7 | 138 | 159 | 217 | 491 | 970 | 9 70 | 545 | 134 | | (WY) | 1990 | 1989 | 1990 | 1989 | 1991 | 1990 | 1991 | 1989 | 1989 | 1992 | 1990 | 1989 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEN | DAR YEAR | | FOR 1992 WAS | TER YEAR | L | WATER YE | ARS 1989 | - 1992 | | ANNUAL | | | 1 | 99021 | | | 181783 | | | | | | | ANNUAL | | | | 545 | | | 497 | | | 497 | | 1 0 0 1 | | | ' ANNUAL M
ANNUAL ME | | | | | | | | | 571
444 | | 1991
1990 | | | DAILY ME | | | 3110 | Jun 14 | | 1910 | Aug 26 | i | 4090 | Jun | 12 1990 | | LOWEST | DAILY MEA | N | | 28 | Apr 25 | | 41 | Dec 10 | 1 | 3.6 | Dec | 12 1989 | | | SEVEN-DAY | | | 46 | Nov 21 | | 46 | Nov 21 | | a ₄₂₆₀ | | 11 1989 | | | ANEOUS PE | | | | | | 3490
11.30 | Aug 18
Aug 18 | | 11.74 | | 12 1990
12 1990 | | ANNUAL | RUNOFF (A | C-FT) | 3 | 94800 | | | 360600 | y -0 | | 360300 | | | | 10 PERC | ENT EXCEE | DS | | 1710 | | | 1220 | | | 1400 | | | | | ENT EXCEE | | | 210 | | | 310 | | | 253
29 | | | | 30 PERC | ENT EXCEE | υs | | 57 | | | 66 | | | 29 | | | a-From rating curve extended above 3900 ${\rm ft}^3/{\rm s}$. # 07099970 ARKANSAS RIVER AT MOFFAT STREET, AT PUEBLO, CO--Continued WATER-OUALITY RECORDS PERIOD OF RECORD. -- October 1988 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1988 to current year. WATER TEMPERATURE: October 1988 to current year. INSTRUMENTATION .-- Water-quality monitor. REMARKS.--Records for daily water temperature and specific conductance are good. Daily data not published are either missing or unrepresentative of the river for the day. Specific conductance data computed by using discharge-related coefficients, the discharge record at the site, and the daily mean specific conductance from Arkansas River at St Charles Mesa Diversion at Pueblo (07099969). Prior to October 1989, specific conductance data was not representative of the cross section at the site. EXTREMES FOR PERIOD OF RECORD .-- SPECIFIC CONDUCTANCE: Maximum daily mean, 1140 microsiemens, Dec. 31, 1989; minimum daily mean, 363 microsiemens, June 24, 1991. WATER TEMPERATURE: Maximum, 26.3°C, Aug. 31, 1990; minimum, 0.0°C, on many days during winter. MEAN EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily mean, 961 microsiemens, Nov. 26-27; minimum daily mean, 381 microsiemens, July 10. WATER TEMPERATURE: Maximum, 24.8°C, Aug. 8; minimum, 0.1°C, Jan. 16, 19, 23. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES DAY OCT JUN JUL AUG NOV DEC JAN FEB MAR APR MAY | 1 | 653 | 677 | 865 | 804 | 646 | 640 | 579 | 587 | | 425 | 424 | 461 | |-----------------------|------|-----|-----|------|-----|--------------|-----|-----|-----|-----|-----|-----| | 2 | 658 | 651 | 905 | 805 | 644 | 632 | 581 | 579 | 505 | 447 | 422 | 458 | | 3 | 662 | 660 | 921 | 794 | 656 | 607 | 582 | 541 | 480 | 459 | | 459 | | 4 | 661 | 650 | 897 | 788 | 654 | | 579 | 554 | 455 | 439 | 442 | 463 | | 1
2
3
4
5 | 664 | 644 | 866 | 768 | 648 | | 574 | 548 | | 434 | 441 | 464 | | • | 001 | 011 | 000 | , 00 | 010 | | 3,4 | 3.0 | | | | | | 6
7 | 641 | 634 | 867 | 772 | 648 | 644 | 586 | 542 | 474 | 445 | 436 | 466 | | 7 | 646 | 632 | 884 | 835 | 634 | 630 | 601 | | 485 | 461 | 434 | 466 | | 8
9 | 662 | 642 | 834 | 752 | 627 | 633 | 614 | | 506 | 470 | 441 | 456 | | 9 | 670 | 649 | 829 | 681 | 633 | 620 | 616 | | 525 | 427 | 443 | | | 10 | 650 | 642 | 873 | 682 | 625 | 605 | 620 | | 516 | 381 | | 510 | | | ••• | • | | *** | 723 | *** | | | | | | | | 11 | 670 | 648 | 834 | 696 | 634 | 609 | 611 | | | | 446 | 486 | | 12 | 689 | 648 | | 701 | 636 | 610 | 607 | | 542 | | | 490 | | 13 | 690 | 662 | 846 | 683 | 635 | 606 | 615 | 572 | 544 | | 446 | 491 | | 14 | 681 | | 821 | 682 | 641 | 605 | 607 | 572 | | 389 | 459 | 501 | | 15 | 653 | | 823 | | 628 | 615 | 594 | 573 | 490 | 416 | 457 | 517 | | 13 | 033 | | 023 | | 020 | 013 | 331 | 575 | .,, | 110 | , | | | 16 | 644 | | 848 | 697 | 620 | 619 | | 569 | 476 | 428 | 454 | 494 | | 17 | 652 | | 853 | 674 | 667 | 604 | 580 | 559 | 465 | 430 | 461 | 495 | | 18 | 640 | | 848 | 673 | 636 | 608 | | 532 | 494 | 451 | | 499 | | 19 | 651 | | 837 | 679 | 613 | 5 9 7 | 519 | | 519 | 450 | 455 | | | 20 | 651 | | 822 | 672 | 635 | 598 | | | | 437 | 456 | 501 | | | | | | | | | | | | | | | | 21 | 681 | | 821 | 672 | 634 | 590 | 575 | | 546 | 457 | 464 | 497 | | 22 | 713 | | 799 | 672 | 636 | 595 | 575 | | 532 | | 462 | 515 | | 23 | 709 | | 805 | 666 | 635 | 593 | 583 | | | 456 | 457 | 523 | | 24 | 698 | | 784 | 669 | 629 | 573 | 617 | | | 470 | | 538 | | 25 | 696 | | 776 | 678 | 633 | 579 | 613 | | 467 | | | 536 | | 2.5 | 0,0 | | ,,, | 0.0 | 033 | 3.,, | 010 | | , | | | | | 26 | 693 | 961 | 791 | 668 | 632 | 579 | 588 | | | | | 517 | | 27 | 718 | 961 | 798 | 667 | 638 | 571 | 599 | | 411 | 452 | 448 | 513 | | 28 | | 869 | 774 | 666 | 642 | 576 | 599 | | | 443 | 457 | 531 | | 29 | | 848 | 772 | | 643 | 572 | 605 | | | 418 | 468 | 522 | | 30 | | 856 | 781 | 663 | | 579 | 602 | | 440 | 422 | 474 | 558 | | 31 | 750 | | 805 | 648 | | 568 | | 479 | | 423 | 467 | | | - 1 | , 50 | | 505 | 040 | | 300 | | .,, | | .23 | .07 | | | | | | | | | | | | | | | | 637 SEP 211 07099970 ARKANSAS RIVER AT MOFFAT STREET, AT PUEBLO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | TEMPERATURE, | MATER | (DEG. C), | WAILK I | EAR OCTOBER | (1991 10 | J SEFTEMBE | 1772 | | | |---|---|---|--|---|--|--|--|--|--
--|---|--| | DAY | MAX | MIN | MAX | MIN | XAM | MIN | MAX | MIN | MAX | MIN | MAX | MIN | | | OCT | OBER | NOVE | MBER | DEC | EMBER | JANU | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 21.1
21.0
20.8
14.6
18.0 | 14.6
14.5
13.8
12.6
12.3 | 10.2
8.2
9.5
10.5
11.0 | 6.7
6.0
5.1
6.0
7.7 | 4.8
4.2
4.6
5.3
6.1 | 1.7
.6
1.0
1.6
2.7 | 4.7
4.4
4.0
5.1
4.9 | 2.3
.8
1.0
1.9
1.8 | 5.2
5.4
3.9
4.6
4.8 | 1.0
1.4
2.7
2.2
1.3 | 8.6
10.1
8.2
7.6
8.1 | 3.1
3.8
3.7
5.4
4.4 | | 6
7
8
9
10 | 17.9
19.2
19.3
18.8
19.0 | 12.0
12.8
13.3
13.8
13.5 | 11.1
10.1
10.5
11.1
9.7 | 7.5
7.2
6.9
7.4
8.2 | 6.8
7.5
7.1
6.1
5.6 | 2.9
3.3
3.6
2.6
2.7 | 5.0
4.1
4.2
3.6
4.2 | 1.9
1.9
.9
.5 | 5.4
5.1
4.4
5.8
5.5 | 1.3
.8
1.1
.8
1.2 | 9.6
9.4
8.8
7.1
9.0 | 3.6
4.4
4.4
3.8
3.1 | | 11
12
13
14
15 | 18.9
18.8
17.8
17.2
17.5 | 13.2
13.1
13.6
12.5
12.5 | 9.2
10.5
10.4
9.9 | 7.4
6.5
6.5
3.4 | 4.1
5.5
5.3
4.4
4.5 | 1.9
1.8
1.4
.9 | 4.3
3.8
3.7
3.3
2.1 | 1.0
1.9
.9
.2 | 5.8
6.6
4.6
6.7
6.3 | 2.4
2.8
1.6
1.7 | 9.8
9.4
10.6
10.9
10.5 | 3.8
4.2
4.0
4.2
4.5 | | 16
17
18
19
20 | 18.1
18.2
16.4
16.5
16.3 | 12.8
13.4
12.9
12.0
12.0 | | | 6.3
4.2
3.9
5.1
4.5 | 1.2
2.3
1.5
3.2
3.0 | 4.2
2.6
3.6
3.7
4.2 | .1
.9
.9
.1 | 3.8
5.7
5.8
6.1
6.5 | 1.7
2.1
.9
.8
2.1 | 10.8
9.8
9.4
10.0
10.6 | 4.6
4.7
5.1
5.1
4.2 | | 21
22
23
24
25 | 16.5
16.9
16.4
14.7
14.5 | 11.6
12.0
11.8
11.8
10.3 | 7.6 | | 4.9
4.0
4.9
4.6
4.7 | 1.7
3.2
2.0
1.3 | 4.3
3.9
3.9
5.2
4.7 | .3
.4
.1
.8
.7 | 7.4
6.4
6.7
7.1
5.6 | 2.9
1.9
3.3
1.6
2.8 | 10.4
7.2
10.8
10.6
11.6 | 4.8
4.6
4.6
5.4
5.3 | | 26
27
28
29
30
31 | 14.6
15.3
13.4
9.5
8.1
9.6 | 10.2
10.7
8.3
7.0
5.9
6.6 | 9.1
8.0
6.7
5.8
4.0 | 4.5
4.5
4.7
3.2
1.8 | 4.8
4.1
3.6
4.7
3.9
4.7 | 1.4
1.2
.9
1.5
1.1
2.2 | 4.7
4.3
4.6
5.2
5.0
5.6 | .7
.6
.4
.7
.7 | 5.5
9.0
9.1
9.4 | 1.9
3.5
3.0
2.6 | 11.0
9.9
8.0
11.5
11.8
9.2 | 5.4
5.4
6.2
6.4
5.3 | | монтн | 21.1 | 5.9 | | | 7.5 | .6 | 5,6 | .1 | 9.4 | .8 | 11.8 | 3.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | | | AP | RIL | МАУ | ſ | J | UNE | JU | JLY | AUG | SUST | SEPT | EMBER | | DAY 1 2 3 4 5 | | | | | | | | | | 18.7
18.8 | | | | 1
2
3
4 | AP:
11.1
10.1
12.5
12.1 | 5.8
5.7
5.8
6.0 | MAY
14.3
13.7
13.9
14.2 | 8.3
8.7
8.6
8.6 | J
14.6
17.6
17.0
17.4 | 12.8
13.2
13.2
13.5 | 20.9
20.8
21.1
20.7 | 16.9
17.1
17.2
17.2 | 23.8
23.7
23.1
23.7 | 18.7
18.8
19.2
19.6 | SEPT
22.4
22.3
22.9
20.9 | 18.0
18.2
17.9
18.4 | | 1
2
3
4
5
6
7
8 | AP. 11.1 10.1 12.5 12.1 12.5 12.4 12.8 13.9 13.9 | 5.8
5.7
5.8
6.0
5.9
6.2
6.4
6.5 | MAY 14.3 13.7 13.9 14.2 13.9 14.7 13.9 14.7 13.9 | 8.3
8.7
8.6
8.6
8.7
8.9
9.5 | J
14.6
17.6
17.0
17.4
18.2
17.6
16.9 | 12.8
13.2
13.2
13.5
14.2
13.8
13.9
13.8
14.3 | 20.9
20.8
21.1
20.7
21.4
22.3
20.8
21.6
20.5 | 16.9
17.1
17.2
17.2
16.9
17.7
17.2
17.5
17.5 | 23.8
23.7
23.1
23.7
23.4
22.4
24.2
24.8
24.7 | 18.7
18.8
19.2
19.6
19.4
19.7
19.3
19.6
19.3 | SEPT 22.4 22.3 22.9 20.9 22.4 22.6 22.2 21.6 | 18.0
18.2
17.9
18.4
17.1
17.5
17.5
18.2
18.1 | | 1
2
3
4
5
6
7
8
9
10 | 11.1
10.1
12.5
12.1
12.5
12.4
12.8
13.9
13.9
13.5 | 5.8
5.7
5.8
6.0
5.9
6.2
6.4
6.2
6.5
6.6
6.7
7.5
6.8 | 14.3
13.7
13.9
14.2
13.9
14.7
13.4
11.0
14.6
13.8
16.4
16.5
16.7 | 8.3
8.7
8.6
8.6
8.7
8.9
9.2
9.5
9.4
9.9 | 14.6
17.6
17.0
17.4
18.2
17.6
17.6
16.9
16.4
18.5 | 12.8
13.2
13.5
14.2
13.8
13.9
14.3
14.3
14.3 | 20.9
20.8
21.1
20.7
21.4
22.3
20.8
21.6
20.5
20.1
20.8
20.8
21.7
21.7 | JLY 16.9 17.1 17.2 17.2 16.9 17.7 17.2 17.5 17.5 17.8 18.1 18.1 18.1 | 23.8
23.7
23.7
23.7
23.4
22.4
24.2
24.8
24.7
21.7
24.1
23.1
22.3
24.0 | 18.7
18.8
19.2
19.6
19.4
19.7
19.3
19.6
19.3
19.7 | SEPT 22.4 22.3 22.9 20.9 22.4 22.6 22.2 21.6 21.7 22.3 22.7 22.0 22.6 | 18.0
18.2
17.9
18.4
17.1
17.5
17.5
18.2
18.1
17.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.1
10.1
12.5
12.1
12.5
12.4
12.8
13.9
13.9
13.5
12.8
10.2
14.6
13.1
13.1 | S.8
5.8
5.7
5.8
6.0
5.9
6.2
6.4
6.5
6.6
6.7
7.5
6.6
7.2
7.7 | 14.3
13.7
13.9
14.2
13.9
14.7
13.4
13.4
11.0
14.6
13.8
16.5
16.7
16.1
15.9
15.9
15.6 | 8.3
8.6
8.6
8.6
8.7
8.9
9.5
9.4
9.9
9.2
9.6
9.9 | 14.6
17.6
17.0
17.4
18.2
17.6
17.6
16.9
16.4
18.5
18.8
19.0
19.2
18.8
20.1 | 12.8
13.2
13.2
13.5
14.2
13.8
13.9
14.3
14.3
14.6
15.0
14.8
14.8 | 20.9
20.8
21.1
20.7
21.4
22.3
20.8
21.6
20.5
20.1
20.8
20.8
21.7
21.7
22.2 | JLY 16.9 17.1 17.2 17.2 16.9 17.7 17.2 17.5 17.5 17.8 18.1 18.1 18.4 18.2 18.4 17.6 17.5 | 23.8
23.7
23.7
23.7
23.4
22.4
24.2
24.8
24.7
21.7
24.1
22.3
24.0
24.7
23.4 | 18.7
18.8
19.2
19.6
19.4
19.7
19.3
19.3
19.7
19.5
19.4
19.9
19.6
19.2
19.6
19.3 | SEPT 22.4 22.3 22.9 20.9 22.4 22.6 22.2 21.6 21.7 22.3 22.7 22.0 22.6 22.8 22.5 22.1 21.5 | 18.0
18.2
17.9
18.4
17.1
17.5
17.5
18.2
18.1
17.8
17.6
18.1
17.3
17.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | AP: 11.1 10.1 12.5 12.1 12.5 12.4 12.8 13.9 13.9 13.5 12.8 10.2 14.6 13.1 13.1 12.8 11.8 9.4 9.6 11.3 12.5 11.9 13.2 13.3 13.7 14.0 14.5 14.3 | RIL 5.8 5.7 5.8 6.0 5.9 6.2 6.4 6.5 6.6 6.7 7.5 6.8 7.2 7.7 7.1 6.3 7.5 7.5 8.2 | 14.3 13.7 13.9 14.2 13.9 14.7 13.4 13.4 11.0 14.6 13.8 16.4 16.5 16.7 16.1 15.9 16.3 15.9 15.6 15.7 13.8 13.3 15.3 15.3 15.3 15.3 15.3 | 8.3
8.7
8.6
8.6
8.7
8.9
9.2
9.5
9.4
9.9
9.2
9.6
9.9
10.0
10.1
10.5
10.8
11.1
11.3
12.2
12.6
12.8
12.9
13.1 | 14.6
17.6
17.0
17.4
18.2
17.6
16.9
16.4
18.5
18.8
19.0
19.2
18.8
20.1
19.1
19.8
20.3
19.6
19.9
20.9
20.9
20.9
20.9
20.9
20.9
20.5
20.9 | UNE 12.8 13.2 13.5 14.2 13.8 13.9 14.3 14.6 15.0 14.8 14.8 15.5 16.4 16.4 16.3 15.8 16.7 16.5 | 20.9
20.8
21.1
20.7
21.4
22.3
20.8
21.6
20.5
20.1
20.8
20.8
21.7
21.7
22.2
22.1
21.6
22.6
23.4
22.3
23.2
22.0
23.5
23.9
21.6 | 16.9 17.1 17.2 17.2 16.9 17.7 17.2 17.5 17.5 17.8 18.1 18.1 18.4 18.2 18.1 18.4 17.5 17.8 18.3 17.7 18.4 18.2 18.9 19.0 18.9 18.9 18.6 | 23.8
23.7
23.7
23.7
23.4
22.4
24.2
24.8
24.7
21.7
24.1
23.1
22.3
24.0
24.7
23.4
24.1
22.7
24.3
24.6
24.7
22.6
20.0
21.9
22.9
23.0
21.9 | 18.7
18.8
19.2
19.6
19.4
19.7
19.3
19.3
19.7
19.5
19.4
19.9
19.2
19.3
19.5
19.3
19.5
19.3
19.5
19.3
19.5
19.5
19.6
19.1
19.6 | SEPT 22.4 22.3 22.9 20.9 22.4 22.6 22.2 21.6 21.7 22.3 22.7 22.0 22.6 22.8 22.1 21.5 21.2 20.4 21.8 21.8 21.8 21.8 21.8 21.8 21.8 21.8 | 18.0
18.2
17.1
17.5
17.5
18.4
17.1
17.5
18.1
17.8
17.6
18.1
17.3
17.9
18.4
18.1
17.3
17.9
18.4
18.1
17.7
17.5
16.1
17.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 11.1
10.1
12.5
12.1
12.5
12.1
12.5
12.8
13.9
13.9
13.5
12.8
10.2
14.6
13.1
13.1
12.8
11.8
9.6
11.3
12.5
11.9
12.7
12.9
13.9 | RIL 5.8 5.7 6.0 5.9 6.2 6.4 6.5 6.6 6.7 7.5 6.8 7.1 7.1 6.9 7.3 7.6 7.5 7.8 8.2 | 14.3 13.7 13.9 14.2 13.9 14.7 13.4 13.4 11.0 14.6 13.8 16.4 16.5 16.7 16.1 15.9 16.3 15.9 15.6 15.7 13.8 13.3 15.3 15.3
15.3 15.3 15.3 | 8.3
8.6
8.6
8.6
8.7
8.9
9.2
9.5
9.4
9.9
10.3
9.6
9.9
10.0
10.1
10.5
10.8
11.1
11.2
12.6
12.8
12.9
12.9 | 14.6
17.6
17.0
17.4
18.2
17.6
17.6
17.6
17.6
18.9
16.4
18.5
18.8
20.1
19.2
18.8
20.1
19.1
19.2
19.3
19.6
20.3
19.6
20.3
19.8 | UNE 12.8 13.2 13.5 14.2 13.8 13.9 14.3 14.3 14.6 15.0 14.8 15.5 16.0 15.8 16.4 16.4 16.7 16.5 | 20.9
20.8
21.1
20.7
21.4
22.3
20.8
21.6
20.5
20.1
20.8
21.7
21.7
22.2
22.1
21.6
22.6
23.4
22.3
23.2
22.0
23.5
23.9
21.6 | 16.9 17.1 17.2 17.2 16.9 17.7 17.2 17.5 17.8 18.1 18.1 18.4 18.2 18.1 18.4 17.6 17.5 17.8 | 23.8
23.7
23.7
23.7
23.4
22.4
24.2
24.8
24.7
21.7
24.1
22.3
24.0
24.7
23.4
24.1
22.7
24.3
24.6
24.7
22.7
24.3
24.6
24.7
22.6
20.0
21.9
22.9
23.0
22.9 | 18.7
18.8
19.2
19.6
19.4
19.7
19.3
19.5
19.4
19.9
19.6
19.2
19.3
19.5
19.5
19.5
19.5
19.5
19.5
19.6
19.3
19.6 | SEPT 22.4 22.3 22.9 20.9 22.4 22.6 22.2 21.6 21.7 22.3 22.7 22.0 22.6 22.8 22.5 22.1 21.5 21.2 20.4 21.8 21.8 21.8 21.8 21.8 21.9 20.6 | 18.0
18.0
17.9
18.4
17.1
17.5
17.5
17.5
18.1
17.8
17.6
18.1
17.3
17.9
18.4
18.1
17.7
17.5
16.1
17.7 | 07103700 FOUNTAIN CREEK NEAR COLORADO SPRINGS, CO 07103703 CAMP CREEK AT GARDEN OF THE GODS . ### 07103747 MONUMENT CREEK AT PALMER LAKE, CO LOCATION.—Lat $39^{\circ}06'07$ ", long $104^{\circ}53'27$ ", in $SE^{1}/4SE^{1}/4$ sec.9, T.11 S., R.67 W., El Paso County, Hydrologic Unit 11020003, on left bank 0.9 mi upstream from Monument Lake, 1.5 mi downstream from North Monument Creek, and 1.9 mi southeast of town of Palmer Lake. PERIOD OF RECORD. -- April 1977 to September 1980; January 1984 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-ATURE WATER (DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | CALCIUM | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |-----------|------|--|---|---|----------------------------|-------------------------------------|--|--|--|---------|--| | OCT | 1005 | 0.40 | 1.60 | | 44.0 | 2.0 | 0.5 | | 120 | , | | | 23
NOV | 1035 | 0.48 | 168 | 8.0 | 11.0 | 8.2 | 0.5 | K78 | 130 | 22 . | 4.0 | | 20
DEC | 1100 | 1.4 | 147 | 7.8 | 2.0 | 10.4 | 0.2 | K15 | 160 | 18 | 3.0 | | 11 | 1105 | 1.4 | 147 | 8.0 | 1.5 | 10.9 | 0.6 | K220 | 180 | 17 | 2.8 | | JAN
08 | 1105 | 1.6 | 147 | 7.7 | 0.5 | 11.0 | 0.7 | K1 | 43 | 17 | 2.8 | | FEB
19 | 0955 | 1.1 | 152 | 7.9 | 0.5 | 10.9 | 0.8 | K1 | 22 | 18 | 3.2 | | MAR
25 | 1000 | 5.3 | 102 | 8.0 | 4.0 | 10.0 | 0.3 | K2 | 63 | 14 | 2.1 | | APR
15 | 1000 | 40 | 75 | 7.8 | 6.0 | 9.5 | 0.5 | K4 | 66 | 8.8 | 1.2 | | MAY
13 | 0955 | 11 | 92 | 7.8 | 10.0 | 9.0 | 0.7 | к6 | 200 | 11 | 1.5 | | JUN
03 | 1000 | 15 | 87 | 8.0 | 10.5 | 9.0 | 0.7 | к13 | 67 | 11 | 1.4 | | JUL
08 | 0915 | 3.0 | 138 | 7.8 | 15.0 | 8.1 | E _{0.9} | к98 | K370 | 18 | 2.9 | | AUG
19 | 1000 | 0.47 | 202 | | 19.0 | 7.3 | 0.6 | K 10 | 39 | 27 | 4.6 | | SEP
16 | 0840 | 0.81 | 196 | 8.2 | 13.5 | 8.0 | 0.4 | K16 | 80 | 25 | 4.4 | | DATE | ALKA-
LINITY
LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | NITRO-
GEN,
NITRITE
TOTAL
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
ORTHO
TOTAL
(MG/L
AS P) | |-----------|---|---|---|--|---|--|--|--|---|---| | OCT | | | | | | | | | | | | 23
NOV | 75 | 6.9 | 3.3 | 1.8 | <1 | <0.01 | <0.05 | 0.04 | <0.20 | 0.02 | | 20 | 59 | 8.7 | 2.9 | 1.5 | 6 | <0.01 | <0.05 | 0.03 | <0.20 | 0.01 | | DEC 11 | 56 | 10 | 3.2 | 1.6 | 1 | 0.01 | 0.85 | 0.02 | <0.20 | 0.02 | | JAN
08 | 56 | 10 | 3.9 | 1.7 | 23 | 0.01 | 0.05 | <0.01 | <0.20 | <0.01 | | FEB
19 | 57 | 9.4 | 4.2 | 1.5 | 14 | <0.01 | <0.05 | 0.01 | 0.20 | <0.01 | | MAR
25 | 35 | 9.4 | 2.9 | 1.6 | 23 | <0.01 | 0.07 | 0.02 | <0.20 | 0.02 | | APR
15 | 26 | 7.8 | 1.4 | 1.4 | 49 | 0.01 | <0.05 | 0.01 | 0.20 | 0.02 | | MAY
13 | 30 | 7.3 | 1.2 | 1.6 | 9 | 0.02 | <0.05 | 0.03 | <0.20 | 0.01 | | JUN
03 | 32 | 6.6 | 1.2 | 1.5 | 16 | 0.01 | 0.04 | 0.03 | <0.20 | 0.03 | | JUL
08 | 57 | 7.1 | 3.2 | 1.7 | 14 | <0.01 | <0.05 | 0.02 | <0.20 | <0.01 | | AUG
19 | 91 | 5.5 | 5.3 | 1.8 | <1 | <0.01 | <0.05 | <0.01 | <0.20 | <0.01 | | SEP
16 | 86 | 7.2 | 5.0 | 2.0 | 16 | <0.01 | <0.05 | 0.01 | <0.20 | <0.01 | E-Estimated. K-Based on non-ideal colony counts. 07103747 MONUMENT CREEK AT PALMER LAKE, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD) | CADMIT
DIS-
SOLVI
(UG/I
AS CI | RECO
ED ERAI
L (UG. | M, CHI
AL MIC
OV- DI:
BLE SOI
/L (UC | RO- MI
UM, HE
S- VAI
LVED D
G/L (U | RO-
UM,
XA-
ENT,
IS.
G/L
CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPI
DIS-
SOL'
(UG. | ER, TO
- RI
VED EI
/L (U | RON,
DTAL
ECOV-
RABLE
UG/L
UG/L | IRON,
DIS-
SOLVED
(UG/L
AS FE) | |---|---|---|--|---|--|--|---|--|---|--|--| | OCT
23 | <1 | <1 | | <1 | <1 | <1 | 2 | | <1 | 400 | 130 | | NOV 20 | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 550 | 87 | | DEC
11
JAN | <1 | <1 | | <1 | <1 | <1 | 5 | | 1 | 240 | 67 | | 08
FEB | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 880 | 32 | | 19
MAR | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 730 | 45 | | 25
APR | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 620 | 53 | | 15
MAY | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 2000 | 69 | | 13
JUN | <1 | <1 | | <1 | <1 | <1 | <1 | | 1 | 680 | 43 | | 03 | <1 | <1 | | <1 | <1 | <1 | 6 | | 3 | 1800 | 82 | | 08
AUG | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 390 | 180 | | 19
SEP | <1 | <1 | | <1 | <1 | <1 | 1 | | <1 | 540 | 230 | | 16 | <1 | <1 | | <1 | <1 | <1 | <1 | | <1 | 630 | 270 | | DF | TO
RE
ER
ATE (U | AD,
TAL
COV-
ABLE
G/L
PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | NICKI
TOTA
RECO
ERAI
(UGA
AS M | AL NIC
OV- DI
BLE SC
'L (U | CKEL,
IS-
DLVED
JG/L
S NI) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | | ED
L | | OCT 23 | _ | 1 | 1 | 150 | 130 | | 3 | <1 | <10 | | 10 | | NOV
20 | | <1 | <1 | 70 | 51 | | <1 | <1 | <10 | | 4 | | DEC
11 | | 5 | 1 | 50 | 39 | | | <1 | <10 | | <3 | | JAN
08 | | | | | 37 | | <1 | | ×10 | | | | FEB | • | 2 | <1 | 80 | 38 | | 2 | <1 | 20 | | 12 | | 19 | | 2
<1 | <1
<1 | 80
80 | | | | | | | 12 | | MAR
25 | | | | | 38 | | 2 | <1 | 20 | | | | MAR
25
APR
15 | | <1 | <1 | 80 | 38
44 | | 2
<1 | <1
<1 | 20
<10 | | <3 | | MAR
25
APR
15
MAY
13 | | <1
<1 | <1
<1 | 80
30 | 38
44
13 | | 2
<1
<1 | <1
<1
<1 | 20
<10
<10 | | <3
6 | | MAR
25
APR
15
MAY
13
JUN
03 | · · · | <1
<1
2 | <1
<1
<1 | 80
30
60 | 38
44
13
7 | | 2
<1
<1
<1 | <1
<1
<1
<1 | 20
<10
<10
20 | | <3
6
10 | | MAR
25
APR
15
MAY
13
JUN
03
JUL
08 | | <1 <1 2 <1 | <1
<1
<1
<1 | 80
30
60
60 | 38
44
13
7
16 | | 2 <1 <1 <1 <1 <1 | <1 <1 <1 <1 <1 <1 <1 | 20
<10
<10
20 | | <3
6
10
4 | | MAR
25
APR
15
MAY
13
JUN
03
JUL | | <1 <1 2 <1 2 | <1 <1 <1 <1 <1 <1 | 80
30
60
60 | 38
44
13
7
16
33 | | 2 <1 <1 <1 <1 <1 <1 <1 | <1 <1 <1 <1 <1 <1 <1 <1 <1 |
20
<10
<10
20
10 | | <3
6
10
4
<3 | NOTE: $\star\star$ Indicates analysis pending at time of publication, data available in district office. 07103780 MONUMENT CREEK ABOVE NORTH GATE BOULEVARD, AT U.S. AIR FORCE ACADEMY, CO LOCATION.--Lat 39°01'52", long 104°50'52", in SW¹/4SW¹/4 sec.1, T.12 S., R.67 W., El Paso County, Hydrologic Unit 11020003, on right bank, at U.S. Air Force Academy, 50 ft upstream from Denver and Rio Grande Western Railroad bridge, 0.8 mi upstream from North Gate Boulevard, and 1.5 mi downstream from Beaver Creek. DRAINAGE AREA. -- 81.7 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,640 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 28 to Nov. 4, Nov. 23 to Feb. 19, and Sept. 23-30. Records fair except for estimated daily discharges, which are poor. Storage and diversions upstream from station for municipal supply of Monument and Palmer Lake. | | | DISCHARG | E, CUBIC | FEET PE | SECOND, | WATER
Y MEAN | YEAR OCTOBER | R 19 9 1 1 | O SEPTEM | BER 19 9 2 | | | |---|--|--|--|--|--------------------------------------|--------------------------------------|---|---|--------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | DUA | SEP | | 1
2
3
4
5 | 2.1
2.0
2.0
2.6
5.4 | 1.5
2.0
3.0
4.5
4.6 | 4.0
6.0
8.0
8.0 | 6.7
6.7
6.7
6.6
6.6 | 6.0
6.0
6.0
6.0 | 5.9
5.0
5.3
9.4 | 28
28
24
21
23 | 35
35
35
35
35 | 28
26
25
26
28 | 6.3
9.0
13
14 | 3.0
2.6
2.1
2.0
1.9 | 6.8
11
10
7.2
3.2 | | 6
7
8
9
10 | 4.9
4.6
4.0
2.4
2.1 | 4.6
4.9
4.6
5.0
5.2 | 6.5
6.0
5.5
5.0
5.0 | 6.6
6.5
6.5
6.4
6.3 | 6.0
6.0
6.0
6.0 | 15
13
16
17
15 | 24
24
23
31
46 | 29
22
24
26
26 | 27
26
22
15
12 | 3.4
2.5
2.4
2.4 | 2.1
1.7
1.7
1.5
2.4 | 2.3
1.8
1.7
1.4 | | 11
12
13
14
15 | 2.3
2.4
2.5
2.5
2.5 | 4.8
4.2
3.3
3.2
3.5 | 5.0
5.0
5.2
6.0
6.5 | 6.2
6.1
6.0
5.4
5.0 | 6.0
6.0
5.8
5.5 | 14
16
16
16
15 | 56
61
67
74
75 | 25
25
25
24
24 | 11
10
10
12
12 | 6.8
9.7
6.7
13 | 2.3
2.5
5.1
4.1
3.2 | 1.3
1.1
1.7
1.7 | | 16
17
18
19
20 | 2.1
2.0
2.1
1.9 | 3.9
4.7
3.8
3.9
5.5 | 6.6
6.7
6.9
7.0
7.1 | 5.0
5.2
5.5
5.8
5.8 | 5.0
4.7
4.9
5.1
5.3 | 15
14
15
15 | 86
95
84
69
56 | 23
23
22
21
17 | 9.9
11
13
13
14 | 9.4
2.3
1.9
2.4 | 3.0
2.7
2.4
4.7
5.7 | 2.0
1.7
1.7
1.6
1.9 | | 21
22
23
24
25 | 1.8
1.7
1.7
1.8
1.8 | 3.6
3.4
4.0
6.0 | 7.2
7.2
7.2
7.2
7.2 | 5.8
5.8
5.8
5.9 | 4.7
4.7
5.3
4.8
5.0 | 14
14
14
14 | 45
45
46
40
35 | 11
12
11
11 | 15
14
14
11
5.4 | 2.9
3.6
4.0
3.3
2.4 | 7.7
9.8
10
28
28 | 1.8
1.7
1.7
1.7 | | 26
27
28
29
30
31 | 1.5
1.6
1.7
1.7
1.6 | 5.2
5.0
4.8
5.0
3.2 | 7.2
7.2
7.0
7.0
6.8
6.7 | 5.9
6.0
6.0
6.0
6.0 | 4.7
4.8
5.1
6.2 | 16
17
23
20
20 | 35
35
36
37
36 | 14
21
22
22
21
22 | 6.4
7.2
5.3
4.7
4.5 | 2.5
2.3
2.2
3.7
3.1
2.9 | 20
15
11
5.7
5.0
5.0 | 1.8
1.9
1.9
1.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 72.7
2.35
5.4
1.5
144 | 126.9
4.23
6.0
1.5
252 | 200.9
6.48
8.0
4.0
398 | 186.6
6.02
6.7
5.0
370 | 158.8
5.48
6.2
4.7
315 | 458.6
14.8
25
5.0
910 | 1385
46.2
95
21
2750 | 709
22.9
35
11
1410 | 438.4
14.6
28
4.5
870 | 180.5
5.82
14
1.9
358 | 201.9
6.51
28
1.5
400 | 81.5
2.72
11
1.1
162 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.39
9.71
1986
.95
19 9 0 | 5.40
9.37
1986
1.63
1990 | 5.06
9.00
1986
1.54
1990 | 4.58
9.51
1986
1.08
1990 | 5.04
8.85
1986
1.81
1990 | 8.49
14.8
1992
2.38
1991 | 22.7
46.2
1992
7.04
1989 | 38.6
105
1985
6.57
1989 | 20.4
36.5
1991
4.49
1989 | 8.18
20.3
1985
1.04
1989 | 6.11
13.0
1985
.90
1989 | 4.34
12.7
1985
1.16
1989 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1985 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 3172.1
8.69
149
*1.5
1.6
6290
19
5.0
1.8 | Jun 7
Feb 17
Oct 26 | | 4200.8
11.5
95
1.1
1.5
110
4.70
8330
26
6.0
1.9 | Apr 17
Sep 12
Sep 8
Apr 17
Apr 17 | | 9.86
17.9
3.82
345
.58
6.69
372
6.05
7140
26
5.7
1.6 | Apr 3
Oct 1
Aug 2
Apr 3 | 1987
1989
30 1985
5 1989
26 1989
30 1985
30 1985 | a-Also occurred Oct 26, 31, and Nov 1. 07103780 MONUMENT CREEK ABOVE NORTH GATE BOULEVARD, AT U.S. AIR FORCE ACADEMY, CO 07103800 WEST MONUMENT CREEK AT U.S. AIR FORCE ACADEMY, CO 219 ### 07103980 COTTONWOOD CREEK AT WOODMEN ROAD NEAR COLORADO SPRINGS, CO LOCATION.--Lat $38^{\circ}56^{\circ}22^{\circ}$, long $104^{\circ}44^{\circ}26^{\circ}$, in NE $^{1}/4$ NE $^{1}/4$ sec.11, T.13 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on right bank, 100 ft downstream from Woodmen Road, 4.0 mi east of Interstate 25, and 5.0 mi upstream from mouth. DRAINAGE AREA, -- 10.8 mi2. PERIOD OF RECORD. -- May 1992 to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 6,680 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS. -- No estmated daily discharges. Records fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 68 ft³/s, Aug. 24, 1992, gage height, 2.00 ft; maximum gage height, 2.56 ft, June 26, 1992; minimum daily discharge, 0.18 ft³/s, Aug. 16-18, 1992. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period May to September, 68 ${\rm ft}^3/{\rm s}$, Aug. 24, gage height, 2.00 ft; maximum gage height, 2.56 ft, June 26; minimum daily discharge, 0.18 ${\rm ft}^3/{\rm s}$, Aug. 16-18. | | | DISCHARGE | cubic | FEET PER | | | YEAR OCTOBER VALUES | 1991 | TO SEPTEMBER | 1992 | | | |---------|----------|------------|---------|------------|----------|-----------------|---------------------|--------|--------------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 1.3 | .38 | .41 | .55 | | 2 | | | | | | | | | .97 | .48 | .39 | .43 | | 3 | | | | | | | | | 1.1 | .47 | .46 | .44 | | 4 | | | | | | | | | 1.2 | .41 | .39 | .49 | | 5 | | | | | | | | | 1.0 | .28 | .39 | .97 | | 6 | | | | | | | | | .70 | .26 | .37 | .90 | | 7 | | | | | | | | | .67 | .38 | .33 | .87 | | 8 | | | | | | | | | .62 | .58 | .29 | .85 | | 9 | | | | | | | | | .63 | .77 | . 25 | .70 | | 10 | | | | | | | | | .76 | .97 | .41 | .51 | | 11 | | | | | | | | | .69 | .92 | .39 | .40 | | 12 | | | | | | | | .38 | .50 | .90 | 1.8 | .40 | | 13 | | | | | | | | .78 | .41 | .78 | .37 | .38 | | 14 | | | | | | | | .83 | .36 | .70 | .25 | .30 | | 15 | | | | | | | | .68 | .31 | .64 | .20 | .29 | | 16 | | | | | | | | .53 | . 27 | .57 | .18 | .31 | | 17 | | | | | | | | .43 | .25 | .73 | .18 | .35 | | 18 | | | | | | | | .40 | .20 | .60 | .25 | .37 | | 19 | | | | | | | | .39 | .26 | .56 | .45 | .42 | | 20 | | | | | | | | .40 | .34 | .55 | .21 | .41 | | | | | | | | | | • | ••• | | • | • | | 21 | | | | | | | | .41 | .29 | .53 | .81 | .38 | | 22 | | | | | | | | .42 | .29 | .58 | 3.3 | .38 | | 23 | | | | | | | | .42 | .31 | .56 | 5.5 | .36 | | 24 | | | | | | | | .34 | .34 | .50 | 25 | .37 | | 25 | | | | | | | | .45 | .53 | .64 | 15 | .39 | | 26 | | | | | | | | 1.1 | 1.5 | .59 | 13 | .38 | | 27 | | | | | | | | 1.0 | .88 | .54 | 8.1 | .38 | | 28 | | | | | | | | .89 | .57 | .46 | 3.9 | .37 | | 29 | | | | | | | | 1.1 | .43 | .44 | 1.9 | .37 | | 30 | | | | | | | | .78 | .34 | .47 | .90 | .37 | | 31 | | | | | | | | .83 | | .44 | .80 | | | TOTAL | | | | | | | | | 18.02 1 | 7.68 | 86.18 | 14.09 | | MEAN | | | | | | | | | .60 | .57 | 2.78 | .47 | | MAX | | | | | | | | | 1.5 | .97 | 25 | .97 | | MIN | | | | | | | | | .20 | .26 | .18 | .29 | | AC-FT | | | | | | | | | 36 | 35 | 171 | 28 | | STATIST | CS OF MO | NTHLY MEAN | DATA FO | R WATER YE | ARS 1992 | - 1 9 92 | , BY WATER YE | AR (WY | ·) | | | | | MEAN | | | | | | | | | .60 | .57 | 2.78 | .47 | | MAX | | | | | | | | | .60 | .57 | 2.78 | .47 | | (WY) | | | | | | | | | | 992 | 1992 | 1992 | | MIN | | | | | | | | | .60 | .57 | 2.78 | .47 | | (WY) | | | | | | | | | | 992 | 1992 | 1992 | 07103990 COTTONWOOD CREEK AT MOUTH AT PIKEVIEW, CO 07104000 MONUMENT CREEK AT PIKEVIEW, CO 07104905 MONUMENT CREEK AT BIJOU STREET, AT COLORADO SPRINGS, CO ###
07105000 BEAR CREEK NEAR COLORADO SPRINGS, CO LOCATION.--Lat 38°49'21", long 104°53'17", in NE¹/4NE¹/4 sec.21, T.14 S., R.67 W., El Paso County, Hydrologic Unit 11020003, on left bank, 30 ft east of 26th Street, 0.6 mi southwest of Bear Creek Nature Center, and 3.4 mi upstream from mouth. DRAINAGE AREA. -- 6.89 mi2. PERIOD OF RECORD. -- May 1992 to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 6,520 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS. -- No estmated daily discharges. Records fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10 ft³/s, May 28, 1992, gage height, 0.87 ft; maximum gage height, 1.25 ft, Aug. 24, 1992; minimum daily discharge, 0.02 ft³/s, Sept. 18, 1992. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period May to September, 10 ft³/s, May 28, gage height, 0.87 ft; maximum gage height, 1.25 ft, Aug. 24; minimum daily discharge, 0.02 ft³/s, Sept. 18. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
Y MEAN V | CAR OCTOBER | R 1991 1 | O SEPTEM | BER 1992 | | | |---------|----------|------------|----------|------------|-----------|----------------------|-------------|----------|----------|----------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 2.5 | .96 | .34 | 1.1 | | 2 | | | | | | | | | 1.7 | 1.3 | .60 | .60 | | 3 | | | | | | | | | 1.9 | 1.7 | 1.0 | .80 | | 4 | 1.9 | 1.3 | .83 | .50 | | 5 | | | | | | | | | 1.8 | .96 | .59 | .57 | | 6 | | | | | | | | | 1.9 | .78 | .24 | .57 | | 7 | | | | | | | | 2.4 | 1.5 | .82 | .38 | .31 | | 8 | | | - | | | | | 2.5 | 2.3 | .80 | .76 | .24 | | 9 | | | | | | | | 2.1 | 2.1 | .61 | 1.1 | .17 | | | | | | | | | | | | | | | | 10 | | | | | | | | 3.2 | 1.5 | .62 | 1.2 | .03 | | 11 | | | | | | | | 2.1 | 2.0 | .90 | 1.5 | .38 | | 12 | | | | | | | | 2.8 | . 95 | .74 | . 93 | .06 | | 13 | | | | | | | | 3.6 | 1.5 | .84 | .90 | .22 | | 14 | | | | | | | | 2.6 | 1.2 | .84 | . 91 | .42 | | 15 | | | | | | | | 2.3 | 1.7 | .83 | .70 | .35 | | 16 | | | | | | | | 1.9 | .73 | .64 | .54 | .13 | | 17 | | | | | | | | 2.1 | .80 | 1.8 | 1.0 | .47 | | 18 | ' | | | | | | | 1.8 | 1.2 | 1.1 | .85 | .02 | | 19 | | | | | | | | 1.8 | 1.3 | .44 | .50 | .36 | | 20 | | | | | | | | 1.6 | 1.3 | 1.8 | .12 | .22 | | 20 | | | | | | | | 1.0 | 1.3 | 1.0 | .12 | .22 | | 21 | | | | | | | | 1.5 | 1.2 | .42 | .20 | .04 | | 22 | | | | | | | | 1.8 | . 93 | .72 | . 45 | .15 | | 23 | | | | | | | | 1.2 | .94 | .37 | 1.1 | .13 | | 24 | | | | | | | | 2.0 | 1.2 | .73 | 5.4 | .05 | | 25 | | | | | | | | | | | | | | 25 | | | | | | | | 1.3 | 1.0 | .77 | 4.0 | .05 | | 26 | | | | | | | | 2.4 | 1.4 | .76 | 1.7 | .06 | | 27 | | | | | | | | 4.8 | 2.1 | .66 | 1.2 | .29 | | 28 | | | | | | | | 4.9 | 1.2 | .41 | 1.1 | .19 | | 29 | | | | | | | | 2.9 | . 94 | .10 | .62 | .30 | | 30 | | | | | | | | 2.9 | 1.7 | .09 | .59 | .09 | | 31 | | | | | | | | 2.3 | | .26 | .34 | | | TOTAL | | | | | | | | | 44.39 | 25.07 | 31.69 | 8.87 | | MEAN | | | | | | | | | 1.48 | .81 | 1.02 | .30 | | MAX | | | | | | | | | 2.5 | 1.8 | 5.4 | 1.1 | | | | | | | | | | | | | | | | MIN | | | | | | | | | .73 | .09 | .12 | .02 | | AC-FT | | | | | | | | | 88 | 50 | 63 | 18 | | STATIST | cs of Mo | NTHLY MEAN | DATA FO | R WATER YE | EARS 1992 | - 1992, | BY WATER Y | EAR (WY | • | | | | | MEAN | | | | | | | | | 1.48 | .81 | 1.02 | .30 | | MAX | | | | | | | | | 1.48 | .81 | 1.02 | .30 | | (WY) | | | | | | | | | 1992 | 1992 | 1992 | 1992 | | MIN | | | | | | | | | 1.48 | .81 | 1.02 | .30 | | (WY) | | | | | | | | | 1992 | 1992 | 1992 | 1992 | | 141 | | | | | | | | | 1772 | 1776 | 1774 | 1772 | #### 07105490 CHEYENNE CREEK AT EVANS AVENUE AT COLORADO SPRINGS, CO LOCATION.--Lat 38°47'26", Long 104°51'49", SW¹/4NW¹/4 sec.35, T.14 S., R.67W., El Paso County, Hydrologic Unit 11020003, on right bank 23 ft upstream from Evans Avenue, 30 ft downstream from the confluence of North and South Cheyenne Creeks, and 3.1 mi upstream from mouth. DRAINAGE AREA .-- 10.7 mi2. MIN (WY) --- --- --- --- --- --- --- --- --- 20.3 1992 12.3 1992 2.63 1992 5 28 1992 1.75 1992 PERIOD OF RECORD. -- April to September 1992. GAGE.--Water-stage recorder. Elevation of gage is 6,280 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS. -- No estimated daily discharges. Records good. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 41 $\rm ft^3/s$, May 13, 1992, gage height, 1.05 ft, from rating curve extended above 36 $\rm ft^3/s$; minimum daily, 0.52 $\rm ft^3/s$, Sept. 30, 1992. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period April to September, 41 ft³/s at 0715 May 13, gage height, 1.05 ft, from rating curve extended above 36 ft³/s; minimum daily, 0.52 ft³/s, Sept. 30. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP 4.5 7.2 7.7 28 4.9 ---___ ---21 1.9 -------------<u>-</u>-------19 23 .78 2.9 4.6 ------3 ---------25 24 4.2 ------4 ___ 25 23 5.4 5.4 3.8 5 2.3 3.7 3.6 ___ 16 19 2.3 2.7 1.4 ---23 23 6 7 18 4.3 1.7 .88 .89 ------------------1.1 1.5 24 ---------------22 15 ___ ___ ___ ___ 19 ___ 17 3.1 .78 .82 3.3 .86 22 19 1.1 10 ---20 21 27 ------11 ---14 1.0 3.9 .86 .95 .75 ---------------1.5 3.9 .75 12 11 ---------14 ------___ 22 6.9 . 90 6.9 3.0 ---24 2.8 3.7 4.7 15 ---------___ ------10 ------------16 ---18 8.3 3.4 1.4 1.4 ------.80 .72 5.8 3.3 3.1 4.3 1.2 17 15 ------------18 18 ------4.8 2.6 2.5 2.3 20 ___ ---------___ ------14 9.8 2.0 1.9 3.0 3.3 21 ___ 15 4.5 3.7 .77 7.4 22 23 ---------21 21 3.9 3.3 1.2 ---------------------17 19 .84 ------25 ------------20 17 3.9 2.3 22 .86 5.2 17 13 26 21 18 3.3 16 .71 23 24 17 27 28 ------1.5 .72 ------------15 12 ------------6.6 15 13 1.1 .68 ---------1.3 30 ---___ ---21 20 7.6 6.0 .52 ---------31 ---24 5.5 ------52.56 1.75 TOTAL. ___ ___ 630 368.2 81.60 163.66 ___ ---___ ------20.3 12.3 MEAN 2.63 7.7 5.28 27 28 4.9 MAX ------------------.52 MIN 3.3 ___ ---------___ ---___ 78 ------___ 104 AC-FT ---------1250 730 162 325 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1992, BY WATER YEAR (WY) 5.28 5.28 MEAN 20.3 12.3 12.3 2.63 ---___ ___ ------1.75 1.75 MAX ------------20.3 (WY) 1992 1992 1992 1992 1992 ### 07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO LOCATION.--Lat $38^{\circ}48^{\circ}59^{\circ}$, long $104^{\circ}49^{\circ}20^{\circ}$, in NE $^{1}/45W^{1}/4$ sec.19, T.14 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on left bank 31 ft upstream from bridge on Nevada Ave. in Colorado Springs, 100 ft downstream from mouth of Cheyenne Creek, and 1.3 mi downstream from Monument Creek. DRAINAGE AREA. -- 392 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1921 to September 1924, January 1976 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1976 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,900 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 1, 1972, nonrecording gage at same site at different datum. REMARKS.--Estimated daily discharges: Aug. 12 and 13. Records good except for estimated daily discharges, which are fair, and those above 400 ft³/s, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation and municipal use, return flow from irrigated areas and discharges from sewage treatment plants. | | | DISCHARG | E, CUBIC | FEET PER | SECOND,
DAILY | WATER
MEAN | YEAR OCTOBER | 1991 | TO SEPTEMB | ER 1992 | | | |---|-------------------------------------|---|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|---------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 34
31
30
31
35 | 39
35
37
53
56 | 34
36
35
42
41 | 18
17
19
21
23 | 31
31
30
30
28 | 37
36
40
241
86 | 74
72
71
69
71 | 122
126
128
124
110 | 129
98
94
86
95 | 54
54
57
55
52 | 29
28
39
50
29 | 54
51
49
48
44 | | 6
7
8
9 | 38
40
39
32
28 | 47
55
44
41
53 | 40
38
37
36
37 | 21
22
18
18
20 | 31
31
30
31
31 | 60
54
193
97
79 | 72
74
79
82
97 | 106
81
74
81
104 | 92
9 8
92
92
80 | 45
34
39
36
30 | 25
23
19
19
82 | 41
37
37
32
29 | | 11
12
13
14
15 | 26
27
27
28
31 | 38
37
36
33
38 | 40
5 8
37
31
33 | 22
20
19
21
17 | 31
33
34
35
34 | 69
62
62
61
64 | 116
131
136
151
205 | 82
97
100
67
70 | 66
66
62
59
66 | 32
37
38
36
40 | 40
120
60
37
31 | 30
30
29
54
46 | | 16
17
18
19
20 | 29
28
28
30
30 | 65
88
72
82
54 | 33
28
27
31
25 | 24
23
21
21
24 | 33
32
34
34
35 | 61
62
65
66
66 | 228
200
198
179
156 | 66
64
64
54 | 59
54
52
89
110 | 43
60
42
34
37 | 32
44
37
41
28 |
31
31
29
63
53 | | 21
22
23
24
25 | 31
31
30
35
35 | 57
38
29
33
38 | 23
23
23
22
23 | 26
24
26
29
28 | 34
34
38
35
35 | 75
81
74
72
72 | 140
137
137
131
121 | 61
44
48
44
49 | 88
67
77
94
128 | 36
41
53
32
96 | 68
67
34
508
155 | 35
26
25
25
23 | | 26
27
28
29
30
31 | 27
27
25
25
29
39 | 41
34
33
42
32 | 26
22
22
18
16
16 | 29
28
29
30
29
30 | 35
36
35
36
 | 69
81
86
77
72
69 | 122
122
119
123
124 | 94
181
105
77
89
96 | 221
1 89
125
69
61 | 63
35
25
41
34
29 | 131
93
82
71
65
59 | 24
24
23
24
22 | | TOTAL
MEAN
MAX
MIN
AC-FT | 956
30.8
40
25
1900 | 1380
46.0
88
29
2740 | 953
30.7
58
16
1890 | 717
23.1
30
17
1420 | 957
33.0
38
28
1900 | 2389
77.1
241
36
4740 | 3737
125
228
69
7410 | 2672
86.2
181
44
5300 | 2758
91.9
221
52
5470 | 1340
43.2
96
25
2660 | 2146
69.2
508
19
4260 | 1069
35.6
63
22
2120 | | | | | | | | | , BY WATER YE | | | | 26.5 | | | MEAN
MAX
(WY)
MIN
(WY) | 41.7
212
1985
10.6
1978 | 35.5
143
1985
11.4
1979 | 28.9
81.3
1985
11.8
1979 | 26.9
61.6
19 8 5
5.12
1979 | 26.0
56.6
1985
6.27
1979 | 38.6
83.6
1985
11.4
1976 | 72.2
166
1985
14.8
1978 | 162
767
1980
23.5
1976 | 96.1
350
1983
16.3
1976 | 65.6
227
1983
12.9
1976 | 76.7
167
1983
22.1
1978 | 38.1
76.0
1985
7.98
1978 | | SUMMARY | STATISTIC | cs | FOR 19 | 991 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | | WATER YEA | ARS 1976 - | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 19777
54.2
993
a16
19
39230
90
37
23 | Jun 6
Jul 17
Feb 15 | | 21074
57.6
508
16
18
1940
5.84
41800
112
39
24 | Aug 24
Dec 30
Dec 29
Jun 26
Jun 26 | | 61.3
141
23.2
1810
2.0
3.3
6000
7.15
44390
126
31 | Aug 19
Jan 3
Jul 29 | 1985
1978
8 1980
9 1978
3 1979
9 1978
9 1978 | a-Also occurred Dec 30 and 31. b-Also occurred Dec 31. c-From rating curve extended on basis of slope-area measurement of peak flow. d-From rating curve extended above 2400 $\rm ft^3/s$. 07105500 FOUNTAIN CREEK AT COLORADO SPRINGS, CO ### 07105530 FOUNTAIN CREEK BELOW JANITELL ROAD BELOW COLORADO SPRINGS, CO LOCATION.--Lat 38°48'11", long 104°47'43", in NE¹/4SE¹/4 sec.29, T.14 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on right bank at upstream side of bridge on Janitell Road below Colorado Springs. DRAINAGE AREA. -- 413 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1989 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,840 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to July 10, 1990, at site 500 ft upstream, at datum 2.00 ft, higher. REMARKS.--No estimated daily discharges. Records good except those above 500 ft³/s, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation and municipal use, return flow from irrigated areas, and flows from sewage treatment plants. | | , | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER | YEAR OCTOBER | 1991 | то ѕертемве | R 1992 | "ene prem | | |--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|---|------------------------------------|------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | VALUES
APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 94
92
88
85
85 | 80
86
88
106
117 | 91
93
95
103 | 78
74
80
89
96 | 99
99
97
97
87 | 91
93
95
231
128 | 117
118
119
118
116 | 138
133
143
142
128 | 134
112
119
122
131 | 77
94
110
108
110 | 67
67
77
77
60 | 91
74
61
53
46 | | 6
7
8
9
10 | 90
89
69
50
51 | 110
123
114
118
138 | 85
83
80
64
64 | 98
101
97
101
103 | 100
98
98
99
99 | 107
105
222
157
138 | 121
123
125
128
128 | 118
111
108
110
124 | 131
132
131
136
134 | 108
100
88
78
71 | 69
60
56
59
112 | 45
45
45
38
45 | | 11
12
13
14
15 | 54
55
58
55
56 | 123
118
112
108
105 | 69
90
54
53
61 | 109
105
95
92
83 | 97
99
99
98
97 | 133
129
132
135
140 | 134
136
140
145
182 | 94
104
128
106
103 | 136
142
140
135
135 | 84
109
116
94
86 | 61
158
101
68
62 | 44
47
46
102
100 | | 16
17
18
19
20 | 53
55
52
57
56 | 117
134
116
120
104 | 59
53
50
63
51 | 92
88
84
79
85 | 94
97
95
91
96 | 137
135
134
132
128 | 194
197
196
189
178 | 95
93
86
77
88 | 122
108
97
110
114 | 95
110
86
68
70 | 61
81
67
65
62 | 101
75
47
87
85 | | 21
22
23
24
25 | 58
51
52
50
50 | 113
97
90
88
95 | 51
57
51
49
46 | 88
83
82
90 | 95
94
96
91
90 | 135
137
124
123
124 | 171
169
172
168
165 | 89
88
89
88
90 | 106
100
103
112
277 | 70
65
86
67
122 | 94
113
87
796
235 | 54
41
48
53
56 | | 26
27
28
29
30
31 | 46
54
48
46
53
61 | 94
91
88
96
88 | 58
52
62
76
76
79 | 93
90
89
93
93 | 89
90
92
93
 | 122
126
126
122
118
114 | 169
154
144
140
141 | 118
155
110
91
99 | 188
172
165
97
83 | 98
84
67
82
74
68 | 226
176
144
135
127
115 | 57
54
53
50
49 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1913
61.7
94
46
3790 | 106
138
80 | 2121
68.4
103
46
4210 | 2815
90.8
109
74
5580 | 2766
95.4
100
87
5490 | 4073
131
231
91
8080 | 4497
150
197
116
8920 | 3357
108
155
77
6660 | 3924
131
277
83
7780 | 2745
88.5
122
65
5440 | 3738
121
796
56
7410 | 1792
59.7
102
38
3550 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOI | R WATER YE | ARS 1990 | - 1992 | , BY WATER YE | EAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 66.7
71.7
1991
61.7
1992 | 106
1992
48.6 | 56.6
68.4
1992
39.5
1990 | 69.9
90.8
1992
46.2
1990 | 76.1
95.4
1992
56.4
1990 | 97.8
131
1992
76.4
1991 | 117
150
1992
96.6
1991 | 120
163
1990
87.3
1991 | 114
142
1991
69.4
1990 | 110
145
1990
88.5
1992 | 112
139
1991
77.4
1990 | 70.6
90.1
1991
59.7
1992 | | SUMMARY | STATISTIC | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | | WATER YE. | ARS 1990 - | - 1992 | | LOWEST A HIGHEST LOWEST I ANNUAL I INSTANTA ANNUAL I 10 PERCI 50 PERCI | | AN N MINIMUM AK FLOW AK STAGE C-FT) SS | | 33864
92.8
792
a 46
49
67170
130
79
56 | Jun 6
Oct 26
Oct 23 | | 36918
101
796
38
44
2180
6.83
73230
140
95
53 | Aug 24
Sep 9
Sep 5
Jun 25 | | 95.9
101
90.9
796
32
35
5480
09.02
69450
136
79 | Aug 24
Nov 21
Nov 29
May 29
May 29 | 1989
1989
1990 | a-Also occurred Oct 29, and Dec 25. b-From rating curve extended above 2240 ft³/s. c-From floodmarks. d-From floodmarks, at datum 2.00 ft higher. 07105530 FOUNTAIN CREEK BELOW JANITELL ROAD, BELOW COLORADO SPRINGS, CO 07105533 FOUNTAIN CREEK AT CIRCLE DRIVE BELOW COLORADO SPRINGS, CO ### 07105800 FOUNTAIN CREEK AT SECURITY, CO LOCATION.--Lat 38°43'46", long 104°44'00", in NE¹/4SW¹/4 sec.24, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on left bank on upstream side of Carson Road bridge, 0.9 mi southwest of South Security School, 3.5 mi northeast of Fountain, and 5.5 mi upstream from Jimmy Camp Creek. DRAINAGE AREA .-- 495 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1964 to current year. REVISED RECORDS. -- WDR CO-85-1: 1984 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,640 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 26, 1966, at site 1,040 ft upstream at datum 6.00 ft higher. Oct. 26, 1966, to July 18, 1972, at site 980 ft upstream at datum 6.00 ft higher, July 19, 1972, to Feb. 20 1980, at site 980 ft downstream at datum 6.00 ft lower. Feb. 21, 1980 to June 30, 1986 at present site at datum 3.00 ft lower. REMARKS.--Estmated daily discharges: Oct. 10, 24, 26, 27, Dec. 14, 15, 18, June 25, 26, July 9-11, 15, 19-22,
28, Aug. 1, 3, 5, 6, 8, 9, 15, 16, 20, 21, Sept. 5-14, 18, 19, and Sept. 23. Records good except for June 25, 26, and daily discharges above 500 ft³/s, which are poor. Natural flow of stream affected by storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation of about 5,100 acres and municipal use, return flow from irrigated areas and flows from sewage treatment plants. | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBER | R 1991 T | О ЅЕРТЕМЕ | BER 1992 | | | |---|-------------------------------------|---|-------------------------------------|--|-------------------------------------|--|--|---|------------------------------------|---|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 110
95
89
81
80 | 103
106
103
122
128 | 99
100
102
110
118 | 94
90
90
91
93 | 120
126
122
118
110 | 130
141
143
427
181 | 136
149
164
163
160 | 134
128
138
150
137 | 131
115
113
106
111 | 136
136
156
151
136 | 77
79
90
111
67 | 118
100
78
64
56 | | 6
7
8
9 | 82
85
72
44
47 | 123
127
112
108
126 | 104
85
90
64
63 | 96
100
87
86
90 | 118
119
119
121
122 | 143
103
361
146
140 | 160
158
150
161
185 | 124
119
104
94
110 | 114
123
122
148
147 | 136
116
95
65
51 | 79
74
69
72
139 | 52
47
50
44
52 | | 11
12
13
14
15 | 57
62
66
68
73 | 105
109
108
107
115 | 62
107
71
47
59 | 97
87
76
89
89 | 116
118
118
122
115 | 135
142
146
146
158 | 180
174
180
198
236 | 102
92
164
132
121 | 128
111
99
85
88 | 66
108
113
90
65 | 102
185
131
81
66 | 44
47
48
101
117 | | 16
17
18
19
20 | 66
65
62
67
65 | 129
156
148
153
121 | 62
57
52
68
63 | 96
103
95
88
91 | 114
114
110
109
114 | 158
154
151
156
150 | 290
229
207
203
193 | 99
90
87
79
78 | 85
77
74
93
113 | 85
129
89
65
82 | 50
103
67
79
57 | 96
77
36
71
101 | | 21
22
23
24
25 | 72
58
55
61
63 | 123
111
98
100
114 | 57
61
55
59
52 | 98
99
99
112
113 | 113
108
110
103
100 | 153
167
148
140
135 | 190
184
184
181
171 | 86
80
76
72
73 | 125
86
71
99
246 | 85
76
115
84
144 | 98
140
80
824
217 | 66
56
62
78
80 | | 26
27
28
29
30
31 | 49
57
66
53
65
80 | 116
113
110
113
104 | 65
78
96
95
92
95 | 118
119
115
120
138
120 | 102
110
117
125 | 135
136
153
152
146
133 | 169
157
140
137
133 | 92
193
134
82
73
97 | 378
244
227
171
159 | 118
87
66
88
86
81 | 212
164
127
133
132
130 | 80
78
79
75
70 | | TOTAL MEAN MAX MIN AC-FT | 2115
68.2
110
44
4200 | 3511
117
156
98
6960 | 2388
77.0
118
47
4740 | 3079
99.3
138
76
6110 | 3333
115
126
100
6610 | 5009
162
427
103
9940 | 5322
177
290
133
10560 | 3340
108
193
72
6620 | 3989
133
378
71
7910 | 3100
100
156
51
6150 | 4035
130
824
50
8000 | 2123
70.8
118
36
4210 | | | ICS OF MO | | | | | | , BY WATER Y | - | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 66.0
317
1985
12.6
1965 | 57.3
188
1985
15.1
1965 | 49.2
133
1986
17.8
1976 | 55.5
115
1985
11.9
1976 | 62.0
115
1992
14.1
1972 | 73.5
162
1992
21.3
1965 | 92.2
250
1985
23.7
1978 | 162
795
1980
24.7
1966 | 145
487
1965
17.8
1968 | 98.1
317
1983
30.1
1972 | 107
234
1983
23.5
1974 | 67.2
170
1982
13.1
1968 | | SUMMARY | STATISTI | c s | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YEA | ARS 1965 - | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 38760
106
1380
44
58
76880
144
90
63 | Jun 6
Oct 9
Oct 23 | | 41344
113
824
36
47
3490
5.15
82010
160
105
62 | Aug 24
Sep 18
Sep 7
Jun 26
Jun 26 | | 86.3
203
31.5
5650
1.9
4.2
25000
11.30
62560
153
61 | Mar : | | a-From rating curve extended above 2600 $\rm ft^3/s$. b-From rating curve extended above 2900 $\rm ft^3/s$, on basis of slope-area measurement of peak flow. c-From floodmarks, site and datum then in use. #### 07105800 FOUNTAIN CREEK AT SECURITY, CO--continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- December 1984 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: October 1990 to current year. WATER TEMPERATURE: October 1990 to current year. pH: October 1990 to current year. DISSOLVED OXYGEN: October 1990 to current year. INSTRUMENTATION .-- Water-quality monitor. REMARKS.--Records for daily water temperature are good. Records for daily specific conductance, pH, and dissolved oxygen are fair. Daily data that are not published are either missing or of unacceptable quality. Daily maximum and minimum specific conductance and mean water temperature, ph and dissolved oxygen data available in the district office. EXTREMES FOR PERIOD OF RECORD .-- SPECIFIC CONDUCTANCE: Maximum, 1,270 microsiemens, Dec. 12, 1991; minimum, 163 microsiemens, Aug. 3, 1991. pH: Maximum, 8.4 units, on several days; minimum 6.9 units, Nov. 7, 1990. WATER TEMPERATURE: Maximum, 29.8°C, July 17, 1991; minimum, 0.0°C, on many days during winter months. DISSOLVED OXYGEN: Maximum, 10.6 mg/L, Jan. 8, 1992; minimum, 3.5 mg/L, Aug. 9, 1992. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES EXTREMES FOR CURRENT YEAR.— SPECIFIC CONDUCTANCE: Maximum, 1,270 microsiemens, Dec. 12; minimum, 194 microsiemens, Aug. 10. pH: Maximum, 8.4 units, Oct. 29-31; minimum, 7.3 units, Oct. 7 and June 25. WATER TEMPERATURE: Maximum, 27.9°C, Aug. 9; minimum, 0.0°C, on many days during winter months. DISSOLVED OXYGEN: Maximum, 10.6 mg/L, Jan. 8; minimum, 3.5 mg/L, Aug. 9. DAY NOV JUL AUG SEP OCT DEC FEB MAR APR MAY JUN JAN 574 832 ---___ 535 ---------------___ ---------576 ------___ ___ ___ ---------794 775 | MEAN | | | | | 777 | | 577 | | | | | | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------------| | 31 | 904 | | | 811 | | 723 | | 577 | | | | | | 30 | 860 | | | 784 | | 716 | 543 | 577 | 719 | | | 84 8 | | 29 | 870 | | | 762 | 809 | 706 | 553 | 602 | | | | 861 | | 28 | 856 | | | 698 | 805 | 786 | 565 | 539 | | | | | | 27 | 851 | | | 759 | 812 | 812 | 550 | 301 | | | | 898 | | 26 | 861 | 841 | 796 | 793 | 811 | 778 | 546 | 602 | | | | 895 | | 25 | 831 | 862 | | 822 | 792 | 780 | 548 | 638 | | 622 | | 927 | | 24 | 888 | 814 | | 833 | 796 | 780 | 546 | 608 | | 796 | 371 | 877 | | 23 | 784 | 824 | 830 | 861 | 789 | 787 | 542 | 598 | | 714 | 534 | | | 22 | 826 | 784 | 783 | 846 | 775 | 776 | 544 | 607 | | 837 | 458 | | | 21 | 762 | 777 | 798 | 849 | 768 | 775 | 524 | 685 | | 843 | 768 | | | 20 | 847 | 800 | 805 | 840 | 740 | 767 | 492 | | | 840 | | | | 19 | 852 | 772 | 872 | 839 | 782 | 773 | 463 | | 663 | 784 | 750 | 779 | | 18 | 832 | 718 | | 818 | 805 | 771 | 466 | | 738 | 620 | | 851 | | 17 | 804 | 684 | | 802 | 797 | 774 | 524 | | 725 | 646 | | | | 16 | 819 | 746 | | 828 | 757 | 793 | 459 | | 714 | 783 | | | | 15 | 808 | 785 | | 827 | 784 | 778 | 451 | 626 | 710 | 821 | | | | 14 | 840 | 801 | | 806 | 783 | 808 | 477 | 637 | 733 | 791 | | 726 | 07105800 FOUNTAIN CREEK AT SECURITY, CO--continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | COTO | DAY | MAX | MIN |
---|--|--|--|---|---|---|---|--|--|---|--|--|--| | 2 7.9 7.7 8.3 8.1 ——————————————————————————————————— | | OCT | OBER | Novi | EMBER | DEC | EMBER | JAN | JARY | FEB | RUARY | MA | ксн | | 7 7.6 7.3 8.1 7.9 8.1 8.0 6.2 8.2 8.1 8.0 8.2 8.1 8.0 8.2 7.9 8.1 8.0 8.2 7.9 8.1 8.0 8.2 7.9 8.1 8.1 8.0 8.2 7.9 8.1 8.1 8.0 8.2 7.9 8.2 8.1 8.0 8.2 7.9 8.2 8.1 8.0 8.2 8.1 8.0 8.2 7.9 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 8.2 8.1 8.0 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 7.2 8.2 8.1 8.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 7.2 8.2 8.1 7.2 9.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8 | 2
3
4 | 7.9
7.9
7.9 | 7.7
7.6
7.7 | 8.3
8.3
8.2 | 8.1
8.1
8.0 | 8.2
8.2 | 8.0
8.0 | 8.2
8.2
8.2 | 8.2
8.2
8.2 | 8.1
8.2
8.2 | 8.1
8.1
8.2 | 8.0
8.0
8.1 | 7.8
7.9
7.8 | | 122 8.1 7.8 8.0 7.8 8.0 7.8 8.1 8.0 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.8 8.2 8.1 8.0 7.9 8.1 8.0 7.9 8.1 8.0 7.9 8.2 8.1 8.0 7.9 8.1 8.0 7.9 8.1 8.0 7.9 8.2 8.1 8.0 7.9 8.2 8.1 8.0 7.9 8.1 8.0 7.9 8.1 8.0 7.9 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 7.9 9.2 8.2 8.1 8.0 8.0 7.9 8.2 8.2 8.1 8.0 8.0 7.9 8.2 8.2 8.1 8.0 8.0 7.9 8.2 8.2 8.1 8.0 7.9 7.9 8.2 8.2 8.1 8.0 8.0 7.9 8.2 8.2 8.1 8.0 7.9 7.9 8.2 8.2 8.1 8.0 8.0 7.9 8.2 8.2 8.1 8.0 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.1 7.9 7.9 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 | 7
8
9 | 7.6
7.6
7.9 | 7.3
7.4
7.4 | 8.1
8.1
8.0 | 7.9
7.9
7.9 | 8.1
8.1
8.1 | 8.0
8.0
8.0 | 8.2
8.2
8.2 | 8.2
8.1
8.1 | 8.1
8.1
8.0 | 8.1
8.0
8.0 | 8.2
8.2 | 8.0
7.9 | | 17 8 8.0 7.7 8.0 7.7 8.0 7.7 8.2 8.1 8.0 7.9 8.0 7.9 19 8.2 7.7 7.9 7.8 8.2 8.1 8.0 7.9 8.0 7.9 19 8.2 7.9 7.9 7.9 7.7 8.2 8.1 8.0 7.9 8.0 7.9 19 8.2 7.9 7.9 7.9 7.7 8.2 8.1 8.0 7.9 8.0 7.9 19 8.0 7.9 8.0 8.0 7.9 8.0 8.0 7.9 8.0 8.0 7.9 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 8.0 7.9 8.0 8.0 8.0 8.0 7.9 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 12
13
14 | 8.1
8.0
8.1 | 7.8
7.8
7.8 | 8.0
8.2
8.2 | 7.8
8.0
7.9 | 8.1
8.2
8.2 | 8.0
8.1
8.1 | 8.2
8.2
8.2 | 8.1
8.1
7.9 | 8.0
8.0 | 7.8
7.8 | 8.2
8.2
8.1 | 8.1
8.0
8.0 | | 22 8.1 7.9 6.0 7.8 8.2 8.2 8.0 7.9 8.0 7.9 23 8.1 7.9 6.1 7.9 6.2 8.1 7.9 7.9 8.0 7.9 24 8.1 7.7 8.1 7.9 8.2 8.1 7.9 7.9 8.0 7.9 24 8.1 7.7 8.1 7.9 8.2 8.1 7.9 7.9 8.0 7.9 24 8.1 7.9 7.0 8.0 7.9 8.2 8.1 7.9 7.9 8.1 8.0 7.9 25 8.2 8.0 8.0 7.8 8.2 8.1 7.9 7.9 7.9 8.1 8.1 7.9 7.9 27 8.2 8.0 8.0 7.9 8.2 8.2 8.1 7.9 7.9 7.9 8.2 8.0 8.1 7.9 28 8.3 8.0 8.0 7.9 8.2 8.2 8.2 8.0 7.9 8.2 8.0 8.1 7.9 28 8.3 8.0 8.2 8.2 8.2 8.0 7.9 8.2 7.9 8.2 8.2 8.0 7.9 8.2 8.0 8.1 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 7.9 8.2 7.9 8.2 8.2 8.0 8.0 8.1 7.9 8.1 7.9 7.0 8.1 7.9 7.0 8.1 7.9 8.2 8.0 8.0 8.1 7.9 7.9 8.2 8.0 8.0 8.1 7.9 7.9 8.2 8.0 8.0 8.0 8.1 7.9 7.9 8.1 8.0 7.9 7.5 8.2 8.0 8.0 8.0 8.1 7.9 7.9 8.1 8.0 7.6 8.2 8.2 8.0 8.0 8.0 8.1 7.9 7.5 8.0 7.6 8.2 8.2 8.1 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 17
18
19 | 8.0
8.2
8.2 | 7.7
7.7
7.9 | 8.0
7.9
7.9 | 7.7
7.8
7.7 | 8.2
8.2
8.2 | 8.1
8.1
8.1 | 8.0
8.0
8.0 | 7.9
7.9
7.9 | | | 8.0
8.0
8.0 | 7.9
7.9 | | 27 8.2 8.0 6.0 7.9 8.2 8.2 8.0 7.9 8.2 7.9 28 8.3 8.0 8.2 8.2 8.0 7.9 8.2 7.9 29 8.4 8.2 8.2 8.2 8.0 8.0 8.0 8.1 7.9 30 8.4 8.2 8.2 8.2 8.2 8.0 8.0 8.0 8.1 7.9 31 8.4 8.2 8.2 8.2 8.2 8.1 8.0 8.1 7.9 MONTH 8.4 7.3 8.2 8.2 8.2 8.1 8.0 8.1 7.9 MONTH 8.4 7.3 JUNE JULY AUGUST SEPTEMBER 1 8.2 8.0 7.9 7.8 7.8 7.6 7.9 7.8 7.9 7.5 8.0 7.6 3 8.0 7.9 7.9 7.8 7.7 7.6 7.9 7.8 8.0 7.6 4 7.9 7.9 7.8 8.0 7.6 4 7.9 7.9 8.1 8.0 7.6
7.6 8.3 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.0 7.8 8.0 7.9 7.9 7.8 8.0 7.6 8.0 7.8 9.0 7.9 7.8 8.0 7.6 8.0 7.8 9.0 7.9 7.8 8.0 7.6 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 7.8 7.9 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 7.8 7.9 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.8 9.0 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.9 7.8 8.0 7.8 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.8 7.8 7.9 7.8 8.0 7.9 7.8 7.8 7.9 7.8 8.0 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.8 7.9 7.8 7.8 7.9 7.8 7.8 7.9 7.9 7.8 7.8 7.9 7.9 7.8 7.8 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 22
23
24 | 8.1
8.1
8.1 | 7.9
7.9
7.7 | 8.0
8.1
8.1 | 7.8
7.9
7.9 | 8.2
8.2
8.2 | 8.2
8.1
8.1 | 8.0
7.9
8.0 | 7.9
7.9
7.9 | | | 8.0
8.0
8.0 | 7.9
7.9
7.9 | | APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 8.2 8.0 7.9 7.8 7.8 7.6 7.9 7.8 8.0 7.6 3 8.0 7.9 7.9 7.8 7.8 7.6 7.9 7.8 8.0 7.6 3 8.0 7.9 7.9 7.8 7.8 7.7 7.6 7.9 7.7 8.0 7.6 4 7.9 7.9 8.1 7.9 7.7 7.6 7.9 7.7 8.0 7.6 5 7.9 7.9 8.1 8.0 7.7 7.6 7.9 7.7 8.0 7.6 6 7.9 7.8 8.0 7.8 7.7 7.6 7.9 7.7 8.0 7.8 6 7.9 7.8 8.0 7.8 7.6 7.6 7.9 7.7 8.0 7.8 7 7.9 7.8 8.0 7.8 7.6 7.6 7.9 7.7 8.0 7.9 8 7.9 7.8 8.0 7.8 7.6 7.6 7.9 7.7 8.0 7.9 8 7.9 7.8 8.0 7.8 7.6 7.6 7.9 7.7 8.0 7.8 10 7.9 7.8 8.0 7.7 7.6 7.6 7.9 7.7 8.0 7.8 11 7.9 7.8 8.0 7.8 7.6 7.6 7.5 7.9 7.7 8.0 7.8 10 7.9 7.8 8.0 7.8 7.6 7.6 7.5 7.9 7.7 8.0 7.8 11 7.9 7.8 7.0 7.9 7.6 7.6 7.4 7.9 7.9 7.7 8.0 7.8 12 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.4 7.9 7.8 7.4 8.1 7.7 11 7.9 7.8 7.9 7.6 7.6 7.6 7.5 8.1 7.9 7.9 7.7 8.0 7.9 12 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 14 7.8 7.7 8.0 7.8 7.6 7.6 7.6 7.7 7.6 8.0 7.9 8.1 7.7 8.2 7.9 15 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 16 8.0 7.8 7.9 7.8 7.9 7.6 7.6 7.6 7.7 7.6 8.0 7.9 8.1 7.7 8.2 7.9 17 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 18 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.7 7.6 8.0 7.9 8.0 7.9 8.0 7.4 8.2 7.9 19 7.9 7.8 7.9 7.8 7.9 7.6 7.6 7.6 7.7 7.6 8.0 7.9 8.0 7.9 8.0 7.4 8.2 7.9 10 7.9 7.8 7.9 7.8 7.9 7.6 7.6 7.6 7.7 7.6 8.0 7.9 7.9 7.7 7.6 7.0 7.9 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | 27
28
29
30 | 8.2
8.3
8.4
8.4 | 8.0
8.0
8.2
8.2 | 8.0 | 7.9

 | 8.2
8.2
8.2
8.2 | 8.2
8.2
8.2
8.2 | 8.0
8.0
8.0
8.0 | 7.9
7.9
8.0
8.0 | 8.2
8.2
8.1 | 8.0
7.9
7.9 | 8.1

8.2 | 7.9

8.0 | | 1 8.2 8.0 7.9 7.8 7.8 7.6 7.9 7.8 8.0 7.9 7.8 8.0 7.6 7.9 7.8 8.0 7.6 7.9 7.8 8.0 7.6 7.9 7.7 8.0 7.6 7.9 7.7 8.0 7.6 7.9 7.7 8.0 7.6 7.9 7.7 8.0 7.6 7.9 7.7 8.0 7.6 8.3 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.6 7.6 7.9 7.7 8.0 7.9 7.7 8.0 7.9 7.7 8.0 7.9 7.7 8.0 7.9 7.7 8.0 7.9 7.7 8.0 | MONTH | 8.4 | 7.3 | | | | | 8.2 | 7.9 | | | | | | 2 81 79 79 7.8 7.9 7.8 7.7 7.6 7.9 7.8 8.0 7.6 4 7.9 7.9 7.8 8.0 7.6 4 7.9 7.9 7.8 8.1 7.9 7.7 7.6 7.9 7.7 8.0 7.6 7.6 7.9 7.9 8.1 8.0 7.6 7.6 7.9 7.7 8.0 7.6 7.8 7.9 7.9 8.1 8.0 7.9 7.9 8.1 8.0 7.9 7.7 7.6 8.3 7.8 8.0 7.8 7.9 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.8 8.0 7.9 7.9 7.8 8.0 7.8 7.6 7.6 7.6 7.9 7.7 8.0 7.8 8.0 7.8 9.0 7.8 7.9 7.8 8.0 7.8 7.6 7.4 7.9 7.9 7.7 8.0 7.8 7.8 7.9 7.8 7.9 7.6 7.6 7.4 7.9 7.8 7.4 8.1 7.7 8.1 7.7 8.1 7.9 7.8 7.9 7.6 7.6 7.6 7.5 8.1 7.9 7.9 7.5 8.0 7.9 12 7.9 7.8 7.8 7.9 7.6 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 13 7.9 7.8 7.8 7.8 7.6 7.7 7.6 8.0 7.9 8.1 7.9 7.5 8.0 7.9 14 7.8 7.7 8.0 7.8 7.6 7.7 7.6 8.0 7.9 8.0 7.4 8.2 7.5 15 7.9 7.4 8.2 7.8 7.8 7.6 7.7 7.6 8.0 7.9 8.0 7.4 8.2 7.5 15 7.9 7.4 8.2 7.8 7.8 7.7 7.6 8.0 7.9 7.5 8.0 7.9 7.5 16 8.0 7.9 7.8 7.4 8.2 7.5 7.5 7.9 7.4 8.2 7.5 7.5 7.9 7.8 7.9 7.8 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.5 8.0 7.9 7.8 7.9 7.8 7.8 7.8 7.8 7.6 8.0 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.8 7.9 7.9 7.0 8.2 8.0 7.9 7.9 7.7 7.6 8.0 7.9 7.7 7.6 8.0 7.9 7.7 7.6 8.0 7.9 7.7 7.6 8.0 7.9 7.7 7.6 8.2 8.0 7.9 7.9 7.8 7.9 7.8 7.9 7.9 7.9 7.9 7.0 8.1 7.9 7.9 7.9 7.9 7.9 7.0 8.1 7.9 7.9 7.9 7.9 7.9 7.0 8.1 7.9 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.9 7.9 7.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | | | | | | | | | | | | | | | 7 7.9 7.8 8.0 7.8 7.6 7.6 7.9 7.7 8.1 7.9 8.1 7.9 8 7.9 7.8 8.0 7.8 7.6 7.5 7.9 7.7 8.0 7.8 9 7.9 7.8 8.0 7.8 7.6 7.5 7.9 7.7 8.0 7.8 10 7.9 7.8 7.6 7.6 7.4 7.9 7.8 7.4 8.1 7.7 11 7.9 7.8 7.9 7.6 7.6 7.6 7.4 7.9 7.8 7.4 8.1 7.7 11 7.9 7.8 7.9 7.6 7.6 7.6 7.5 8.1 7.9 7.9 7.5 8.0 7.9 12 7.9 7.8 7.9 7.6 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 13 7.9 7.8 7.8 7.9 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 14 7.8 7.7 8.0 7.8 7.7 7.6 8.0 7.9 8.0 7.9 8.0 7.4 8.2 7.9 14 7.8 7.7 8.0 7.8 7.7 7.6 8.0 7.9 7.8 7.4 8.2 7.5 7.5 7.9 7.4 8.2 7.5 7.5 7.9 7.4 8.2 7.5 7.5 7.9 7.4 8.2 7.5 7.5 7.9 7.4 8.2 7.5 7.5 7.9 7.7 7.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 | | API | RIL | M. | AY | Jt | JNE | Jt | JLY | AUC | GUST | SEPTE | MBER | | 12 7.9 7.8 7.9 7.6 7.6 7.5 8.0 7.9 8.1 7.7 8.2 7.9 13 7.9 7.8 7.8 7.6 7.7 7.6 8.0 7.9 8.0 7.4 8.2 7.9 15 7.9 7.4 8.2 7.8 7.8 7.6 8.0 7.9 7.7 7.6 7.9 7.5 16 8.0 7.8 7.8 7.6 8.0 7.9 7.7 7.6 8.0 7.9 16 8.0 7.8 7.8 7.6 8.0 7.9 7.7 7.6 8.0 7.9 18 7.9 7.8 7.6 8.0 7.9 7.7 7.6 8.0 7.7 18 7.9 7.8 7.6 8.0 7.9 7.7 7.6 8.0 7.7 18 7.9 7.8 7.6 7.9 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 2
3
4 | 8.2
8.1
8.0
7.9 | 8.0
7.9
7.9
7.9 | 7.9
7.9
7.9
8.1 | 7.8
7.8
7.8
7.9 | 7.8
7.7
7.8
7.7 | 7.6
7.6
7.4
7.6 |
 | | 7.9
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7 | 7.9
8.0
8.0
8.0 | 7.5
7.6
7.6
7.9 | | 17 8.1 7.8 7.8 7.7 7.9 7.7 8.0 7.7 18 7.9 7.8 7.6 7.9 7.8 7.9 8.2 8.0 19 8.0 7.7 7.9 7.4 7.9 7.8 7.9 8.1 7.7 20 8.1 7.8 7.7 7.5 7.9 7.8 7.9 8.0 7.9 21 8.1 7.8 7.9 7.7 7.8 7.6 8.0 7.9 8.0 7.9 22 8.1 7.9 7.9 7.7 7.8 7.5 8.0 7.8 8.0 7.9 23 8.1 7.9 7.9 7.7 7.8 7.5 8.0 7.8 8.1 7.9 24 8.0 7.9 8.0 7.6 7.8 7.5 7.9 7.8 8.0 | 2
3
4
5
6
7
8
9 | 8.2
8.1
8.0
7.9
7.9
7.9
7.9 | 8.0
7.9
7.9
7.9
7.9
7.8
7.8
7.8 | 7.9
7.9
7.9
8.1
8.1
8.0
8.0
8.0 | 7.8
7.8
7.9
8.0
7.8
7.8
7.7
7.8 | 7.8
7.7
7.8
7.7
7.7
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.6
7.5 | | | 7.9
7.9
7.9
8.3
7.9
7.9
7.9 | 7.8
7.8
7.7
7.7
7.8
7.8
7.7
7.7 | 7.9
8.0
8.0
8.0
8.0
8.0 | 7.5
7.6
7.6
7.9
7.8
7.9
7.9
7.8
7.8 | | 22 8.1 7.9 7.9 7.7 7.8 7.5 8.0 7.8 8.0 7.9 23 8.1 7.9 7.9 7.7 7.9 7.9 8.1 7.9 24 8.0 7.9 8.0 7.6 7.8 7.5 7.9 7.8 8.0 7.9 25 8.0 8.0 7.8 7.5 8.1 7.3 7.9 7.7 8.0 8.0 7.9 26 8.0 7.9 8.2 7.6 8.1 7.9 8.0 7.9 27 8.2 7.6 8.1 7.9 8.0 7.9 28 8.0 7.8 8.1 | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.2
8.1
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 8.0
7.9
7.9
7.9
7.8
7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
8.1
8.0
8.0
8.0
7.9
7.9
7.9
8.0 | 7.8
7.8
7.9
8.0
7.8
7.7
7.8
7.6
7.6
7.6 | 7.8
7.7
7.8
7.7
7.7
7.6
7.6
7.6
7.6
7.6 | 7.6
7.6
7.6
7.6
7.6
7.6
7.5
7.4
7.5
7.5
7.6 |

7.9
8.1
8.0
8.0 | 7.9 | 7.9
7.9
7.9
7.9
8.3
7.9
7.9
7.9
7.8
7.9
7.8 | 7.8
7.7
7.7
7.8
7.8
7.7
7.7
7.7
7.7
7.7 | 7.9
8.0
8.0
8.0
8.0
8.1
8.0
8.1
8.0
8.1
8.2 | 7.5
7.6
7.6
7.9
7.8
7.9
7.8
7.8
7.7
7.9
7.9 | | 27 7.9 7.7 7.9 7.5 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.2
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.9
8.0
8.1
7.9 | 8.0
7.9
7.9
7.9
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
8.1
8.1
8.0
8.0
8.0
7.9
7.9
7.9
7.9
8.0
8.2 | 7.8
7.8
7.9
8.0
7.8
7.7
7.8
7.6
7.6
7.6
7.8
7.8 | 7.8
7.7
7.8
7.7
7.6
7.6
7.6
7.6
7.6
7.7
7.7
8
7.8
7.8 | 7.6
7.6
7.6
7.6
7.6
7.5
7.4
7.5
7.6
7.6
7.6
7.6
7.6 |

7.9
8.1
8.0
8.0
8.1
8.0
7.9
7.9 | 7.9
7.9
7.9
7.9
7.9 | 7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.9
7.8
7.7
7.7 | 7.8
7.7
7.7
7.8
7.8
7.7
7.7
7.7
7.7
7.4
7.5
7.7
7.4
7.6 | 7.9
8.0
8.0
8.0
8.0
8.1
8.0
8.1
8.0
8.2
8.2
7.9
8.0
8.0 | 7.5
7.6
7.6
7.9
7.8
7.9
7.8
7.9
7.9
7.9
7.5
7.5
7.7 | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.2
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 8.0
7.9
7.9
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
8.1
8.0
8.0
8.0
7.9
7.9
7.8
8.0
8.2 | 7.8
7.8
7.9
8.0
7.8
7.7
7.8
7.6
7.6
7.6
7.6
7.8
7.7
7.7 | 7.8
7.7
7.8
7.7
7.6
7.6
7.6
7.6
7.7
7.7
7.8
7.8
7.8
7.8
7.8
7.7 |
7.66
7.4
7.66
7.66
7.5
7.4
7.5
7.66
7.5
7.66
7.66
7.7
7.66
7.66
7. |

7.9
8.1
8.0
8.0
8.1
8.0
7.9
7.9
7.9
7.9 | 7.9
7.9
7.9
7.9
7.9
7.9
7.8
7.8
7.8 | 7.9 7.9 7.9 7.9 7.9 7.9 8.3 7.9 7.9 7.9 7.8 7.9 7.7 7.7 7.7 7.7 7.9 7.9 | 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.7 7.4 7.5 7.4 7.6 7.6 | 7.9
8.0
8.0
8.0
8.0
8.1
8.0
8.1
8.0
8.2
8.2
8.2
7.9
8.0
8.1
8.0
8.1
8.0 | 7.56
7.66
7.9
7.8
7.9
7.8
7.9
7.9
7.9
7.5
7.7
7.7
7.9
7.9
7.9 | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
21
21
21
21
21
21
21
21
21
21
21
21
21 | 8.2
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
8.1
8.1
8.1
8.0
8.0
8.0
8.0
8.1 | 8.0
7.9
7.9
7.9
7.8
7.8
7.8
7.8
7.8
7.8
7.8
7.8 | 7.9
7.9
7.9
8.1
8.0
8.0
8.0
7.9
7.9
7.9
8.0
8.2

7.9
7.9
8.0
7.9
7.9
8.0
7.9 | 7.8
7.8
7.9
8.0
7.8
7.7
7.8
7.6
7.6
7.6
7.6
7.7
7.7
7.7
7.7
7.7
7.7 | 7.8
7.7
7.8
7.7
7.6
7.6
7.6
7.6
7.7
7.8
7.8
7.8
7.8
7.8
7.8
8.1
8.2
7.9
8.1 | 7.66
7.66
7.66
7.65
7.4
7.55
7.66
7.67
7.64
7.55
7.67
7.55
7.57
7.57
7.57
7.57
7.57 |

7.9
8.1
8.0
8.0
8.0
8.0
8.0
7.9
7.9
7.9
7.9
7.9 | 7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.7
7.8
7.8
7.8
7.8 | 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 7.8 7.8 7.7 7.7 7.8 7.8 7.7 7.7 7.7 7.4 7.5 7.7 7.4 7.6 7.6 7.6 7.6 7.7 7.7 7.9 7.9 7.9 | 7.9
8.0
8.0
8.0
8.0
8.1
8.0
8.1
8.2
8.2
7.9
8.0
8.2
8.2
8.2
8.2
8.1
8.0
8.0
8.1 | 7.5
7.6
7.6
7.9
7.8
7.9
7.8
7.9
7.9
7.5
7.5
7.7
7.7
7.9
7.9
7.9
7.9
7.9 | # 07105800 FOUNTAIN CREEK AT SECURITY, CO--continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |--|--|---|--|--|--|--|--|--|--|--|--|--| | | ОСТ | OBER | NOV | EMBER | DEC | EMBER | JAN | UARY | FEB | RUARY | MA | ARCH | | 1
2
3
4
5 | 21.4
21.5
21.4
12.8
17.2 | 11.4
12.2
11.6
10.3
7.6 | 6.5
6.2
9.2
11.1
11.6 | 2.2
1.1
.0
2.4
4.9 | 7.6
7.4
8.6
7.7 | .2
1.5
2.5 | 7.0
8.6
7.9
8.2
7.0 | 2.7
.6
1.2
2.3
1.7 | 10.1
9.1
5.9
8.7
7.1 | 2.6
3.5
3.4
2.5
1.2 | 12.3
14.0
10.1
8.0
11.7 | 4.4
5.5
5.3
3.6
4.2 | | 6
7
8
9
10 | 17.5
19.3
19.3
19.3
20.6 | 7.8
8.7
10.6 | 12.2
10.8
12.4
13.9
11.0 | 5.3
6.1
4.9
7.2
8.3 | 9.8
9.4
8.6
7.8
6.9 | 2.5
.3
3.8 | 8.6
6.5
7.5
7.6
8.9 | 3.1
2.8
1.5
1.0 | 9.8
9.6
9.3
9.0
9.7 | 1.5
1.7
1.7
2.4
2.6 | 14.1
12.6
12.7
8.1
12.0 | 5.1
5.1
2.5
1.6
1.4 | | 11
12
13
14
15 | 20.7
20.7
18.7
17.5
18.3 | 9.0
9.1
10.4
10.2
9.3 | 11.5
13.0
13.1
11.5
8.4 | 8.1
5.7
5.2
5.3
6.2 | 4.4
6.9
6.0
5.8
6.5 | .6
1.3
 | 8.4
5.4
6.9
7.0
5.0 | 1.7
2.1
.4
.6 | 10.8
11.7
9.0
11.2
10.6 | 4.8
5.3
3.5
4.2
2.5 | 12.7
12.9
14.7
14.2
13.5 | 2.9
4.3
4.8
5.5
6.0 | | 16
17
18
19
20 | 19.8
19.7
16.9
16.5
15.8 | 8.1
7.7
7.7
7.6
8.1 | 6.7
9.0
8.2
8.0
10.3 | 3.9
3.3
3.2
3.3
1.1 | 8.0
6.2
5.3
7.8
5.9 | 2.9 | 8.6
5.8
6.5
8.1
8.4 | .9
1.8
1.0
.1 | 6.9
9.9
10.7
11.2
11.9 | 2.7
2.8
1.5
1.4
3.2 | 14.5
14.0
10.7
10.7
13.9 | 5.5
5.9
6.8
5.9
4.3 | | 21
22
23
24
25 | 17.1
17.8
16.0
14.5
15.0 | 8.4
8.4
8.3
9.2
6.4 | 10.8
7.2
7.5
8.6
9.0 | 5.0
4.1
1.3
.3
3.1 | 8.0
4.8
6.7
6.3
7.3 | 3.0
3.4
1.8
.4 | 9.2
7.6
8.5
9.1
7.7 | 1.6
.8
.5
2.1
1.9 | 13.2
10.9
9.9
11.6
10.1 | 5.5
4.2
4.5
2.7
5.1 | 12.7
10.0
11.9
12.5
15.4 | 4.9
3.5
3.8
5.4
5.6 | | 26
27
28
29
30
31 | 14.6
15.3
9.9
6.2
5.1
6.8 | 6.0
7.0
2.6
2.5
.2 | 10.4 | 4.1 | 6.3
5.6
6.3
7.8
7.3
6.0 | .5
.2
1.9
1.5
1.4
3.1 | 8.8
8.9
9.9
9.9
10.2
11.0 | 2.4
2.1
1.6
2.6
2.2
2.7 | 10.8
13.4
14.0
14.0 | 3.4
6.1
4.4
4.4 | 14.9
12.9
9.9
14.3
15.7
9.9 | 6.3
6.4
7.7
6.3
5.5
6.5 | | MONTH | 21.5 | | | | | | 11.0 | .0 | 14.0 | 1.2 | 15.7 | 1.4 | | | | | | | | | | | | | | | | | AP | RIL | М | AY | J | UNE | J | ULY | UA | GUST | SEPT | EMBER | | 1
2
3
4
5 | AP
14.9
14.2
17.4
16.2
16.1 | 4.7
5.4
5.8
7.2
7.1 | 21.1
18.0
18.6
18.2
18.7 | 10.3
10.1
9.6
10.1
9.6 | 14.4
21.2
19.3
20.4
20.0 | 9.1
9.6
11.1
11.5
13.3 | 25.0

25.3 | 15.4

 | 26.7
27.5
23.7
25.1
26.3 | 14.7
15.0
15.4
15.7
15.4 | SEPT
21.0
20.7
21.0
21.3
21.9 | 13.6
12.2
11.4
12.8
11.0 | | 2
3
4 | 14.9
14.2
17.4
16.2 | 4.7
5.4
5.8
7.2 | 21.1
18.0
18.6
18.2 | 10.3
10.1
9.6
10.1 | 14.4
21.2
19.3
20.4 | 9.1
9.6
11.1
11.5 | 25.0
 | 15.4 | 26.7
27.5
23.7
25.1 | 14.7
15.0
15.4
15.7 | 21.0
20.7
21.0
21.3 | 13.6
12.2
11.4
12.8 | | 2
3
4
5
6
7
8
9 | 14.9
14.2
17.4
16.2
16.1
16.5
15.6
16.5
17.6 | 4.7
5.4
5.8
7.2
7.1
7.5
7.7
6.8
7.9 | 21.1
18.0
18.6
18.2
18.7
19.9
18.5
19.7
20.5 | 10.3
10.1
9.6
10.1
9.6
10.3
10.2
11.4
10.8 | 14.4
21.2
19.3
20.4
20.0
18.4
18.1
19.6
17.7 | 9.1
9.6
11.1
11.5
13.3
12.7
12.3
12.0
13.3 | 25.0

25.3
 | 15.4 | 26.7
27.5
23.7
25.1
26.3
22.0
27.2
27.7
27.9 | 14.7
15.0
15.4
15.7
15.4
16.5
16.7
16.1 | 21.0
20.7
21.0
21.3
21.9
22.3
20.3
21.2
21.6 | 13.6
12.2
11.4
12.8
11.0
11.0
11.1
11.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.9
14.2
17.4
16.2
16.1
16.5
17.6
17.4
15.5
11.4
17.9
16.0 | 4.7
5.4
5.8
7.2
7.1
7.5
7.7
6.8
7.9
8.3
8.4
8.5
7.2 | 21.1
18.0
18.6
18.2
18.7
19.9
18.5
19.7
20.5
14.1
21.1
18.9
20.6
20.7 | 10.3
10.1
9.6
10.1
9.6
10.3
10.2
11.4
10.8
10.9 | 14.4
21.2
19.3
20.4
20.0
18.4
18.1
19.6
17.7
22.9
19.9
21.4
24.2
23.8 | 9.1
9.6
11.1
11.5
13.3
12.7
12.3
12.0
13.3
11.5 | 25.0

25.3

24.3
26.8
21.8
21.8
26.0 | 15.4

16.2
15.9
15.1
14.5 | 26.7
27.5
23.7
25.1
26.3
22.0
27.2
27.7
27.9
20.7
23.9
21.3
23.2
25.8 | 14.7
15.0
15.4
15.7
15.4
16.5
16.7
16.1
17.7 | 21.0
20.7
21.0
21.3
21.9
22.3
20.3
21.2
21.6
21.9
23.6
24.0
24.0
21.2
22.5 | 13.6
12.2
11.4
12.8
11.0
11.0
11.1
11.4
11.4
11.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.9
14.2
17.4
16.2
16.1
16.5
17.6
17.4
15.5
11.9
16.0
15.7 | 4.7
5.4
5.8
7.2
7.1
7.5
7.7
6.8
7.9
8.3
8.4
8.5
7.2
9.5
9.3 |
21.1
18.0
18.6
18.2
18.7
19.9
18.5
19.7
20.5
14.1
21.1
18.9
20.6
20.7
22.7
20.6
21.8
22.6
24.0 | 10.3
10.1
9.6
10.1
9.6
10.3
10.2
11.4
10.8
10.9
10.6
10.9
11.4
11.5
11.1
11.0
10.8 | 14.4
21.2
19.3
20.4
20.0
18.4
18.1
19.6
17.7
22.9
19.9
21.4
24.2
23.8
23.5
22.3
23.6
23.8
22.9 | 9.1
9.6
11.1
11.5
13.3
12.7
12.3
12.0
13.3
11.5
12.8
12.7
14.7
15.1
14.7 | 25.0

25.3

24.3
26.8
21.8
26.0
23.3
18.9
21.7
24.7 | 15.4
 | 26.7
27.5
23.7
25.1
26.3
22.0
27.2
27.7
27.9
20.7
23.9
21.3
25.8
26.8 | 14.7
15.0
15.4
15.7
15.4
16.5
16.7
16.1
17.7
15.4
13.7
14.8
15.2 | 21.0
20.7
21.0
21.3
21.9
22.3
20.3
21.2
21.6
21.9
23.6
24.0
21.2
22.5

24.8
19.8
22.1 | 13.6
12.2
11.4
12.8
11.0
11.0
11.1
11.4
11.4
11.5
13.7
13.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 14.9
14.2
17.4
16.2
16.1
16.5
17.6
17.4
15.5
11.9
16.0
15.7
11.0
11.4
12.4
16.3
12.6
16.1 | 4.7
5.4
5.8
7.2
7.1
7.5
7.7
6.8
7.9
8.3
8.4
8.5
7.2
9.5
9.3
9.0
8.0
8.0
8.0
5.9
5.7 | 21.1
18.0
18.6
18.2
18.7
19.9
18.5
19.7
20.5
14.1
21.1
18.9
20.7
22.7
20.6
21.8
22.6
24.0
23.8
24.4 | 10.3
10.1
9.6
10.1
9.6
10.3
10.2
11.4
10.8
10.9
10.6
10.9
11.4
11.5
11.1
11.0
10.8
10.1 | 14.4
21.2
19.3
20.4
20.0
18.4
18.1
19.6
17.7
22.9
19.9
21.4
24.2
23.8
23.5
23.6
23.8
22.9
19.9 | 9.1
9.6
11.1
11.5
13.3
12.7
12.3
12.0
13.3
11.5
12.8
12.7
15.1
14.7
15.1
14.7
15.1
14.7
15.4 | 25.0

25.3

24.3
26.8
21.8
26.0
23.3
18.9
21.7
24.7
26.8
21.5 | 15.4
 | 26.7
27.5
23.7
25.1
26.3
22.0
27.2
27.7
27.9
20.7
23.9
21.3
23.2
25.8
26.8
23.5
23.5
24.9
24.9
24.9
24.9
24.9
21.3
38.3 | 14.7
15.0
15.4
15.7
15.4
16.5
16.7
16.1
17.7
15.4
13.7
14.8
15.2
16.0
14.3
16.1
15.7 | 21.0
20.7
21.0
21.3
21.9
22.3
20.3
21.2
21.6
21.9
23.6
24.0
21.2
22.5

24.8
19.8
22.1
18.7
20.3
21.3
21.3
22.6
22.6 | 13.6
12.2
11.4
12.8
11.0
11.0
11.1
11.4
11.4
11.5
11.7
13.7
13.1

11.7
11.8
11.5
11.3
10.9
11.4
11.8 | 07105800 FOUNTAIN CREEK AT SECURITY, CO--continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |--|--|---|--|--|---|---|---|---|--|---|---|--| | | OCT | OBER | NOV | EMBER | DEC | EMBER | JAN | UARY | FEB | RUARY | MA | RCH | | 1
2
3
4
5 | 6.7
6.4
5.8 | 4.8
4.8
4.4 | 9.5
9.9
9.7
8.7
8.2 | 7.7
8.0
6.5

6.7 | 9.4
9.9
9.3
9.0 | 7.3
7.4
7.3
7.3 | 9.3
10.2
10.0
9.6
10.3 | 8.1
7.7
7.9
7.9
8.4 | 9.6
9.2
9.5
9.7
9.9 | 7.5
7.7
8.3
7.9
8.1 | 8.6
8.2
8.2
10.1
9.6 | 6.6
6.4
6.8
6.8
7.2 | | 6
7
8
9
10 | 6.0

6.0
6.4 | 4.3

4.8
4.6 | 8.3
8.5
9.1
8.2
7.9 | 6.5
5.9
6.7
6.1
5.2 | 8.9
8.7
8.6
8.9
8.9 | 6.7
6.8
7.3
7.2
7.4 | 9.5
9.3
10.6
10.2
9.8 | 7.7
8.3
7.9
8.1
7.6 | 9.9
9.8
10.0
9.6
9.6 | 7.6
7.7
7.9
7.9
7.8 | 9.5

 | 7.8 | | 11
12
13
14
15 | 6.0 | 4.5 | 7.9
7.8
9.2 | 5.7
6.0
6.6 | 9.0
9.5
9.8
9.6
9.7 | 8.3
7.1
7.8
8.0
7.7 | 10.1
9.5
10.1
9.7
10.2 | 7.4
8.3
7.9
8.0
8.4 | 9.2
9.1
9.2
9.1
9.6 | 7.8
7.2
7.7
7.5
7.6 | 9.6
9.5
8.8
8.5 | 7.4
7.3
6.6
6.4 | | 16
17
18
19
20 | 7.5
7.4 |

5.2
5.7 | 8.3
8.6
8.8
10.1
10.4 | 7.1
6.4
7.2
7.7
6.9 | 9.8
8.9
9.0
9.0
8.8 | 7.4
7.8
8.2
7.4
8.2 | 9.5
9.5
9.7
9.8
9.8 | 7.5
8.2
8.2
7.6
7.6 | 9.6
9.7
10.1
10.3
9.6 | 8.2
7.7
7.7
7.6
7.5 | 8.5
8.6 | 7.3 | | 21
22
23
24
25 | 8.3 | 6.1 | | | 8.9
8.8
9.6
9.8
10.0 | 7.6
8.2
8.1
8.1
7.9 | 9.2
9.8
9.8
9.4
9.8 | 7.3
7.9
7.5
7.3
8.0 | 9.1
9.4
9.6
10.1
9.1 | 7.3
7.5
7.8
7.5
7.7 | 8.4
8.5
8.0
7.6
8.6 | 6.4
6.8
6.0
6.0 | | 26
27
28
29
30
31 | 8.2
8.2
8.5
8.6
9.5 | 5.7
5.5
6.0
5.4
6.9
7.6 | | | 10.2
10.2
9.8
9.4
9.8
9.2 | 8.5
8.4
8.2
7.6
7.9
8.2 | 9.5
9.9
10.0
9.8
9.9
9.7 | 7.8
8.0
7.8
7.7
7.7 | 9.5
8.9
8.6
8.6 | 7.5
6.8
6.6
6.4 | 8.3
8.0
8.8
8.7 | 6.9
6.7
5.5
5.5 | | MONTH | | | | | | | 10.6 | 7.3 | 10.3 | 6.4 | | | | | | | | | | | | | | | | | | | API | RIL | M | AY | J | JNE | J | ULY | AUG | GUST | SEPT | EMBER | | 1
2
3
4
5 | AP1 8.9 8.4 8.3 | 6.2
6.3
6.4 | 7.6
8.1
7.9
7.4
7.6 | 5.4
6.0
5.7
5.6
5.4 | 7.9
7.0
7.4
7.4
6.7 | 5.8
5.4
5.2
5.3
5.3 | Jt

 | ULY | AU0
6.5
6.7
6.2
5.8
5.8 | 4.5
4.6
4.4
4.1
4.3 | SEPTE
6.7

6.9
6.6
6.8 | 5.0
5.3
5.2 | | 2
3
4 | 8.9
8.4 | 6.2
6.3 | 7.6
8.1
7.9
7.4 | 5.4
6.0
5.7
5.6 | 7.9
7.0
7.4
7.4 | 5.8
5.4
5.2
5.3 | | | 6.5
6.7
6.2
5.8 | 4.5
4.6
4.4
4.1 | 6.7

6.9
6.6 | 5.0
5.3 | | 2
3
4
5
6
7
8
9 | 8.9
8.4
8.3
8.3
8.5
8.2 | 6.2
6.3
6.4
6.2
6.5
6.1
6.0 | 7.6
8.1
7.9
7.4
7.6
7.5
7.4
7.9
6.9 | 5.4
6.0
5.7
5.6
5.4
5.3
5.1
5.1 | 7.9
7.0
7.4
7.4
6.7
6.7
6.5 | 5.8
5.4
5.2
5.3
5.3
5.5
5.1 | | | 6.5
6.7
6.2
5.8
5.7
5.9
5.5 | 4.5
4.6
4.4
4.1
4.3
4.4
4.1
3.7
3.5 | 6.7

6.9
6.6
6.8
7.0
7.2
7.1 | 5.0
5.3
5.2
5.3
5.6
4.9 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 8.9
8.4
8.3
8.3
8.5
8.2
8.0
7.8
8.0
7.9 | 6.2
6.3
6.4
6.2
6.5
6.1
6.0
6.0
6.2
6.7
4.5 | 7.6
8.1
7.9
7.4
7.6
7.5
7.4
7.9
6.9
7.9
7.8
7.6
8.3
7.9 | 5.4
6.0
5.7
5.6
5.4
5.3
5.1
5.1
6.1
5.1
6.4
4.8
5.2 | 7.9 7.0 7.4 7.4 6.7 6.7 6.7 6.5 7.1 7.1 6.9 5.4 | 5.8
5.2
5.3
5.3
5.5
5.1
4.8

4.9
5.6
4.4
4.0
4.6 | 6.5 | 5.0 | 6.5
6.7
6.2
5.8
5.8
5.7
5.5
5.7
5.2
6.4
8.2 | 4.5
4.6
4.4
4.1
4.3
4.4
4.1
3.7
3.5
3.9 | 6.7
6.9
6.6
6.8
7.0
7.2
7.1
7.3
6.9
6.6 | 5.0
5.3
5.2
5.3
5.6
4.9
4.5
4.9
5.1
4.8 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 8.9
8.4
8.3
8.3
8.5
8.2
8.0
7.8
8.0
7.9
8.0
8.6
8.5
9.3 | 6.2
6.3
6.4
6.2
6.5
6.1
6.0
6.0
6.2
6.7
4.5
6.3
6.8
7.9 | 7.6
8.1
7.9
7.4
7.6
7.5
7.4
7.9
6.9
7.8
8.3
7.9
7.0 | 5.4
6.0
5.7
5.6
5.4
5.3
5.1
5.1
6.1
5.1
6.4
4.8
5.2
4.7 | 7.9 7.0 7.4 7.4 6.7 6.7 6.7 6.5 7.1 7.1 6.9 5.4 5.4 5.7 6.0 5.8 6.0 | 5.8
5.2
5.3
5.3
5.5
5.1
4.8
4.9
5.6
4.4
4.6
4.6
4.8
4.4
4.1 | 6.5
6.4
6.2
6.4
6.5 | 5.4
4.6
4.4 | 6.5
6.7
6.2
5.8
5.8
5.7
5.5
5.7
5.2
6.4
8.2
7.2
7.2
7.2
6.3
6.6 | 4.5
4.6
4.4
4.1
4.3
4.4
4.1
3.7
3.5
3.9 | 6.7
6.9
6.6
6.8
7.0
7.1
7.3
6.9
6.6
7.1
7.0
 | 5.0
5.3
5.2
5.3
5.6
4.9
4.5
4.8
4.5 | |
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 8.9
8.4
8.3
8.3
8.5
8.2
8.0
7.8
8.0
7.8
8.0
7.8
8.9
8.5
9.3
9.1
9.3
9.1
9.3
9.3 | 6.2
6.3
6.4
6.5
6.1
6.0
6.2
6.5
6.1
6.0
6.2
6.3
6.3
7.9
6.8
7.9
7.4
6.5
7.9 | 7.6
8.1
7.9
7.4
7.6
7.5
7.4
7.9
6.9
7.8
8.3
7.9
7.0 | 5.4
6.0
5.7
5.6
5.4
5.3
5.1
5.1
6.1
5.1
6.4
4.8
5.2
4.7 | 7.9 7.0 7.4 7.4 6.7 6.7 6.7 6.5 7.1 7.1 6.9 5.4 5.4 5.7 6.0 6.8 7.4 6.2 5.9 | 5.8
5.2
5.3
5.3
5.5
5.1
4.8
4.9
5.6
4.4
4.6
4.6
4.9
4.8
4.1
4.9
5.5
4.2
4.7 | 6.5
6.4

6.5
5.8
5.8
5.8
5.8 | 5.0
4.4

5.0
4.4

5.4
4.6
4.6
4.0
4.5
4.0
4.2
4.0
3.6 | 6.5
6.7
6.2
5.8
5.8
5.7
5.5
5.7
5.2
6.4
8.2
7.2

6.3
6.6
5.7 | 4.5
4.6
4.4
4.1
4.3
4.4
4.1
3.7
3.5
3.9

5.6
5.9

4.4
4.4
4.4 | 6.7
6.9
6.6
6.8
6.8
7.0
7.1
7.3
6.9
6.6
7.1
7.0

6.8
6.8
7.0
7.1
7.0
6.6
6.8
7.0
7.1
7.0
7.1
7.0
7.1
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 5.0
5.3
5.2
5.3
6.9
4.5
4.9
5.1
4.8
4.5
5.2
5.0
5.2
5.0 | 07105820 CLOVER DITCH DRAIN NEAR WIDEFIELD #### 07105900 JIMMY CAMP CREEK AT FOUNTAIN, CO LOCATION.--Lat 38°41'04", long 104°41'17", in NW¹/4SE¹/4 sec.5, T.16 S., R.65 W., El Paso County, Hydrologic Unit 11020003, on right bank at downstream side of bridge on county road, 1,000 ft east of Fountain, and 1.5 mi upstream from mouth. Prior to Aug. 14, 1991, at site 110 ft upstream. DRAINAGE AREA. -- 65.6 m12. PERIOD OF RECORD. -- January 1976 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,530 ft above National Geodetic Vertical Datum of 1929, from topographic map. January 1976 to Sept. 3, 1986 at datum 4.0 ft, higher. Prior to Aug. 14, 1991, at site 110 ft upstream, at same datum. REMARKS.--Estimated daily discharges: Dec. 1-3, 12, 13, 26, 31, Jan. 6, 7, 12, 13, 15, 19, 23, Mar. 2-5, Apr. 10-14, and May 8-12. Records fair except for estimated daily discharges, and those above 50 ft³/s, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARG | GE, CUBI | C FEET PE | | WATER Y | YEAR OCTOBE
ALUES | R 1991 | TO SEPTEM | MBER 1992 | | | |---|--|---|-------------------------------------|---|-------------------------------------|--------------------------------------|--|--|-------------------------------------|--|-------------------------------------|---| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .90
.77
.75
.81
9.2 | 3.7
2.9
2.9
2.8
3.5 | 2.0
2.2
2.0
1.9 | 1.5
1.2
1.3
1.2 | 2.8
2.7
2.9
2.3
1.6 | 2.2
2.0
2.0
3.0
2.5 | 1.8
1.8
1.8
1.8 | 1.6
1.7
1.6
1.7 | 6.0
5.4
3.4
2.1
1.7 | .83
1.1
.87
.94 | 2.0
1.6
1.8
2.6
2.2 | .97
.89
1.0
1.0 | | 6
7
8
9
10 | 9.9
.86
.98
1.1
1.0 | 3.7
3.4
3.0
2.9
2.9 | 1.9
2.0
2.0
1.9
2.0 | 1.2
1.2
1.2
1.1 | 1.5
1.4
1.5
1.5 | 2.4
2.3
2.8
2.4
2.0 | 1.8
3.4
2.1
1.9
2.0 | 1.6
1.6
1.6
1.6 | 1.5
1.4
1.3
2.2
2.4 | 1.3
1.7
2.6
1.6
1.7 | 1.8
1.5
1.3
1.7
2.8 | .84
.77
.86
.88
.95 | | 11
12
13
14
15 | .92
.89
.89
1.0
1.6 | 2.9
2.8
2.9
3.0
2.9 | 2.1
2.1
2.1
2.0
2.0 | 1.3
1.6
1.7
1.8
1.9 | 1.6
1.7
1.5
1.5 | 2.0
2.1
2.0
1.9 | 1.8
1.6
1.5
2.0
2.1 | 1.5
1.6
1.8
2.1
2.0 | 2.1
1.9
1.8
1.6
1.3 | 1.6
2.3
1.7
1.2
1.2 | 2.3
2.3
2.3
2.4
2.0 | .89
.90
.95
1.0 | | 16
17
18
19
20 | 2.5
2.3
2.5
3.2
3.4 | 3.3
3.4
3.4
3.4
2.8 | 2.0
2.1
2.1
2.1
1.9 | 1.9
1.7
1.8
1.8 | 1.5
1.6
1.5
1.6 | 2.0
2.0
2.0
2.1
1.9 | 2.3
1.9
1.7
1.5 | 1.9
1.8
1.8
1.8 | 1.2
1.3
1.4
1.8 | 1.1
1.1
1.1
1.1 | 1.8
1.6
2.4
.76
2.2 | .95
.93
.85
.95 | | 21
22
23
24
25 | 3.3
2.7
2.6
2.5
3.6 | 2.9
2.8
2.4
2.2
2.3 | 1.7
1.8
1.5
1.4 | 1.7
1.7
1.8
1.9
2.2 | 1.7
1.7
1.8
1.8 | 1.9
2.1
2.1
2.0
2.0 | 1.3
1.0
1.4
1.4 | 2.1
1.9
1.8
1.9
2.0 | 1.3
1.1
.94
.87
.82 | 1.1
.80
.73
.72
.93 | 2.4
1.2
.71
3.7
2.7 | .82
.77
1.2
1.2 | | 26
27
28
29
30
31 | 3.9
4.1
4.8
5.1
4.7
4.0 | 2.2
2.1
2.3
2.1
1.9 | 1.6
1.7
1.6
1.4
1.5 | 2.4
2.4
2.8
3.0
3.1
2.8 | 1.9
2.0
2.1
2.0 | 2.5
1.9
2.0
1.8
1.7 | 1.5
1.4
1.4
1.5
1.6 | 2.1
2.6
2.7
3.0
3.7
4.4 | .99
1.1
1.2
1.3
.99 | 1.3
1.5
2.0
2.4
2.2
2.1 | 3.1
2.4
1.3
1.0
.96 | 2.1
1.9
1.7
1.6
1.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 86.77
2.80
9.9
.75
172 | 85.7
2.86
3.7
1.9
170 | 57.6
1.86
2.2
1.4
114 | 55.05
1.78
3.1
.95
109 | 52.2
1.80
2.9
1.4
104 | 65.3
2.11
3.0
1.7
130 | 52.0
1.73
3.4
1.0
103 | 62.8
2.03
4.4
1.5
125 | 53.61
1.79
6.0
.82
106 | 43.01
1.39
2.6
.72
85 | 59.83
1.93
3.7
.71
119 | 32.62
1.09
2.1
.77
65 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.06
3.55
1985
1.20
1979 | 2.35
6.49
1982
1.58
1984 | 1.71
2.35
1982
.87
1988 | 1.72
2.74
1986
1.01
1988 | 1.66
2.39
1977
.79
1990 | 1.84
3.54
1980
1.05
1990 | 1.62
2.55
1977
.56
1990 | 2.07
4.77
1980
.91
1986 | 2.04
5.15
1982
.98
1989 | 3.31
27.9
1985
.96
1989 | 4.91
13.4
1984
.88
1990 | 1.64
3.46
1982
.68
1990 | | SUMMARY | Y STATISTI | cs | FOR : | 1991 CALEN | DAR YEAR | F | OR 1992 WAT | ER YEAR | | WATER YE | ARS 1976 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 671.08
1.84
19
.38
.50
1330
3.4
1.4
.73 | Aug 4
Jun 18
Jun 15 | | 706.49
1.93
9.9
.71
.87
34
5.94
1400
2.9
1.8
.95 | Oct 6
Aug 23
Sep 6
Jul 8
Jul 8 | | 2.23
4.03
1.20
700
a.00
b.3600
C6.25
1610
2.88 | Jul
Apr
Apr
Jul
Jul | 1985
1990
28 1985
12 1990
10 1990
28 1985
28 1985 | a-From rating curve extended above 1300 ${\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow. b-From floodmark. 07105905 FOUNTAIN CREEK ABOVE LITTLE FOUNTAIN CREEK, BELOW FOUNTAIN, CO ### 07105945 ROCK CREEK ABOVE FORT CARSON RESERVATION, CO LOCATION.--Lat 38°42'27", long 104°50'46", in NW¹/4NW¹/4 sec.36, T.15 S., R.67 W., El Paso County, Hydrologic Unit 11020003, on right bank 20 ft upstream from county road bridge, 0.6 mi northwest of Rock Creek Park, 1.2 mi upstream from State Highway 115, and 3.2 mi southwest of Ft. Carson. DRAINAGE AREA. -- 6.79 mi2. PERIOD OF RECORD.--Streamflow records, May 1978 to current year. Water-quality data available, May to September 1978. REVISED RECORDS. -- WDR CO-85-1: 1982. GAGE.--Water-stage recorder. Elevation of gage is 6,390 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Nov. 30 to Dec. 2, 14, 27, 28, 30, Jan. 1-3, 8-11, 13, and Jan. 22, 23. Records fair except for estimated daily discharges, and those above 40 ft³/s, which are poor. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | RGE, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | R 1991 : | го ѕертемве | R 1992 | | | |---|--|--|-------------------------------------|---|------------------------------------|--|--|--|-------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.4
1.3
1.1
1.2 | 1.7
1.8
1.6
1.6 | .84
.80
.78
.76 | .55
.55
.55
.55 | .43
.45
.45
.45 | .56
.59
1.6 | 3.1
3.1
3.1
3.2
3.6 | 5.0
4.8
4.3
3.9
3.9 | 3.9
3.6
3.4
3.1
2.8 | .96
.94
.91
.84 | .43
.36
.67
.89 | 3.8
3.0
2.3
1.8
1.6 | |
6
7
8
9
10 | 1.2
1.0
.89
.85 | 1.7
1.6
1.4
1.4 | .76
.79
.82
.82
.82 | .49
.49
.50
.50 | .50
.57
.51
.48
.45 | 1.2
1.2
1.3
1.4 | 4.3
4.9
5.6
5.8
6.4 | 5.2
3.5
2.9
2.7
5.7 | 2.9
3.3
2.7
3.5
3.1 | .66
.62
.92
.79
.61 | .51
.44
.41
.38
.41 | 1.4
1.2
1.2
.95
.84 | | 11
12
13
14
15 | .75
.73
.72
.66 | 1.6
1.4
1.2
1.0 | .79
.78
.76
.75 | .50
.50
.50
.56 | .44
.45
.45
.46 | 1.5
1.5
1.5
1.9
2.7 | 7.4
8.0
9.0
11
16 | 3.4
3.0
3.7
2.9
2.9 | 2.8
2.9
2.7
2.3
2.0 | .57
.53
.54
.55 | .42
.88
.79
.60 | .72
.60
.52
.51 | | 16
17
18
19
20 | .61
.58
.55
.55 | 1.0
1.1
1.3
1.2 | .70
.66
.66
.66 | .48
.42
.41
.46 | .49
.48
.58
.62 | 3.6
3.8
3.9
3.6
3.1 | 22
23
22
19
16 | 2.5
2.3
2.1
2.0
1.8 | 1.9
1.8
1.7
1.7 | .57
.62
.56
.50 | .40
.56
.67
.50 | .42
.40
.37
.40 | | 21
22
23
24
25 | .49
.45
.54
1.1 | 1.3
1.4
.96
1.1 | .61
.63
.68
.73 | .39
.40
.40
.37 | .46
.44
.48
.50
.49 | 3.1
3.0
3.0
3.0
2.9 | 14
12
10
9.1
7.6 | 1.7
1.7
1.8
1.7 | 2.8
2.1
1.7
1.6
1.9 | .55
.46
.44
.40 | 6.7
9.6
4.1
28
25 | .48
.39
.32
.28
.28 | | 26
27
28
29
30
31 | 1.3
1.3
1.5
1.4
1.4 | .94
.91
.91
.87
.86 | .65
.65
.65
.62
.60 | .37
.37
.43
.43
.41 | .47
.50
.52
.54 | 2.8
2.9
3.7
3.8
3.1
3.2 | 6.8
6.2
5.9
5.7
5.4 | 2.4
4.8
5.1
4.1
3.5
3.6 | 1.7
1.8
1.5
1.3 | .73
.57
.46
.42
.41 | 19
19
16
11
7.4
5.4 | .29
.30
.29
.28
.27 | | TOTAL
MEAN
MAX
MIN
AC-FT | 29.92
.97
1.9
.45 | 38.35
1.28
1.8
.86
76 | 22.22
.72
.84
.57
44 | 14.29
.46
.56
.37
28 | 14.19
.49
.62
.43
28 | 72.81
2.35
3.9
.56
144 | 279.2
9.31
23
3.1
554 | 100.6
3.25
5.7
1.7
200 | | 18.94
.61
.96
.40 | 161.96
5.22
28
.36
321 | 26.27
.88
3.8
.27
52 | | STATIS | TICS OF MO | ONTHLY MEA | | | ARS 1978 | - 1992 | , BY WATER Y | EAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.02
20.7
1985
.000
1979 | 1.25
10.7
1985
.028
1979 | .54
2.25
1985
.051
1979 | .50
1.42
1985
.073
1979 | .51
1.33
1985
.12
1979 | 1.05
2.43
1987
.29
1981 | 4.45
12.3
1985
.34
1981 | 8.48
39.0
1980
.56
1981 | 3.68
8.74
1983
.32
1988 | 2.09
7.23
1985
.010
1978 | 3.22
14.8
1982
.000
1978 | 1.45
7.75
1982
.000
1978 | | SUMMARY | STATIST | cs | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER Y | EARS 1978 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME | EAN EAN AN (MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 679.69
1.86
47
.10
.25
1350
4.3
.79
.34 | Sep 4
Jul 17
Jul 12 | | 28
.27
.28
50
2.60
1690
5.0
.91 | Aug 24
Sep 30
Sep 24
Aug 24 | | 2.5
7.7
.3
113
a.0
b.0
b.276
4.7
1810
5.9 | 0 6 Oct 0 Jul 0 Jul 2 3 Jul 2 7 | 1985
1989
4 1984
6 1978
6 1978
28 1982
28 1982 | a-No flow many days in most years. b-From rating curve extended above 60 ft³/s. ### 07105950 ROCK CREEK NEAR FORT CARSON, CO LOCATION.--Lat 38°41'49", long 104°49'39", in SW¹/4SW¹/4 sec.31, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on left bank at Fort Carson Girl Scout Camp, 0.2 mi downstream from bridge on State Highway 115 and 2.9 mi southwest of Fort Carson. DRAINAGE AREA .-- 7.79 mi2. PERIOD OF RECORD.--Streamflow records, May 1978 to current year. Water quality data available, May 1978 to September 1981. GAGE.--Water-stage recorder. Elevation of gage is 6,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: June 21-24. Records fair except for discharges above 30 ft³/s, which are poor. Some diversions upstream from station for irrigation and other uses, amounts unknown. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARGE | c, cubic | FEET PER | SECOND,
DAIL | WATER
Y MEAN | YEAR OCTOBE VALUES | R 1991 | ro septemb | ER 1992 | | | |---|--------------------------------------|---|-------------------------------------|--|-------------------------------------|---|---|--------------------------------------|--------------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .09
.07
.05
.04
.02 | .00 | .00
.00
.00 | .00
.00
.00 | .00 | .00 | 2.0
2.1
1.9
2.0
2.4 | 1.3
1.2
.99
.72 | .05
.05
.05
.04 | .00 | .00
.00
.00
.00 | .89
.70
.54
.44 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00 | .00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | 3.4
4.6
5.6
5.9
5.4 | .63
.48
.42
.39 | .05
.05
.06
.06 | .00 | .00
.00
.00
.00 | .35
.33
.31
.25 | | 11
12
13
14
15 | .00 | .00 | .00 | .00
.00
.00
.00 | .00
.00
.00 | .00 | 5.6
6.3
6.7
7.6 | .34
.31
.29
.26 | .04
.03
.03
.02 | .00 | .00
.00
.00
.00 | .16
.13
.10
.07 | | 16
17
18
19
20 | .00
.00
.00 | .00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.39
.99 | 19
22
22
18
14 | .22
.21
.18
.15 | .01
.00
.00
.00 | .00 | .00
.00
.00
.00 | .05
.04
.04
.04 | | 21
22
23
24
25 | .00 | .00 | .00 | .00 | .00 | 1.3
1.4
1.3
1.4 | 11
8.5
5.9
4.8
4.1 | .10
.09
.08
.07 | .00
.00
.00 | .00 | .00
.60
.00
8.7 | .03
.03
.02
.02 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00 | .00 | .00 | .00 | 1.3
1.4
2.0
2.1
1.9
2.0 | 3.5
3.4
2.8
1.9
1.6 | .06
.07
.07
.06
.05 | .00
.00
.00
.00 | .00 | 7.8
8.4
5.4
2.2
1.5 | .01 | | TOTAL MEAN MAX MIN AC-FT | 0.27
.009
.09
.00 | .000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00 | 0.00
.000
.00
.00 | 19.98
.64
2.1
.00
40 | 215.0
7.17
22
1.6
426 | 10.18
.33
1.3
.05 | 0.66
.022
.06
.00 | 0.00
.000
.00
.00 | 47.80
1.54
12
.00
95 | 5.23
.17
.89
.00 | | STATIST MEAN MAX (WY) MIN (WY) | 1.43
18.6
1985
.000
1979 | .72
9.66
1985
.000 | .12
1.43
1985
.000
1979 | .069
.81
1985
.000
1979 | .052
.67
1985
.000
1979 | - 1992
.19
1.28
1985
.000
1979 | 3.00
10.0
1985
.000
1981 | 7.23
42.8
1980
.000
1989 | 2.80
10.7
1982
.000
1989 | 1.31
6.57
1982
.000
1988 | 1.92
15.4
1982
.000
1979 | .80
6.75
1982
.000
1980 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | TER YEAR | | WATER Y | EARS 1979 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 27
a.00
.00
296
.69
.00 | Sep 4
Jan 1
Jan 1 | | 299.12
.82
22
a.00
b ₂₃
3.94
593
1.9
.00 | Oct 6
Apr 17 | | 1.6
6.2
.01
122
a.00
c ₃₅₃
d _{6.09}
1190
4.2 | 4
00 May
0 Oct
0 Oct
Jul 2
9 Jul 2 | 1985
1989
8 1980
1 1978
1 1978
28 1982
8 1982 | a-No flow most of time. b-Also occurred Aug 24. c-From rating curve extended above 50 ft³/s. d-From floodmark. ### 07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO LOCATION (REVISED).--Lat 38°36'06", long 104°40'11", in SW¹/4NE¹/4 sec.4, T.17 S., R.65 W., El Paso County, Hydrologic Unit 11020003, at left upstream end of Old Pueblo Road bridge, 100 ft downstream from Denver & Rio Grande Railroad bridge, 0.90 mi downstream from Little Fountain Creek, and 5.6 mi south of Fountain. DRAINAGE AREA .-- 681 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1938 to March 1, 1940 (monthly records only), March 2, 1940 to September 1954; July 2, 1985 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,355 ft above National Geodetic Vertical Datum of 1929, from topographic map. Sept. 18, 1938 to Mar. 1, 1940, nonrecording gage, and Mar. 2, 1940 to Sept. 30, 1954, recording gage, both at different datum and at site 200 ft downstream. July 2, 1985 to Sept. 2, 1987, recording gage at site 500 ft downstream, at different datum. Sept. 3, 1987 to Mar. 13, 1990, recording gage at site 1,100 ft upstream at different datums. REMARKS.--Estimated daily discharges: Dec. 21-26, and Jan. 14-16. Records good except those above about 4,000 ft³/s, and estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, power developments,
diversions for irrigation, municipal use, and return flows from irrigation and sewage effluent discharges. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 14.4 ft, at different datum, May 30, 1935, but was probably exceeded by the flood of June 1965. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | 1991 | ro septem | BER 1992 | | | |-------------|-----------------------|--------------------|-------------|---------------------|--------------------|-----------------|--------------|------------------|------------|--------------|------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 81 | 80 | 102 | 101 | 117 | 118 | 161 | 86 | 226 | 122 | 24 | 146 | | 2 | 61 | 82 | 107 | 93 | 119 | 121 | 167 | 78 | 191 | 113 | 25 | 112 | | 3
4 | 64
65 | 86 | 101
103 | 98
102 | 113
10 9 | 118
506 | 175
177 | 87
107 | 175
166 | 123
106 | 31
52 | 79
75 | | 5 | 60 | 106
134 | 114 | 102 | 109 | 257 | 172 | 82 | 155 | 92 | 25 | 72 | | | | | | | | | | | | | | | | 6
7 | 67
67 | 127
134 | 105
91 | 103
103 | 107
107 | 231
216 | 176
168 | 74
72 | 155
159 | 77
65 | 30
30 | 64
58 | | 8 | 54 | 129 | 101 | 92 | 107 | 480 | 189 | 67 | 141 | 55 | 24 | 57 | | 9 | 36 | 124 | 81 | 95 | 110 | 263 | 191 | 66 | 179 | 44 | 39 | 51 | | 10 | 38 | 147 | 82 | 97 | 112 | 168 | 200 | 95 | 139 | 42 | 111 | 50 | | 11 | 39 | 131 | 78 | 101 | 109 | 202 | 226 | 98 | 131 | 37 | 91 | 55 | | 12 | 36 | 130 | 100 | 106 | 116 | 178 | 244 | 64 | 126 | 49 | 149 | 50 | | 13
14 | 40 | 128 | 89
76 | 94
93 | 122 | 183 | 226
216 | 146
87 | 124
108 | 58
48 | 189
48 | 49
69 | | 15 | 42
37 | 13 2
141 | 82 | 93
93 | 124
120 | 189
187 | 246 | 94 | 110 | 27 | 56 | 161 | | 16 | 26 | 170 | 82 | 94 | 120 | 186 | 515 | 79 | 111 | 33 | 45 | 95 | | 17 | 26 | 2 2 1 | 79 | 106 | 121 | 180 | 320 | 66 | 104 | 50 | 55 | 74 | | 18 | 36 | 184 | 74 | 101 | 116 | 181 | 262 | 82 | 103 | 36 | 42 | 48 | | 19 | 34 | 187 | 77 | 98 | 113 | 177 | 241 | 60 | 115 | 18 | 43 | 40 | | 20 | 33 | 147 | 83 | 104 | 118 | 175 | 186 | 53 | 211 | 25 | 31 | 117 | | 21 | 45 | 159 | 76 | 108 | 114 | 169 | 153 | 65 | 233 | 33 | 38 | 52 | | 22 | 57 | 128 | 78 | 112 | 116 | 190 | 146 | 86 | 145 | 31 | 165 | 44 | | 23
24 | 59
72 | 105 | 78
79 | 105 | 123 | 166 | 140 | 93
94 | 135
173 | 35
38 | 82
1100 | 40
39 | | 25 | 74 | 108
1 24 | 79
77 | 118
113 | 127
134 | 157
156 | 128
114 | 89 | 311 | 86 | 448 | 35 | | 26 | 65 | 122 | 80 | 118 | | 149 | 113 | 101 | 435 | 75 | 347 | 44 | | 27 | 68 | 117 | 91 | 113 | 131
131 | 149 | 99 | 305 | 394 | 32 | 277 | 34 | | 28 | 75 | 111 | 103 | 109 | 128 | 170 | 77 | 218 | 258 | 28 | 181 | 33 | | 29 | 57 | 116 | 99 | 118 | 128 | 150 | 77 | 125 | 198 | 30 | 174 | 39 | | 30 | 53 | 108 | 97 | 116 | | 147 | 78 | 114 | 125 | 41 | 157 | 49 | | 31 | 60 | | 101 | 118 | | 150 | | 135 | | 30 | 154 | | | TOTAL | 1627 | 3918 | 2766 | 3227 | 3413 | 6069 | 5583 | 3068 | 5336 | 1679 | 4263 | 1931 | | MEAN | 52.5 | 131 | 89.2 | 104 | 118 | 196 | 186 | 99.0 | 178 | 54.2 | 138 | 64.4 | | MAX
MIN | 81
26 | 221
80 | 114
74 | 118
92 | 134
101 | 506
118 | 515
77 | 305
53 | 435
103 | 123
18 | 1100
24 | 161
33 | | AC-FT | 3230 | 7770 | 5490 | 6400 | 6770 | 12040 | 11070 | 6090 | 10580 | 3330 | 8460 | 3830 | | | | | | | | | , BY WATER Y | | | | | | | | | | | | | | • | | | 26.6 | 100 | 20.0 | | MEAN
MAX | 41.6
117 | 58.7
137 | 48.2
155 | 49.1
117 | 54.3
139 | 63.2
199 | 88.6
590 | 150
736 | 101
329 | 76.6
306 | 103
476 | 39.0
146 | | (WY) | 1986 | 1986 | 1986 | 1988 | 1988 | 1987 | 1942 | 1947 | 1942 | 1947 | 1945 | 1985 | | MIN | 3.70 | 10.0 | 5.14 | 6.99 | 6.07 | 6.39 | 4.30 | 9.78 | 4.50 | 3.47 | 3,15 | 1.31 | | (WY) | 1954 | 1940 | 1953 | 1952 | 1941 | 1941 | 1954 | 1950 | 1953 | 1952 | 1954 | 1939 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1939 | - 1992 | | ANNUAL | TOTAL | | | 39361 | | | 42880 | | | | | | | ANNUAL | | | | 108 | | | 117 | | | 72.2 | | | | | ANNUAL M | | | | | | | | | 189 | | 1942 | | | ANNUAL ME | | | 1060 | . | | 1100 | D | | 10.3 | Marr 1 | 1953 | | | DAILY ME
DAILY MEA | | | 1260
a 26 | Aug 3
Oct 16 | | 1100
18 | Aug 24
Jul 19 | | 2660
b.00 | | 1 1947
4 1939 | | | SEVEN-DAY | | | 33 | Oct 16 | | 30 | Jul 19 | | 27 | | 8 1939 | | | ANEOUS PE | | | | JUL 14 | | 2850 | Jun 26 | | C22100 | May 2 | | | | ANEOUS PE | | | | | | 7.34 | Jun 26 | | d9.19 | | 8 1940 | | ANNUAL | RUNOFF (A | C-FT) | | 78070 | | | 85050 | | | 52330 | | | | | ENT EXCEE | | | 147 | | | 189 | | | 150 | | | | | ENT EXCEE | | | 93
51 | | | 105
39 | | | 34
5.5 | | | | JU PERC | ENT EXCEE | د رړ. | | 31 | | | 37 | | | 5.5 | | | a-Also occurred Oct 17. b-Also occurred Sep 30, 1939. c-From rating curve extended above 3000 ft³/s, on basis of slope-area measurement of peak flow. d-At different datum. 07106000 FOUNTAIN CREEK NEAR FOUNTAIN, CO #### 07106300 FOUNTAIN CREEK NEAR PINON, CO LOCATION.--Lat 38°26'50", long 104°35'28", in NE¹/4NE¹/4 sec.31, T.18 S., R.64 W., Pueblo County, Hydrologic Unit 11020003, near left bank on downstream side of county road bridge, 1.2 mi northeast of Pinon, and 3.2 mi upstream from Steele Hollow Creek. DRAINAGE AREA .-- 849 mi2. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1973 to current year. REVISED RECORDS.--WDR CO-80-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,005 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 23, 1976, nonrecording gage at same site and datum. REMARKS.--No estimated daily discharges. Records good except for discharges above about 1,000 ft³/s, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions municipal use, diversions upstream from station for irrigation of about 10,000 acres and municipal use, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBE VALUES | R 1991 T | O SEPTEM | BER 1992 | | | |--|-------------------------------------|---|--------------------------------------|--|-------------------------------------|--|---|---|------------------------------------|--|--|---| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 69
47
40
44
58 | 102
118
115
141
159 | 114
113
122
126
142 | 106
103
107
112
113 | 112
115
112
111
114 | 130
132
129
474
316 | 158
152
155
151
152 | 66
60
64
93
79 | 227
192
126
177
146 | 120
103
121
107
96 | 27
26
30
59
33 | 102
76
54
50
37 | | 6
7
8
9
10 | 54
59
46
34
23 | 147
137
146
145
161 | 133
114
126
111
109 | 111
109
96
93
98 | 112
114
114
121
122 | 246
276
409
459
218 | 153
150
155
161
167 | 69
61
47
48
58 | 145
154
143
166
145 | 79
68
58
46
30 | 16
16
11
11
24 | 30
26
31
26
12 | | 11
12
13
14
15 | 19
9.6
9.3
16
18 | 151
152
152
159
170 | 116
127
125
94
95 | 102
104
93
90
87 | 123
123
124
126
124 | 215
196
194
194
188 | 176
195
182
166
187 | 107
46
106
56
53 | 134
127
129
109
87 | 18
16
30
33
20 | 88
37
225
71
41 | 15
11
9.3
7.3
81 | | 16
17
18
19
20 | 18
22
26
35
40 | 190
231
222
197
171 | 105
99
87
90
95 | 89
98
94
88
92 | 122
124
120
117
124 | 187
179
181
185
169 | 419
376
294
286
230 | 45
34
31
22
17 | 81
70
68
66
153 | 19
33
36
25
19 | 31
31
33
43
28 | 63
53
37
15
85 | | 21
22
23
24
25 | 50
55
48
53
59 | 155
149
124
123
134 | 82
83
83
81
80 | 101
102
89
103
105 | 127
127
132
128
128 | 156
177
165
151
149 | 177
161
153
133
114 | 25
30
41
49
48 | 193
157
101
118
152 | 24
14
16
21
17 | 20
97
38
664
542 | 61
38
26
21
19 | | 26
27
28
29
30
31 | 60
60
72
82
80
97 | 134
148
124
130
118 | 80
91
112
114
106
107 | 111
111
105
109
108
111 | 126
128
131
130 | 147
147
168
160
162
162 | 112
105
67
66
65 | 47
189
267
139
101
96 | 273
467
165
271
130 | 109
47
20
12
25
27 | 244
273
135
115
103
105 | 25
26
24
32
31 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1402.9
45.3
97
9.3
2780 | 150
231
102 | 3262
105
142
80
6470 | 3140
101
113
87
6230 | 3531
122
132
111
7000 | 6421
207
474
129
12740 |
5218
174
419
65
10350 | 2194
70.8
267
17
4350 | 4672
156
467
66
9270 | 1409
45.5
121
12
2790 | 3217
104
664
11
6380 | 1123.6
37.5
102
7.3
2230 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 60.7
457
1985
.81
1976 | 289
1985
5.77 | 75.6
155
1985
30.0
1977 | 84.5
158
1985
19.0
1979 | 90.5
141
1985
35.2
1978 | 98.6
207
1992
20.0
1978 | 103
299
1985
3.36
1975 | 221
1349
1980
.96
1975 | 121
385
1983
8.39
1978 | 79.2
365
1985
4.34
1976 | 121
385
1982
3.87
1974 | 50.4
205
1982
.000
1975 | | SUMMAR | Y STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YEA | ARS 1973 | 3 - 1992 | | LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER | | AN AN AN AN AN AN AK FLOW AK STAGE C-FT) DS | | 35715.3
97.9
1200
5.6
16
70840
152
92
25 | Jun 6
Jul 16
Oct 11 | | 40095.5
110
664
7.3
16
1950
3.72
79530
187
105
24 | Aug 24
Sep 14
Sep 8
Aug 24
Aug 24 | | 96.4
261
29.4
4140
.00
510200
7.05
69840
192
64 | Jul | 1985
1978
8 1980
6 1973
18 1973
8 1980
8 1980 | a-No flow at times most years. b-From rating curve extended above 7300 ${\rm ft}^3/{\rm s}$. # 07106300 FOUNTAIN CREEK NEAR PINON, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1976 to December 1983, December 1990 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | |------------------|---------------------------------------|--|---|--|---|---|---|--|--|--|--| | DEC 13 | 1215 | 123 | 1180 | 8.2 | 3.0 | 10.7 | | K250 | 360 | 79 | 24 | | MAR
27 | 1230 | 153 | 1010 | 8.2 | 12.0 | 8.3 | 6.9 | K40 | K47 | 81 | 24 | | JUN
05
SEP | 1225 | 160 | 875 | 8.2 | 21.0 | 7.0 | 5.2 | 320 | 330 | 70 | 21 | | 18 | 1110 | 39 | 1210 | 8.3 | 16.5 | 7.7 | 2.0 | 970 | 220 | 97 | 29 | | DATE | ALK
LINI
LA
(MG
AS
CAC | TY SULF. B DIS /L SOL (MG | - DIS
VED SOL
/L (MG | E, RID
- DI
VED SOL
/L (MG | E, AT 1
S- DEG.
VED SUS
/L PENI | AL NI
105 G
. C, NIT
5- TO
DED (M | EN, G
RITE NO2
TAL TO
G/L (M | IRO- NIT
EN, GE
+NO3 AMMO
IAL TOT
IAL (MG
N) AS | NIA ORGA
AL TOT
/L (MG | AM- PHOR A + PHOR ORTHORAL TOTAL (MG | US
O
AL
/L | | DEC
13
MAR | 161 | 270 | 96 | 1 | . 5 | 445 0 | .06 4 | .3 1. | 0 2 | .2 1. | 0 | | 27
JUN | 146 | 270 | 50 | 1 | .9 | 98 0 | .11 6 | .1 0. | 21 1 | .0 1. | 6 | | 05
SEP | 140 | 240 | 40 | 1 | . 9 | 244 0 | .05 4 | .9 0. | 03 1 | .1 1.: | 3 | | 18 | 201 | 330 | 51 | 1 | .8 | 70 0 | .02 3 | .4 <0. | 01 0 | .40 0. | 91 | | D | ATE | CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-MIUM,
DIS-SOLVED
(UG/L
AS CR) | CHRO-
MIUM,
HEXA-
VALENT,
DIS.
(UG/L
AS CR) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | | | DEC
13. | | <1 | <1 | 10 | <1 | <1 | 14 | 2 | 12000 | 24 | | | MAR
27. | | <1 | <1 | 3 | <1 | <1 | 9 | 2 | 5000 | 11 | | | JUN
05. | | <1 | <1 | 3 | <1 | <1 | 10 | 2 | 6100 | 8 | | | SEP
18. | | <1 | <1 | 3 | <1 | <1 | 4 | 2 | 2000 | <3 | | | | DATE | LEAD
TOTA
RECO
ERAB
(UG/
AS P | L LEAD
V- DIS
LE SOLV
L (UG/ | RECO ED ERAB L (UG/ | , MANG
L NESE
V- DIS
LE SOLV
L (UG/ | TOT. REC PED ERA L (UG | AL NICK
OV- DIS-
BLE SOL
/L (UG | - RECO
VED ERAB
/L (UG/ | L ZINC
V- DIS
LE SOLV
L (UG/ | ED
L | | | D | EC
13 | | 23 | <1 3 | 40 | 23 | 11 | 4 | 90 | 18 | | | | AR
27 | | 7 | <1 1 | 70 | 8 | 7 | 2 | 50 | 16 | | | | UN
05 | | 13 | <1 2 | 40 | 5 | 6 | 2 | 60 | 5 | | | S | EP
18 | : | 11 | <1 | 90 | 14 | 5 | 3 | 30 | 6 | | K-Based on non-ideal colony counts. ## 07106300 FOUNTAIN CREEK NEAR PINON, CO--Continued WATER-QUALITY RECORDS ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |----------|------|--|---|--------------------------------------|----------|------|--|---|--------------------------------------| | OCT 1991 | | | | | MAY 1992 | | | | | | 08 | 0900 | 47 | 1140 | 9.5 | 14 | 1315 | 62 | 1000 | 24.5 | | 10 | 1145 | 24 | 1240 | 17.0 | 18 | 1600 | 32 | | 27.5 | | 25 | 1305 | 6 5 | 1200 | 12.5 | 29 | 0925 | 163 | 882 | 10.0 | | NOV | | | | | JUN | | | | | | 07 | 1520 | 136 | 1070 | 10.0 | 02 | 1220 | 199 | | 18.0 | | 21 | 1135 | 179 | 1030 | 6.0 | 09 | 1050 | 174 | 890 | 15.5 | | 26 | 1035 | 148 | 1070 | 4.5 | 15 | 1040 | 101 | 1020 | 18.0 | | DEC | | | | | 23 | 1445 | 94 | 930 | 28.5 | | 12 | 1210 | 149 | 1090 | 4.5 | 30 | 1220 | 151 | 863 | 24.5 | | 23 | 1425 | 93 | 1170 | 4.5 | JUL | | | | | | JAN 1992 | | | | | 09 | 1005 | 53 | 1070 | 19.0 | | 03 | 1155 | 121 | 1100 | 1.5 | 15 | 0910 | 25 | 1190 | 18.5 | | 21 | 1330 | 111 | | 5.5 | 29 | 1425 | 13 | 1230 | 26.0 | | FEB | | | | | AUG | | | | | | 24 | 1500 | 122 | 1070 | 10.0 | 12 | 1530 | 35 | 1150 | 24.0 | | MAR | | | | | 18 | 1440 | 32 | 1190 | 28.5 | | 05 | 1630 | 229 | 873 | 11.0 | 25 | 1430 | 373 | 668 | 18.0 | | 10 | 1230 | 204 | 970 | 6.5 | 28 | 0955 | 169 | 981 | 15.0 | | APR | | | | | 31 | 1000 | 133 | 1030 | 18.0 | | 13 | 1315 | 192 | | 16.0 | SEP | | | | | | 16 | 1345 | 380 | 545 | 15.0 | 04 | 1550 | 52 | 1160 | 21.0 | | 28 | 1250 | 74 | 965 | 20.0 | 09 | 1200 | 35 | 1200 | 20.5 | | MAY | | | | | 16 | 1030 | 75 | 1080 | 17.0 | | 06 | 1455 | 64 | 1000 | 24.5 | 22 | 0940 | 41 | 1180 | 13.0 | | | | | | | 30 | 1210 | 35 | 1260 | 18.5 | #### 07106500 FOUNTAIN CREEK AT PUEBLO, CO. LOCATION.--Lat 38°17'16", long 104°36'02", in SE¹/4SW¹/4 sec.19, T.20 S., R.64 W., Pueblo County, Hydrologic Unit 11020003, on left bank at upstream side of bridge on U.S. Highway 50 at Pueblo and 2.6 mi upstream from mouth. DRAINAGE AREA .-- 926 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1922 to September 1925, October 1940 to September 1965, February 1971 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS. -- WDR CO-79-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,705 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1711 or 1731 for history of changes prior to Oct. 1, 1940, and WSP 1921 for changes prior to Sept. 30, 1965. Feb. 1, 1971 to Sept. 30, 1976, water-stage recorder at site 1.4 mi upstream at datum 4,725.30 ft, National Geodetic Vertical Datum of 1929 (unadjusted). REMARKS.—Estimated daily discharges: Dec. 31 to Jan. 2, Jan. 11-12, 14-15, 18-19. Records good except for Jan. 25 to Feb. 21, those above 400 ft³/s, and estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, power developments, transbasin and transmountain diversions for municipal use, diversions for irrigation of about 14,000 acres upstream from station and municipal use, and return flow from irrigated areas. EXTREMES OUTSIDE PERIOD OF RECORD.—-Maximum stage since at least 1903, that of June 17, 1965. Flood of Jun 1921, reached a discharge of 34,000 ft³/s, by slope-area measurement. Flood of May 30, 1935, reached a discharge of 35,000 ft³/s, by slope-area measurement. Flood of June 4, | dibe | narye o | DISCHARG | | IC FEET PER | | | YEAR OCTOBE | ER 1991 | TO SEPTEME | ER 1992 | | | |------------------|-------------|--------------|--------------|--------------------|--------------|--------------|--------------------|------------------|--------------------|----------------------|-------------|-------------------| | | | | _, | | | | VALUES | | | | | | | DAY | OCT | VOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 76
48 | 125 | 117 | 105 | 129 | 137 | 153 | 68 | 164 | 124 | 19 | 123
95 | | 3 | 26 | 135
152 | 138
136 | 110
11 8 | 137
135 | 136
134 | 1 44
151 | 67
65 | 215
116 | 9 4
114 | 19
18 | 75 | | 4 | 31 | 156 | 125 | 127 | 131 | 510 | 158 | 77 | 158 | 106 | 25 |
63 | | 5 | 55 | 161 | 139 | 131 | 128 | 414 | 147 | 86 | 135 | 99 | 30 | 54 | | 6 | 57 | 186 | 140 | 131 | 122 | 208 | 142 | 67 | 134 | 90 | 22 | 49 | | 7 | 78 | 174 | 125 | 129 | 130 | 202 | 145 | 65 | 150 | 76 | 18 | 50 | | 8
9 | 60 | 186 | 131 | 107 | 125 | 202 | 143 | 55 | 149 | 63 | 12 | 48 | | 10 | 48
29 | 178
184 | 114
105 | 91
99 | 128
135 | 607
243 | 151
15 6 | 47
45 | 161
167 | 53
46 | 8.0
11 | 39
31 | | 11 | 21 | 209 | 101 | 110 | 139 | 244 | 169 | 104 | 133 | 39 | 67 | 28 | | 12 | 19 | 191 | 116 | 115 | 141 | 222 | 199 | 62 | 122 | 30 | 46 | 25 | | 13 | 15 | 182 | 136 | 111 | 138 | 213 | 182 | 87 | 121 | 55 | 197 | 19 | | 14 | 19 | 175 | 85 | 105 | 142 | 203 | 160 | 73 | 99 | 54 | 75 | 19 | | 15 | 22 | 181 | 81 | 105 | 145 | 194 | 188 | 54 | 91 | 28 | 44 | 67 | | 16 | 28 | 230 | 98 | 106 | 144 | 198 | 416 | 44 | 85 | 24 | 34 | 75 | | 17
18 | 30
30 | 334
362 | 104
94 | 129
115 | 139
129 | 201
195 | 385
263 | 33
32 | 79
82 | 32
48 | 34
34 | 49
30 | | 19 | 40 | 293 | 92 | 115 | 124 | 205 | 258 | 29 | 80 | 39 | 35 | 25 | | 20 | 41 | 257 | 106 | 139 | 142 | 188 | 239 | 19 | 162 | 27 | 35 | 62 | | 21 | 46 | 170 | 95 | 134 | 142 | 165 | 188 | 19 | 197 | 20 | 23 | 67 | | 22 | 57 | 175 | 97 | 128 | 141 | 199 | 176 | 19 | 175 | 16 | 72 | 44 | | 23 | 58 | 132 | 90 | 112 | 146 | 177 | 168 | 19 | 105 | 13 | 66 | 31 | | 24
25 | 56
76 | 119
135 | 85
83 | 114
116 | 141
133 | 160
156 | 141
126 | 24
27 | 115
13 8 | 13
13 | 673
908 | 25
25 | | 26 | 87 | | 79 | | | | | | 372 | 110 | | 28 | | 26
27 | 86 | 135
132 | 88 | 118
112 | 132
127 | 159
152 | 118
127 | 34
142 | 372
673 | 69 | 321
332 | 28
28 | | 28 | 78 | 125 | 101 | 118 | 120 | 187 | 96 | 245 | 187 | 33 | 160 | 31 | | 29 | 92 | 135 | 117 | 117 | 131 | 183 | 82 | 98 | 323 | 14 | 130 | 35 | | 30 | 95 | 124 | 108 | 124 | | 163 | 74 | 73 | 136 | 13 | 124 | 33 | | 31 | 116 | | 105 | 127 | | 164 | | 73 | | 16 | 132 | | | TOTAL | 1620 | 5433 | 3331 | 3618 | 3896 | 6721 | 5245 | 1952 | 5024 | 1571 | 3724.0 | 1373 | | MEAN
MAX | 52.3
116 | 181
362 | 107
140 | 117
139 | 134
146 | 217
607 | 175
416 | 63.0
245 | 167
673 | 50.7
124 | 120
908 | 45.8
123 | | MIN | 15 | 119 | 79 | 91 | 120 | 134 | 74 | 19 | 79 | 13 | 8.0 | 19 | | AC-FT | 3210 | 10780 | 6610 | 7180 | 7730 | 13330 | 10400 | 3870 | 9970 | 3120 | 7390 | 2720 | | STATIST | CICS OF | MONTHLY MEAN | DATA | FOR WATER YE | ARS 1922 | - 1992 | BY WATER | YEAR (W) | () | | | | | MEAN | 42.0 | 53.9 | 54.1 | 56.7 | 61.3 | 58.5 | 70.6 | 153 | 105 | 64.9 | 111 | 35.8 | | MAX | 513 | 303 | 193 | 185 | 174 | 217 | 564 | 970 | 859 | 388 | 650 | 241 | | (WY) | 1985 | 1985 | 1985 | 1985 | 1985 | 1992 | 1942 | 1980 | 1965 | 1923 | 1965 | 1982 | | MIN
(WY) | .61
1963 | .90
1955 | 1.10
1955 | 1.90
1954 | 1.40
1954 | 1.00
1954 | 1.10
1955 | .28
1950 | .71
1963 | .96
1964 | .71
1960 | .37
1978 | | | | | | | | 1734 | | | | | | | | | STATIS | TICS | FOR | 1991 CALEND | AR ILAR | | FOR 1992 WA | IER IEA | • | WATER | YEARS 1922 | - 1992 | | ANNUAL
ANNUAL | | | | 39870.9
109 | | | 4350B.0
119 | | | 73. | R | | | HIGHEST | | MEAN | | 107 | | | 117 | | | 276 | 9 | 1985 | | LOWEST | ANNUAL | MEAN | | | | | | | | 4. | 42 | 1953 | | | DAILY | | | 1050 | Aug 3 | | 908 | Aug 25 | | 10000 | | 18 1965 | | LOWEST | | | | 8.9 | Jul 16 | | 8.0 | Aug 9 | | 1 | | 12 1923 | | | | PEAK FLOW | | 22 | Oct 10 | | 18
2440 | Jul 29
Aug 24 | ,
1 | b ₄₇₀₀₀ ° | 00 Sep | 9 1945
17 1965 | | | | PEAK STAGE | | | | | 5.97 | | | °19. | an Jun | 17 1965 | | ANNUAL | | | | 79080 | | | 86300 | | • | 53440 | | _, _, | | 10 PERC | ENT EXC | EEDS | | 179 | | | 197 | | | 156 | | | | | ENT EXC | | | 95
20 | | | 114 | | | 27 | ^ | | | 90 PERC | ENT EXC | EEDS | | 30 | | | 27 | | | 1. | U | | a-No flow at times many years. b-Site and datum then in use, from rating curve extended above 400 ft³/s, on basis of contracted-opening measurement of peak flow. ## 07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1981 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: December 1985 to current year. WATER TEMPERATURE: December 1985 to current year. INSTRUMENTATION. -- Water-quality monitor since December 1985. REMARKS.--Records for daily specific conductance and water temperature are fair. Daily data that are not published are either missing or of unacceptable quality. Daily maximum and minimum specific conductance and daily mean water temperature data are available in district office. EXTREMES FOR PERIOD OF RECORD.-SPECIFIC CONDUCTANCE: Maximum, 3,460 microsiemens, July 7, 1989; minimum, 203 microsiemens, June 6, 1991. WATER TEMPERATURE: Maximum, 33.1°C, July 17, 1991; minimum, 0.0°C, many days during the winter months. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 2,460 microsiemens, Sept. 19; minimum recorded, 340 microsiemens, May 28, may have been lower during period of missing record Apr. 17-19. WATER TEMPERATURE: Maximum, 31.4°C, July 6; minimum, 0.0°C, many days during winter. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--|------------------------------------|--|--------------------------------------|--------------------------------------| | 1
2
3
4
5 | 1160
1350
1410
1400
1340 | 1300
1260
1320
1240
1270 | 1210
1220
1210
1220
1190 | 1130

1170
1110
1120 | 1220
1230
1240
1210
1180 | 1170
1160
1160
997
815 | 1040
1020
1010
1010
1010 | 1200
1180
1200
1160
1130 | 1000
877
1010
980
1010 | 1040
1110
1070
1090
1110 | 1530
1550
1560
1460
1480 | 1110
1170
1250
1280
1340 | | 6
7
8
9
10 | 1360
1340
1330
1320
1380 | 1210
1200
1190
1200
1190 | 1200
1230
1270
1280
1330 | 1140
1180
1230
1200
1180 | 1190
1130
1160
1130
1180 | 1060
1100
1110
684
979 | 1010
998
1000
982
979 | 1180
1200
1210
1250
1290 | 1010
1010
994
1000
993 | 1160
1190
1240
1290
1370 | 1620
1730
1790
 | 1360

1460
1470
1500 | | 11
12
13
14
15 | 1390
1400
1430
1450
1400 | 1150
1180
1200
1200
1200 | 1240
1220
1250
1280
1290 | 1160
1160
1170
1080
1180 | 1210
1230
1260
1210
1250 | 1060
1070
1090
1090
1090 | 968
898
878
874
833 | 1100
1160
1120
1130
1230 | 1050
1080
 | 1450
1470
1530
1440
1440 | 1290
1390
977
1100
1270 | 1420
1480
1510
1410
1230 | | 16
17
18
19
20 | 1380
1370
1350
1330
1340 | 1150
1080
1060
1090
1110 | 1300
1300
1280
1280
1240 | 1160
1160
1150
1160 | 1270
1340
1310
1220
1180 | 1070
1090
1070
1060
1070 | 533

823 | 1280
1350
1430
1480
1520 | 1210
1210
1110 | 1160

1550 | 1460
1410
1440
1490 | 1230
1330
1400
1620
1420 | | 21
22
23
24
25 | 1340
1280
1320
1340
1270 | 1180
1150
1190
1230
1230 | | 1160

 | 1200
1220
1170
1170
1180 | 1080
1060
1060
1090
1090 | 876
933
989
1020
1030 | 1520
1500
1440
1410
1370 | 963
967
1090
1040
944 | 1630
1570
1710
1590
1610 | 1550
1330
1150
1060
643 | 1270
1480
1650
1720
1740 | | 26
27
28
29
30
31 | 1260
1290
1310
1320
1340
1320 | 1200
1200
1210
1190
1180 | 1280
1250
1190
1110
1120
1120 | 11 90
1200
1220 | 1190
1180
1180
1180 | 1090
1100
1070
1020
1030
1020 | 1080
1080
1100
1110
1140 | 1340
1050
647
978
1090
1100 | 611
515
519
 | 1210
1260
1450
1600
1640
1540 | 966
902
1080
1150
1150 | 1710
1680
1620
1550
1530 | | MEAN | 1340 | 1190 | | | 1210 | 1050 | | 1230 | | | | | 07106500 FOUNTAIN CREEK AT PUEBLO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DAY | MAX | MIN | |----------------------------------|--|------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|---|--| | | OCT | OBER | NOV | EMBER | DEC | EMBER | JAN | UARY | FEE | RUARY | MA | RCH | | 1
2
3
4
5 | 22.3
23.4
22.9
12.5
18.2 | 9.6
10.1
9.6
5.9
6.0 | 6.7
1.9
.9
6.2
9.7 | .0
.0
.0
.1
2.2 | 2.6
1.2
1.8
3.6
4.7 | .0
.0
.0 | 4.9
3.5
6.4
5.8 | .3
.0
.0
.0 | 8.5
8.6
4.7
6.2
7.1 | .5
1.4
2.7
1.3 | 13.1
14.9
12.0
10.5
10.5 | 2.6
3.8
4.3
6.0
4.1 | | 6
7
8
9
10 |
17.6
20.9
22.0
21.5
22.4 | 5.7
6.5
8.3
10.1
8.6 | 11.3
10.3
10.7
13.3
10.4 | 3.7
4.4
2.6
3.6
7.1 | 6.9
7.9
7.6
6.9
3.9 | .3
.4
1.5
.5 | 6.0
3.3
4.5
3.6
4.7 | .0 | 7.9
7.2
6.8
7.9
8.1 | .0 | 13.7
13.8
13.1
7.0
9.9 | 4.3
4.9
5.3
2.5 | | 11
12
13
14
15 | 21.8
21.5
19.1
18.7
19.9 | 9.1
9.1
10.8
9.0
7.8 | 10.0
11.3
11.2
10.3
5.3 | 5.1
2.3
2.4
3.7 | 2.4
4.3
3.6
3.0
3.2 | .0 | 4.5
3.4
3.0
2.7 | .0
.0
.0 | 9.5
11.3
6.5
10.5
9.7 | .2
3.6
1.3
.0 | 12.0
12.3
15.4
16.1
14.9 | .0
2.7
3.4
4.8
5.4 | | 16
17
18
19
20 | 20.7
21.5
17.7
16.6
15.5 | 7.5
8.3
8.2
6.4
8.0 | 2.7
7.2
2.0
3.8
6.9 | .0
.0
.0 | 6.1
3.2
3.3
6.1
4.3 | .0
.0
.0
2.0 | 2.6
1.7
4.3
3.8
5.2 | .0 | 3.8
8.0
8.3
8.5
9.8 | .0
.7
.0
.0 | 15.7
14.2
12.3
13.9
14.2 | 4.9
5.6
5.4
5.9
3.4 | | 21
22
23
24
25 | 17.9
18.3
17.1
9.1
15.2 | 5.8
8.1
6.8
.0 | 9.3
5.9
4.9
4.7
7.1 | 2.3
2.1
.0
.0 | 6.5
3.3
5.4
4.8
5.1 | .0
1.8
.0
.0 | 6.1
5.3
5.0
8.0
7.3 | .0
.0
.0 | 11.9
9.6
9.0
10.4
8.7 | 2.6
1.1
2.2
.0 | 14.0
7.9
14.2
13.6
16.7 | 4.1
4.5
2.4
4.9
3.6 | | 26
27
28
29
30
31 | 15.3
16.4
8.6
6.4
4.5
4.4 | 4.7
6.0
2.0
.0
.0 | 9.6
8.5
6.0
4.4
1.7 | 2.3
1.2
1.2
.0 | 5.3
3.8
2.5
4.4
3.0
4.4 | .0 | 7.3
6.5
7.7
8.4
8.5
9.7 | .0 | 7.8
13.3
14.4
14.5 | .0
3.8
2.3
2.5 | 15.8
13.6
10.2
15.0
16.8
9.5 | 5.8
5.9
7.2
5.5
5.1
5.7 | | MONTH | 23.4 | .0 | 13.3 | .0 | 7.9 | .0 | | .0 | 14.5 | .0 | 16.8 | .0 | | | AP | RIL | м | AY | J | UNE | JI | ULY | AU | GUST | SEPT | EMBER | | 1
2
3
4
5 | | 4.1
4.0
3.2
7.3
7.4 | 26.5
23.5
24.1
25.3
25.0 | 11.3
11.7
11.2
10.9 | 12.1
17.0
23.3
24.1
24.4 | 9.1
8.0
12.7
11.7
13.5 | 27.4
27.6
27.8
27.7
29.0 | 15.9
16.1
16.2
16.2
15.5 | 29.3
30.0
27.8
29.3
28.6 | 14.9
15.7
15.9
16.1
15.8 | 24.0
25.6
26.0
21.4
24.2 | 14.1
13.6
13.3
14.8
12.5 | | 6
7
8
9
10 | 19.0
18.7
19.8
20.5
19.6 | 7.8
8.6
7.6
9.0
9.1 | 25.9
24.8
17.1
17.1
15.4 | 11.3
11.7
13.4
15.2
13.6 | 24.2
21.8
18.4
25.1 | 11.2
10.2
12.9
10.3
10.8 | 31.4
28.2
24.8
26.7
25.5 | 18.5
17.3
17.7
18.9
16.3 | 24.8
26.9
24.1
20.5
22.2 | 17.8
15.8
17.7
17.1
18.5 | 25.1
24.6
25.9
24.4
24.3 | 12.4
12.5
14.2
13.4
12.4 | | 14 | 20.6 | 9.1
10.2
8.2
11.2
10.1 | | 8.4
11.3
12.3
11.9
11.8 | 25.3 | 8.1
11.5
 | 27.9
23.7
28.5
28.1 | 16.7
16.7
16.1
15.9
16.9 | 28.4
26.3
20.8
27.1
29.4 | 15.6
15.6
17.0
17.1
15.8 | 25.7
26.3
25.7
25.9
24.9 | 12.1
14.0
14.2
14.0
15.4 | | 16
17
18
19
20 | 17.7
17.1
13.7
11.2
16.4 | 11.3
9.0
9.0
6.8
6.7 | 27.1
25.2
27.0
26.4
25.1 | 11.8
12.5
11.1
12.6
13.8 | 28.0
28.0
24.3 | 14.6
14.6 | 26.4
26.0
28.9
28.6
27.7 | 16.9
16.0
14.8
14.4
15.8 | 25.0
26.9
27.8
28.8
29.8 | 16.4
17.0
15.7
15.8
15.9 | 25.9
24.8
20.0
18.9
21.1 | 14.7
14.0
14.0
14.4
13.1 | | 21
22
23 | 18.9 | 7.0 | 21.1 | 14.3 | 24.1
27.4 | 15.0
13.8 | 29.0
18.3 | 17.1
15.2 | 29.3
28.0 | 16.9
16.7 | 19.6
23.5 | 11.7
10.8 | | 24
25 | 18.4
18.9
19.4
20.1 | 8.2
8.5
8.2
5.2 | 17.5
19.9
25.8
16.0 | 14.1
12.7
13.2
12.5 | 29.7
26.8
25.3 | 16.4
16.8
15.6 | 20.0
27.9
22.2 | 17.2
16.5
19.4 | 26.0
18.3
19.1 | 17.4
15.6
14.6 | 24.7
25.2
19.4 | 11.7
12.2
12.1 | | 24 | 18.4
18.9
19.4 | 8.2
8.5
8.2 | 19.9
25.8 | 12.7
13.2 | 29.7
26.8 | 16.4
16.8 | 20.0
27.9 | 17.2
16.5 | 18.3 | 15.6 | 24.7
25.2 | 12.2 | #### 07108900 ST. CHARLES RIVER AT VINELAND, CO LOCATION.--Lat 38°14'44", long 104°29'09", in NE¹/4SW¹/4 sec.6, T.21 S., R.63 W., Pueblo County, Hydrologic Unit 11020002, on right bank at right downstream end of downstream bridge on U.S. Highway 50C, 1.6 mi west of Vineland, and 3.0 mi upstream from mouth. DRAINAGE AREA. -- 474 mi2. PERIOD OF RECORD. -- October 1978 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,581.58 ft above National Geodetic Vertical Datum of 1929, (Colorado Division of Highways benchmark). REMARKs.--Estimated daily discharge: Nov. 3. Records fair except those above 1,000 ft³/s, which are poor. Natural flow of stream affected by diversions upstream from station for irrigation of about 8,500 acres, and for industrial uses, and return flow from land irrigated by Bessemer Ditch. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1901, 56,000 ft³/s, at site 5.0 mi upstream. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND,
DAIL | WATER
Y MEAN | YEAR OCTOBE
VALUES | R 1991 T | O SEPTEM | BER 1992 | | | |---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.6
8.1
9.3
9.0
8.8 | 12
11
12
12
12 | 10
11
10
9.1 | 14
11
11
15
16 | 13
12
12
12
15 | 9.7
9.8
10
13
15 | 8.4
10
11
7.7
6.5 | 14
23
27
24
17 | 46
45
36
39
47 | 12
9.3
7.1
5.0
4.6 | 17
9.4
7.8
8.2
9.0 | 121
106
93
53
45 | | 6
7
8
9 | 8.1
9.1
8.7
8.6
8.1 | 12
11
11
11
9.9 | 13
12
12
11
11 | 15
15
14
12
11 | 16
13
11
12
12 | 14
12
12
12
12 | 6.5
6.4
5.8
6.6
7.8 | 21
25
27
30
30 | 38
156
37
39
111 | 3.9
3.7
4.1
3.3
6.2 | 9.8
9.6
9.8
9.1
9.3 | 43
39
35
35
35 | | 11
12
13
14
15 | 8.0
7.5
7.7
8.0
8.0 | 10
10
9.5
9.5
9.7 | 12
13
12
11 | 12
15
13
11 | 12
12
12
12
13 | 12
12
11
11
26 | 12
15
16
73
84 | 38
34
38
36
36 | 89
97
103
80
62 | 38
5.7
6.1
487
19 | 12
19
23
27
43 | 37
30
23
21
20 | | 16
17
18
19
20 | 6.9
7.7
8.2
8.7
8.4 | 13
14
13
15 | 11
11
12
13
14 | 12
12
13
11 | 13
13
10
9.5
9.2 | 18
8.9
8.5
8.7
8.2 | 92
133
115
125
111 | 34
34
35
65
21 | 27
13
10
10 | 9.8
11
11 | 32
18
138
76
53 | 20
20
20
18
21 | | 21
22
23
24
25 | 8.4
8.6
8.9
9.0
9.5 | 13
12
11
10 | 14
16
16
14
13 | 12
12
12
14
14 | 10
14
13
13 | 7.1
7.7
8.5
9.1
7.6 | 98
90
87
45
22 | 15
13
13
18
18 | 208
19
13
19 | 72
32
47
14
12 | 26
14
9.1
65
466 | 9.8
9.7
8.2
8.3 | | 26
27
28
29
30
31 | 9.8
9.7
10
9.6
11 | 12
11
10
11
10 | 13
12
12
13
13 | 14
14
13
13
13 | 11
10
11
10 | 6.8
5.7
6.7
7.1
6.9
8.0 | 17
17
17
17
15 | 19
18
29
43
40
33 | 11
197
22
23
16 | 13
18
18
12
11
8.2 | 304
607
195
159
130
124 | 7.8
8.0
9.0
9.6
9.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 271.0
8.74
12
6.9
538 | 340.6
11.4
15
9.5
676 | 380.1
12.3
16
9.1
754 | 399
12.9
16
10
791 | 348.7
12.0
16
9.2
692 | 325.0
10.5
26
5.7
645 | 1277.7
42.6
133
5.8
2530 | 868
28.0
65
13
1720 | 1636
54.5
208
10
3250 | 926.0
29.9
487
3.3
1840 | 2639.1
85.1
607
7.8
5230 | 925.8
30.9
121
7.8
1840 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.1
39.5
1983
3.50
1979 | 14.0
31.8
1983
5.59
1979 | 12.3
22.4
1983
6.81
1981 | 12.3
16.6
1984
6.75
1981 | 13.3
22.5
1987
7.89
1990 | 19.3
45.3
1987
7.25
1981 | 59.0
306
1987
5.02
1981 | 126
484
1980
6.06
1991 | 78.3
358
1983
8.79
1990 | 35.2
84.0
1982
7.60
1981 | 56.4
207
1982
10.2
1989 | 22.6
120
1982
6.36
1980 | | SUMMARY | Y STATIST | ICS | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER Y | EARS 1979 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | | EAN EAN AN MINIMUM EAK
FLOW EAK STAGE AC-FT) EDS | | 6460.8
17.7
510
4.1
4.6
12810
24
9.8
5.4 | Aug 4
Apr 17
Apr 15 | | 607
3.3
4.4
3810
58.94
20500
53
12
8.0 | Aug 27
Jul 9
Jul 4
Jul 14
Jul 14 | | 38.7
88.4
9.5
1550
.2
2.7
a7560
12.7
28030
65
13
6.1 | 2
May
5 Apr
Apr
Aug | 1987
1979
16 1980
25 1979
25 1981
11 1982
11 1982 | a-From rating curve extended above 1,800 ${\rm ft}^3/{\rm s.b}{\rm -From}$ crest-stage gage reading. #### 07109500 ARKANSAS RIVER NEAR AVONDALE, CO. LOCATION.--Lat 38°14'53", long 104°23'55", in NE¹/4SW¹/4 sec.1, T.21 S., R.63 W., Pueblo County, Hydrologic Unit 11020002, on right bank 15 ft downstream from bridge on Sixmile Road, 0.3 mi upstream from Sixmile Creek, and 2.6 mi west of Avondale. DRAINAGE AREA. -- 6,327 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1939 to September 1951, February 1965 to current year. Statistical summary computed for 1975 to current year. REVISED RECORDS.--WSP 1087: 1942. WSP 1311: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,509.53 ft above National Geodetic Vertical Datum of 1929. Prior to January 21, 1965, at site 550 ft downstream at datum 1.37 ft lower. January 21, 1965 to September 30, 1991, at datum 1.00 ft higher. REMARKS.—Estimated daily discharges: July 21-23 and Aug. 23. Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation of about 123,000 acres and municipal use, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, | | • | | | | | | | | | | | | |------------------|------------------------|--------------------|-------------|--------------|-------------------|-----------------|---------------------|-----------------------|--------------|----------------------|----------------------|----------------------| | | | DISCHARGE | , CUBIC | FEET PE | R SECOND,
DAIL | WATER
Y MEAN | YEAR OCTO | BER 1991 | TO SEPTE | MBER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 349 | 459 | 341 | 323 | 425 | 357 | 765 | 866 | 1550 | 1630 | 967 | 970 | | 2 | 340 | 537 | 339 | 323 | 426 | 359 | 765 | 867 | 1600 | 1490 | 995 | 1080 | | 3
4 | 311
299 | 534
550 | 343
345 | 319
330 | 438
424 | 414
550 | 740
740 | 877
884 | 1550
1580 | 1480
1350 | 1150
1210 | 1050
9 07 | | 5 | 323 | 644 | 356 | 330 | 400 | 894 | 736 | 992 | 1530 | 1260 | 1170 | 774 | | 6 | 330 | 697 | 360 | 331 | 425 | 582 | 724 | 1020 | 1390 | 1310 | 105 0 | 752 | | 7 | 386 | 718 | 341 | 332 | 432 | 530 | 655 | 1140 | 1360 | 1130 | 971 | 751 | | 8 | 377 | 688 | 324 | 335 | 423 | 512 | 621 | 1190 | 1310 | 1040 | 910 | 1060 | | 9 | 328 | 647 | 330 | 375 | 422 | 818 | 597 | 1220 | 1440 | 1210 | 745 | 1120 | | 10 | 372 | 645 | 304 | 384 | 428 | 640 | 588 | 1060 | 1640 | 1690 | 750 | 1020 | | 11 | 359 | 667 | 297 | 380 | 427 | 595 | 573 | 1150 | 1610 | 1840 | 997 | 951 | | 12
13 | 321
306 | 629
552 | 321
341 | 382
368 | 438
438 | 575
565 | 601
618 | 1130
9 00 | 1580
1620 | 1820
1800 | 1020
1150 | 908
901 | | 14 | 311 | 520 | 308 | 364 | 433 | 563 | 701 | 859 | 1690 | 2040 | 983 | 599 | | 15 | 324 | 374 | 287 | 368 | 434 | 538 | 786 | 806 | 1690 | 1490 | 864 | 534 | | 16 | 367 | 400 | 294 | 373 | 430 | 528 | 1040 | 807 | 1730 | 1260 | 791 | 1010 | | 17 | 420 | 451 | 302 | 374 | 435 | 509 | 1230 | 826 | 1760 | 1210 | 733 | 998 | | 18 | 402 | 476 | 288 | 381 | 439 | 530 | 1210 | 850 | 1690 | 984 | 1340 | 966 | | 19
20 | 372
350 | 548
459 | 296
310 | 369
362 | 431
440 | 580
603 | 1150
1140 | 1060
1200 | 1480
1350 | 826
803 | 1030
951 | 954
969 | | 21 | 308 | 393 | 308 | 374 | | | | | | 780 | 820 | | | 21 | 282 | 393
404 | 308 | 3/4
379 | 433
391 | 619
639 | 1140
1100 | 1350
15 8 0 | 1470
1320 | 750 | 757 | 952
521 | | 23 | 264 | 372 | 320 | 377 | 388 | 654 | 1050 | 1810 | 1350 | 733 | 840 | 489 | | 24 | 292 | 345 | 303 | 377 | 388 | 685 | 957 | 1920 | 1560 | 661 | 1260 | 479 | | 25 | 339 | 346 | 289 | 378 | 378 | 657 | 871 | 1910 | 1740 | 802 | 2630 | 470 | | 26 | 352 | 357 | 291 | 378 | 391 | 653 | 848 | 1870 | 1990 | 964 | 2490 | 466 | | 27
28 | 346
325 | 35 8
353 | 294
304 | 385
383 | 405
396 | 649
645 | 842
7 9 5 | 1810
1910 | 2430
2170 | 993
1040 | 2080
1450 | 463
440 | | 29 | 341 | 368 | 318 | 371 | 362 | 663 | 786 | 1760 | 2160 | 1050 | 1160 | 419 | | 30 | 357 | 369 | 328 | 380 | | 654 | 870 | 1590 | 1910 | 1050 | 925 | 380 | | 31 | 391 | | 328 | 420 | | 697 | | 1420 | | 996 | 865 | | | TOTAL | 10544 | | 9827 | 11305 | 12120 | 18457 | 25239 | 38634 | 49250 | 37482 | 35054 | 23353 | | MEAN
MAX | 340
420 | 495
718 | 317
360 | 365 | 418
440 | 595
894 | 841 | 1246
1920 | 1642 | 1209
2040 | 1131 | 778
1120 | | MIN | 264 | 345 | 287 | 420
319 | 362 | 357 | 1230
573 | 806 | 2430
1310 | 661 | 2630
733 | 380 | | AC-FT | 20910 | | 9490 | 22420 | 24040 | 36610 | 50060 | 76630 | 97690 | 74350 | 69530 | 46320 | | STATIST | TICS OF MC | NTHLY MEAN I | DATA FOR | WATER : | EARS 1975 | - 1992 | , BY WATE | R YEAR (W) | () | | | | | MEAN | 524 | 442 | 333 | 381 | 431 | 508 | 787 | 1488 | 2557 | 1867 | 1316 | 616 | | MAX | 1631 | 985 | 718 | 770 | 1103 | 994 | 1884 | 4170 | 4397 | 3771 | 3210 | 1511 | | (WY) | 1985 | | 1987 | 1985 | 1985 | 1985 | 1987 | 1980 | 1980 | 1983 | 1984 | 1982 | | MIN
(WY) | 187
1979 | | 197
1979 | 190
1979 | 223
1979 | 219
1978 | 220
1978 | 517
1 9 77 | 638
1977 | 562
1 9 77 | 423
1 9 77 | 200
1 9 77 | | | STATISTI | | | | IDAR YEAR | 1770 | FOR 1992 | | | | YEARS 1975 | | | | | .CS | | | DAK ILAK | | | MAIER IEAR | • | WAILK : | EARS 19/3 | - 1992 | | ANNUAL
ANNUAL | | | 2 | 87143
787 | | | 286125
782 | | | ^a 940 | | | | | ANNUAL M | IEAN | | , , , | | | ,52 | | | 1626 | | 1985 | | | ANNUAL ME | | | | | | | | | b 411 | | 1977 | | | DAILY ME | | | 3300 | Jun 14 | | 2630 | Aug 25 | | p 6880 | | 21 1982 | | | DAILY MEA
SEVEN-DAY | | | 222
258 | Apr 23
Apr 21 | | 264
298 | Oct 23
Dec 14 | | 110 | | 19 1978
16 1978 | | | ANEOUS PE | | | 230 | uhr si | | 3160 | Jul 14 | | d ₁₅₄₀₀ | Jul | | | INSTANT | TANEOUS PE | AK STAGE | | | | | 4. | | | 8.9 | | 30 1978 | | | RUNOFF (A | | 5 | 69500 | | | 567500 | | | 680600 | | | | | CENT EXCEE | | | 1900
459 | | | 1550 | | | 21 9 0
560 | | | | | ENT EXCEE | | | 306 | | | 644
328 | | | 257 | | | | JO EERC | LIGI EACEE | .0.0 | | 300 | | | 320 | | | 231 | | | a-Average discharge for 20 years (water years 1940-51, 1966-73), 867 ft³/s; 628100 acre-ft/yr, prior to completion of Pueblo Reservoir. completion of Pueblo Reservoir. b-Maximum daily discharge for period of record, 12100 ft³/s, Apr 24, 1942. c-Minimum daily discharge for period of record, 50 ft³/s, Apr 2, 1940. d-Maximum discharge and stage for period of record, about 50000 ft³/s, Jun 18, 1965, gage height, 9.77 ft, from rating curve extended above 6700 ft³/s, on basis of records for station near Pueblo and indirect measurements of peak flow on Fountain Creek at Pueblo, Chico Creek near North Avondale, and Arkansas River near North Avondale. ARKANSAS RIVER BASIN 07109500 ARKANSAS RIVER NEAR AVONDALE, CO #### 07116500 HUERFANO RIVER NEAR BOONE, CO LOCATION.--Lat 38°13'30", long 104°15'37", in NE¹/4NE¹/4 sec.18, T.21 S., R.61 W., Pueblo County, Hydrologic Unit 11020006, at right upstream end of bridge on U.S. Highway 50, 0.8 ml upstream from mouth, and 1.6 ml south of Boone. DRAINAGE AREA. -- 1,875 mi2. PERIOD OF RECORD.--January 1922 to September 1925 (monthly and annual discharge only, published in WSP 1311 as near Nepesta), October 1979 to current year. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Datum of gage is 4,443.75 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Oct. 31 to Nov.9, Nov. 19 to Dec. 24, Jan. 9 to Feb. 9, May 19, 20, and Sept. 4-13. Records poor. Natural flow of stream affected by diversions for irrigation of about 48,000 acres, and return flow from irrigated areas. Several measurements of water temperature and specific conductance were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBE
VALUES | ER 1991 : | O SEPTEM | IBER 1992 | | | |---|--|--|--------------------------------------|--|-------------------------------------|--|--|------------------------------------|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | 9.2
7.0
8.0
9.4 | 12
14
15
16
18 | 10
12
13
19 | 7.0
5.8
5.4
5.8
5.4 | 4.7
5.7
5.4
15 | 4.7
4.1
5.3
4.9
4.6 | 1.9
1.3
1.7
1.6 | 3.2
14
2.6
5.9
5.2 | 8.3
5.5
4.2
2.7
.85 | .04
.04
.07
.00 | 91
23
9.9
5.8
2.9 | | 6
7
8
9
10 | .00
.00
.00
.00 | 11
10
12
25
16 |
16
15
16
15 | 10
11
9.0
8.8
9.4 | 5.2
5.2
5.0
4.8
4.8 | 3.3
3.2
5.1
5.3 | 4.3
4.5
5.6
3.8
3.0 | 1.2
.82
.66
.71
.87 | 3.9
36
22
23
21 | .41
.00
.00
.00 | .00
.00
.00
.00 | 1.4
.72
.80
.50 | | 11
12
13
14
15 | .00
.00
.00
.00 | 16
20
15
15 | 16
17
17
16
17 | 9.6
9.4
8.6
8.2
8.0 | 4.0
3.6
4.7
4.5
3.8 | 6.1
5.1
4.5
3.7
3.9 | 2.8
2.9
3.4
2.8
3.4 | .85
.58
.77
.59 | 21
172
37
21
25 | .00
.00
.00 | .00
.02
.00
.00 | .29
.40
.20
.00 | | 16
17
18
19
20 | .00
.00
.00
.00 | 9.0
7.9
9.7
14
16 | 18
16
15
14
15 | 8.4
8.8
8.5
8.3
8.6 | 4.1
4.6
5.6
5.6
3.1 | 3.2
6.1
18
11
8.5 | 4.2
3.9
3.8
4.1
3.9 | .11
.19
.36
.50 | 9.9
8.1
4.5
3.4
4.0 | .00
.00
.00 | .00
.00
97
13 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00
.00 | 18
14
13
14
15 | 14
15
14
14 | 8.8
9.5
10
11 | 3.5
2.7
2.7
2.5
2.7 | 5.0
3.4
3.4
4.4
7.2 | 3.8
2.8
2.8
2.6
2.5 | .00
.00
.00 | 21
8.5
5.1
3.7
5.2 | 54
1.5
.07
.06 | .00
.00
.00
3.3 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | 17
16
13
12
11 | 13
16
13
19
14 | 11
9.4
9.7
9.4
9.7
9.0 | 3.7
3.9
4.0
4.1 | 5.1
3.2
3.9
4.4
4.2
4.3 | 3.2
3.0
2.4
1.9
3.6 | .00
.00
.00
.00 | 28
20
9.6
12
26 | .03
.00
.00
.00 | 123
328
21
5.1
42
331 | .00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10.00
.32
10
.00
20 | 399.2
13.3
25
7.0
792 | 475
15.3
19
12
942 | 10.1
19
8.0
619 | 127.8
4.41
7.0
2.5
253 | 195.3
6.30
18
3.2
387 | 108.6
3.62
5.6
1.9
215 | 16.43
.53
1.9
.00 | 581.8
19.4
172
2.6
1150 | 77.64
2.50
54
.00
154 | 1127.89
36.4
331
.00
2240 | 137.49
4.58
91
.00
273 | | | | | | | | | , BY WATER | | | | 20.7 | | | MEAN
MAX
(WY)
MIN
(WY) | 8.54
46.7
1985
.000
1990 | 14.8
46.0
1986
.000
1990 | 13.9
34.2
1987
.000
1990 | 21.2
65.1
1984
.000
1990 | 27.1
64.5
1984
.13
1990 | 21.8
129
1984
2.12
1990 | 21.1
94.3
1988
.47
1990 | 151
1113
1987
.53
1992 | 107
667
1983
.16
1981 | 20.4
110
1983
.000
1989 | 38.7
254
1981
.36
1988 | 5.37
23.9
1982
.000
1980 | | SUMMARY | STATIST: | ICS | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WA | TER YEAR | | WATER Y | EARS 1980 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | MEAN CANNUAL MANNUAL MANNUAL MAILY MAILY MEA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 2512.14
6.88
436
.00
.00
4980
15
1.2
.00 | Aug 20
Jun 9
Jun 17 | | 3569.25
9.75
331
a.00
.00
1390
c9.78
7080
17
4.1
.00 | Aug 27 | | 37.7
153
5.0
2900
68030
10.9
27290
56
3.9 | Aug
00 Oct
00 Oct
Aug
00 Aug | 1987
1991
12 1981
1 1979
1 1979
12 1981
12 1981 | a-No flow many days each year. b-Maximum discharge for period of record, 19400 ft³/s, Aug 1, 1923, gage height, 9.4 ft, datum then in use, from rating curve extended above 1200 ft³/s, on the basis of slope-area measurement of peak flow. c-From crest-stage reading. #### 07117000 ARKANSAS RIVER NEAR NEPESTA, CO LOCATION.--Lat 38°11'03", long 104°10'22", in SW¹/4SW¹/4 sec.25, T.21 S., R.61 W., Pueblo County, Hydrologic Unit 110200005, on right bank 0.7 mi upstream from headgate of Oxford Farmers Co. canal, 1.9 mi northwest of Nepesta, 2.7 mi upstream from Kramer Creek, and 6.6 mi downstream from Huerfano River. DRAINAGE AREA.--9,345 \min^2 , of which 54 \min^2 is probably non-contributing. PERIOD OF RECORD.——April to October 1903, April to November 1912, October 1913 to September 1984. Monthly discharge only for some periods, published in WSP 1311. Records originally published for October 1933 to June 1936 did not include diversions to Oxford Farmers Co. canal, but monthly figures only for this period have been adjusted for diversion, and published in WSP 1311. Statistical summary computed for 1975 to current year. Records for river below Oxford Farmers Co. canal (diversion to canal not included), published as "at Nepesta" September 1897 to October 1903 (irrigation seasons only), April to October 1904, June 1906 to September 1908 (irrigation seasons only), September 1909 to December 1910, February to September 1911 (gage heights and discharge measurements only), October 1913 to November 1912, March to August 1913 (discharge measurements only), October 1936. Monthly discharge only for some periods, published in WSP 1311. only), October 1913 to September 1936. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS.--WSP 1341: Drainage area, WDR CO-79-1: 1965. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,385 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to June 5, 1921, nonrecording gages or water-stage recorders at various sites within 4.5 mi upstream and 3.0 mi downstream at different datums. June 5, 1921 to Apr. 4, 1966, water-stage recorders at sites on river or river and canal within 0.7 mi downstream at various datums. REMARKS.--Estimated daily discharges: Oct. 11-14, Nov. 3, and Dec. 2, 3. Records fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals, diversions for irrigation of about 230,000 acres, and return flow from irrigated areas. Flow partly regulated by Pueblo Resevoir (station 07099350) since Jan. 9, 1974. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTEM | 1BER 1992 | | | |---------------|-------------------------|-------------|-------------|--------------|-----------------------|--------------|---------------------|--------------------|-----------------------|--------------------------|----------------------|---------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 196 | 297 | 210 | 393 | 500 | 234 | 573 | 398 | 964 | 1400 | 818 | 868 | | 2 | 226 | 308 | 203 | 379 | 477 | 242 | 634 | 364 | 1190 | 1230 | 6 95 | 913 | | 3 | 212 | 285 | 212 | 390 | 479 | 217 | 619 | 358 | 1100 | 1220 | 637 | 920 | | 4
5 | 19 8
202 | 342
446 | 200
189 | 404
404 | 501
493 | 285
566 | 603
600 | 342
404 | 1100
10 6 0 | 1150
909 | 724
735 | 813
655 | | 6 | 216 | 381 | 189 | 386 | 469 | 332 | 585 | 428 | 973 | 763 | 647 | 595 | | 7 | 240 | 182 | 179 | 361 | 440 | 255 | 517 | 519 | 986 | 624 | 581 | 566 | | 8 | 255 | 87 | 176 | 359 | 423 | 228 | 470 | 610 | 1040 | 505 | 546 | 522 | | 9 | 245 | 90 | 184 | 361 | 415 | 362 | 460 | 631 | 1120 | 492 | 419 | 511 | | 10 | 254 | 208 | 176 | 401 | 452 | 313 | 433 | 737 | 1360 | 941 | 311 | 466 | | 11 | 260 | 286 | 168 | 424 | 491 | 245 | 409 | 822 | 1470 | 1170 | 452 | 409 | | 12
13 | 235
189 | 274
218 | 172
176 | 426
444 | 504
481 | 221
203 | 407
429 | 935
677 | 1530
1120 | 1190
1150 | 570
8 11 | 362
326 | | 14 | 207 | 189 | 176 | 455 | 446 | 206 | 430 | 616 | 895 | 1400 | 848 | 398 | | 15 | 226 | 255 | 146 | 461 | 477 | 386 | 501 | 583 | 1380 | 1180 | 714 | 349 | | 16 | 258 | 221 | 146 | 419 | 473 | 401 | 695 | 568 | 1400 | 980 | 674 | 573 | | 17 | 282 | 250 | 169 | 444 | 458 | 399 | 1030 | 574 | 1500 | 908 | 609 | 697 | | 18
19 | 273
266 | 281
373 | 165
165 | 455
453 | 438
416 | 409
435 | 1050
9 77 | 57 9
705 | 1470
1340 | 819
598 | 716
1030 | 705
675 | | 20 | 254 | 310 | 189 | 448 | 420 | 443 | 925 | 832 | 1180 | 574 | 781 | 698 | | 21 | 214 | 247 | 193 | 425 | 449 | 475 | 905 | 928 | 1310 | 645 | 652 | 727 | | 22 | 184 | 227 | 190 | 431 | 415 | 496 | 852 | 1190 | 1160 | 616 | 555 | 534 | | 23 | 156 | 241 | 222 | 416 | 248 | 521 | 814 | 1420 | 1110 | 595 | 497 | 381 | | 24
25 | 175
186 | 211
202 | 219
205 | 402
412 | 230
223 | 560
541 | 770
6 75 | 1570
1580 | 12 90
1470 | 467
489 | 519
1 62 0 | 3 6 6
330 | | 26 | 196 | 202 | 253 | 406 | 234 | 508 | 658 | 1590 | 1690 | 650 | 1580 | 303 | | 27 | 185 | 195 | 368 | 432 | 254
250 | 489 | 698 | 1470 | 1630 | 760 | 1460 | 274 | | 28 | 170 | 196 | 372 | 439 | 241 | 451 | 667 | 1610 | 1790 | 793 | 864 | 248 | | 29 | 168 | 210 | 379 | 456 | 226 | 462 | 58 9 | 1490 | 1960 | 828 | 1010 | 231 | | 30
31 | 176 | 220 | 366 | 475 | | 469 | 422 | 1390 | 1740 | 837 | 883 | 252 | | | 216 | | 391 | 505 | | 503 | | 1130 | | 818 | 918 | | | TOTAL
MEAN | 6720
217 | 7436
248 | 6748
218 | 13066
421 | 11769
406 | 11857
382 | 19397
647 | 27050
873 | 39328
1311 | 26701
861 | 23876
770 | 15667
522 | | MAX | 282 | 446 | 391 | 505 | 504 | 566 | 1050 | 1610 | 1960 | 1400 | 1620 | 920 | | MIN | 156 | 87 | 146 | 359 | 223 | 203 | 407 | 342 | 895 | 467 | 311 | 231 | | AC-FT | 13330 | 14750 | 13380 | 25920 | 23340 | 23520 | 38470 | 53650 | 78010 | 52960 | 47360 | 31080 | | | | | | | | | , BY WATER Y | | | | | | | MEAN | 407 | 389
909 | 342 | 400 | 390 | 396 | 572 | 1185 | 2066 | 1431
2909 | 974 | 424 | | MAX
(WY) | 1433
1985 | 1985 | 772
1987 | 818
1985 | 1134
1 98 5 | 1040
1985 | 1568
1987 |
3763
1980 | 3831
1983 | 1983 | 2565
1984 | 1223
1982 | | MIN | 104 | 149 | 110 | 124 | 209 | 168 | 99.3 | 254 | 518 | 307 | 372 | 93.1 | | (WY) | 1979 | 1979 | 1991 | 1990 | 1978 | 1978 | 1978 | 1981 | 1977 | 1977 | 1977 | 1977 | | SUMMARY | STATIST | ıcs | FOR 1 | 991 CALENI | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1975 | - 1992 | | ANNUAL | | | ; | 205312 | | | 209615 | | | a | | | | ANNUAL | MEAN
ANNUAL N | AC A N | | 562 | | | 573 | | | ^a 749
1356 | | 1985 | | | ANNUAL ME | | | | | | | | | 240 | | 1977 | | | DAILY ME | | | 2130 | Jun 14 | | 1960 | Jun 29 | | D8770 | Aug | 22 1984 | | LOWEST | DAILY MEA | AN | | 87 | Nov 8 | | 87 | Nov 8 | | c33 | Nov | 26 1990 | | | SEVEN-DAY | | | 132 | Mar 2 | | 163 | Dec 13 | | d. 38 | | 22 1990 | | | TANEOUS PE | | | | | | 2210
e
3.29 | Aug 25 | | d ₁₃₆₀₀ | | 22 1984 | | | PANEOUS PE
RUNOFF (A | | | 407200 | | | 415800 | Aug 25 | | 9.4
542800 | o Aug | 22 1984 | | | CENT EXCE | | | 1460 | | | 1170 | | | 1650 | | | | 50 PERC | CENT EXCE | EDS | | 334 | | | 455 | | | 428 | | | | 90 PERC | CENT EXCE | ED S | | 170 | | | 199 | | | 173 | | | a-Average discharge for 60 years (water years 1914-73), 684 ft^3/s ; 495600 acre-ft/yr, prior to completion of Pueblo Dam. b-Maximum daily discharge for period of record, 26600 ft³/s, May 16, 1957. c-Minimum daily discharge for period of record, no flow at times in 1902, 1910 1931, and 1934. d-Maximum discharge for period of record, 180000 ft³/s, Jun 4, 1921, by slope-area measurement of peak flow at a point 8 mi upstream; gage height not determined. e-Maximum gage height, 3.31 ft, Jun 12. 253 #### 07119500 APISHAPA RIVER NEAR FOWLER, CO LOCATION.--Lat 38°05'28", long 103°58'52", in SE¹/4NW¹/4 sec.35, T.22 S., R.59 W, Otero Country, Hydrologic Unit 11020007, near right bank on downstream side of county highway bridge, 3.5 mi southeast of Fowler, and 5.4 mi upstream from mouth. DRAINAGE AREA .-- 1.125 mi2. PERIOD OF RECORD.--Streamflow records, April 1922 to September 1925, May 1939 to current year. Monthly discharge only for some periods, published in WSP 1311. Water-quality data available, November 1963 to September 1967, January to April 1969. REVISED RECORDS.--WSP 957: 1939, 1941. WSP 1117: Drainage area. WSP 1241: 1923 (M). WRD Colo. 1974: 1973 (M). GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Datum of gage is 4,317.05 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 29, 1923, at site 3 mi downstream at different datum. Aug. 29, 1923, to Sept. 30, 1925, at present site at different datum. May 27, 1939 to July 30, 1940, at present site at different datum. July 30, 1940 to Sept. 30, 1985, at datum 2.0 ft, higher. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 5, and Feb. 20-25. Records fair except for estimated daily discharges, which are poor. Waste water from Oxford Farmers Co., and Rocky Ford Highline canals enters river upstream from station. Diversions upstream from station for irrigation of about 4,700 acres. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBI | ER 1991 | TO SEPTE | MBER 1992 | | | |---|--------------------------------------|-------------------------------------|--|--|--------------------------------------|---|--|-------------------------------------|---|-------------------------------------|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.5
6.0
5.3
4.3
7.0 | 13
13
12
11
9.0 | 3.7
3.7
3.7
4.1
3.8 | 3.3
3.1
3.1
3.1 | 2.9
2.7
2.9
3.1
3.1 | 2.3
2.5
2.4
2.6
2.5 | 15
16
14
13 | 5.1
4.9
6.0
6.5
5.0 | 15
12
13
13 | 16
9.2
7.3
7.6
5.3 | 16
47
23
16
9.8 | 132
47
37
27
19 | | 6
7
8
9
10 | 8.9
6.8
5.2
4.7
4.7 | 7.0
4.7
5.0
4.7
4.0 | 3.8
3.7
3.6
3.4
3.8 | 3.1
3.3
3.1
3.1 | 2.9
2.7
2.7
2.7
2.7 | 2.5
2.3
2.4
2.3
2.5 | 13
16
15
13
5.9 | 4.7
3.5
3.6
3.0
5.3 | 18
25
223
61
11 | 4.4
4.9
4.0
7.6
4.2 | 10
7.5
6.0
4.7
5.2 | 16
13
11
8.0
4.0 | | 11
12
13
14
15 | 4.6
5.1
7.8
12
8.9 | 3.9
3.9
4.1
3.8
3.9 | 3.7
3.7
3.5
3.5
3.5 | 3.1
3.2
3.1
2.9
2.9 | 2.7
2.7
2.7
3.2
2.8 | 2.5
2.2
2.4
2.2
3.9 | 4.1
4.0
5.5
5.7 | 3.9
3.3
3.0
3.7
3.4 | 24
33
32
15 | 4.1
4.1
4.1
36
33 | 4.0
5.6
34
56
34 | 4.8
6.8
8.3
13 | | 16
17
18
19
20 | 3.9
5.2
4.4
4.8
5.4 | 5.5
4.5
4.0
4.1
3.7 | 3.5
3.2
3.1
3.1 | 2.9
3.1
3.1
2.9
2.9 | 3.0
2.9
2.7
2.7
2.8 | 13
3.8
7.0
9.2
9.7 | 13
14
13
17
19 | 2.9
2.7
2.3
2.2
2.2 | 17
13
12
17
8.4 | 31
15
5.3
9.0
6.1 | 15
15
173
32
22 | 9.1
9.5
7.7
7.5
7.4 | | 21
22
23
24
25 | 8.1
8.5
8.1
3.9
3.9 | 3.7
3.7
3.7
3.7
3.7 | 3.1
3.5
3.6
3.5
3.5 | 2.9
2.9
2.7
2.7
2.9 | 2.8
2.7
2.7
2.7
2.7 | 14
13
13
13 | 15
12
10
14
12 | 2.6
3.6
8.6
7.2
9.8 | 9.9
13
8.1
9.7
22 | 109
150
70
22
12 | 12
6.3
4.3
7.3 | 7.3
7.3
7.3
7.1
9.1 | | 26
27
28
29
30
31 | 4.0
6.5
7.2
6.7
12 | 3.7
3.7
3.7
3.8
3.7 | 3.5
3.5
3.3
3.3
3.3 | 2.9
2.9
2.9
2.7
2.7
2.9 | 2.5
2.4
2.4
2.4 | 11
8.6
11
13
16
15 | 10
11
7.5
5.6
4.2 | 12
13
9.7
7.5
12
15 | 183
62
59
30
20 | 15
9.4
15
18
19
22 | 127
107
95
50
35
72 | 7.7
7.7
7.0
5.8
5.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 201.4
6.50
13
3.9
399 | 161.9
5.40
13
3.7
321 | 108.7
3.51
4.1
3.1
216 | 92.6
2.99
3.3
2.7
184 | 79.9
2.76
3.2
2.4
158 | 219.8
7.09
16
2.2
436 | 339.5
11.3
19
4.0
673 | 178.2
5.75
15
2.2
353 | 1013.1
33.8
223
8.1
2010 | 679.6
21.9
150
4.0
1350 | 1131.7
36.5
173
4.0
2240 | 473.0
15.8
132
4.0
938 | | STATIST | | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1922 | - 1992 | , BY WATER | YEAR (WY | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.4
87.2
1924
1.06
1965 | 17.5
83.1
1966
.90
1940 | 11.8
54.7
1966
1.33
1955 | 7.41
30.4
1966
2.37
1976 | 10.0
54.0
1971
1.85
1976 | 11.8
59.6
1924
1.35
1955 | 22.1
529
1942
.94
1955 | 43.6
576
1955
1.65
1975 | 47.7
290
1948
1.13
1954 | 56.3
306
1958
1.53
1974 | 69.4
628
1923
1.56
1974 | 20.0
154
1940
1.07
1956 | | SUMMARY | STATIST | ICS | FOR 1 | 991 CALENI | OAR YEAR | | FOR 1992 WA | TER YEAR | | WATER Y | EARS 1922 | - 1992 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 3654.4
10.0
949
al.7
2.0
7250
13
3.7
2.3 | Jul 2
May 1
Apr 29 | | 4679.4
12.8
223
52.2
2.4
825
6.76
9280
22
5.3
2.7 | Jun 8
Mar 12
Mar 8
Jun 8
Jun 8 | | 28.0
105
5.7
10100
.0
83000
20310
46
6.6
1.8 | May
0 Feb
6 Jan
Aug | 1942
1964
19 1955
5 1951
30 1951
22 1923 | | a-Also occurred May 5, 10, and 11. b-Also occurred Mar 14. c-From slope-area measurement of peak flow, at site 2 ml upstream from present site, caused by failure of Apishapa Dam 31 ml upstream. #### 07119700 ARKANSAS RIVER AT CATLIN DAM, NEAR FOWLER, CO LOCATION.--Lat 38°07'33", long 103°54'41", in NW¹/4NW¹/4 sec.21, T.22 S., R.58 W., Otero County, Hydrologic Unit 11020005, 600 ft downstream from gage on Catlin Canal, on right bank 2.2 mi downstream from diversion dam for Catlin Canal, 2.3 mi downstream from Apishapa River, and 6.0 mi east of Fowler. DRAINAGE AREA.--10,901 mi², of which 54 mi² is probably noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1964 to current year. Statistical summary computed for 1975 to current year. GAGE.--Water-stage recorders with satellite telemetry on river and on Catlin Canal. Datum of river gage is 4,245.92 ft above National Geodetic Vertical Datum of 1929. Datum of canal gage is 4,257.87 ft above National Geodetic Vertical Datum of 1929. Prior to May 13, 1971, river gage at site 2.2 mi upstream at datum 24.08 ft, higher, and canal gage at site 1.7 mi upstream at datum 3.26 ft, higher. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 7, Dec. 17-19, Dec. 30 to Jan. 2, and Jan. 4-6. Records good except for estimated daily discharges, which are poor. Discharge computed by combining discharge of river below canal with that of Catlin Canal. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water
withdrawals, diversions for irrigation, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | DAY | | -1. | DISCHAR | GF CURIO | ר דרדי סי | P SECOND | WATER | VEAR OCTOR | FD 1991 T | O SEPTE | WAFR 1992 | | | |--|---------|------------|------------|-----------|-----------|------------|--------|-------------|-----------|---------|-----------|-------|---------| | 1 1 144 | | | DISCHAR | ob, cobi | S FEET F | | | | LK 1991 1 | O JETTE | IDER 1992 | | | | 2 205 406 702 385 499 237 586 434 1250 1370 826 857 3 223 294 199 388 570 237 586 434 1250 1370 826 857 4 202 430 196 390 533 243 525 433 1190 120 677 904 6 225 500 210 410 520 456 505 537 1090 812 666 625 7 231 326 218 406 517 233 481 527 233 481 525 433 1390 120 678 693 7 231 326 218 410 520 456 505 537 1090 812 666 625 7 231 326 218 410 520 456 505 537 1090 812 666 625 7 231 326 218 410 520 456 505 537 1090 812 666 625 7 231 326 218 410 520 456 505 537 1090 812 666 625 8 273 182 6 218 411 541 193 403 675 1120 529 465 557 10 239 106 197 413 544 377 373 748 1340 618 335 548 11 260 270 186 428 532 247 564 898 1680 1080 313 506 12 263 293 192 411 541 196 408 1020 1820 1800 482 459 13 237 771 196 409 544 114 64 18 919 1430 1140 657 414 14 232 205 204 425 538 153 426 710 842 1250 925 407 15 228 218 197 403 526 260 473 643 1150 120 776 473 16 237 255 193 401 526 260 473 643 1150 120 776 473 16 237 255 193 401 526 260 473 643 1150 120 776 473 17 258 273 184 432 523 437 879 569 1560 871 584 800 18 294 296 180 426 515 449 1040 574 1550 956 817 1010 652 444 17 258 273 184 432 523 437 879 569 1560 871 584 800 18 294 296 180 426 515 449 1040 574 1550 956 817 1010 814 19 20 271 405 180 442 483 486 999 584 1450 655 1030 821 20 271 405 180 442 483 486 999 584 1450 655 1030 821 21 263 338 185 446 510 500 908 932 1450 655 1030 821 22 22 21 23 194 436 435 435 456 999 584 1450 655 1030 821 22 22 21 407 224 434 337 538 598 798 1590 1560 877 586 834 22 22 21 408 224 434 337 538 598 599 584 1450 655 1030 821 23 24 196 265 220 224 434 337 558 598 677 1570 1590 594 924 924 336 526 226 227 245 375 445 297 598 677 1570 1590 594 924 924 336 586 787 1570 1590 594 924 924 336 586 787 1590 1991 1991 1991 1991 1991 1991 1991 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 223 294 199 388 520 237 566 441 1200 1320 677 904 4 202 410 196 390 533 241 525 433 1190 1250 778 630 5 192 532 212 400 517 395 511 445 1320 1080 728 699 6 225 500 210 410 520 456 505 537 1090 728 699 6 225 500 210 410 520 456 505 537 1090 728 699 8 278 189 206 385 550 187 441 636 1450 635 505 599 3 274 123 133 386 544 1397 403 675 1420 529 465 555 571 10 239 106 197 413 544 377 373 778 1340 529 465 557 11 260 270 186 428 532 247 364 898 1680 1660 313 506 11 260 270 186 428 532 247 364 898 1680 1660 313 506 11 262 293 184 411 541 196 408 1020 1820 1820 482 459 11 262 228 218 197 403 556 246 418 510 120 120 776 475 16 237 228 218 197 403 556 260 473 643 1150 1210 776 475 16 237 255 199 403 556 260 473 643 1150 1210 776 475 16 237 255 199 406 426 515 449 1040 574 1150 1210 776 475 16 237 258 273 184 401 256 449 597 589 1560 871 594 600 18 8 294 296 180 426 515 449 1040 574 1150 811 | | | | | | | | | | | | | | | 5 192 532 212 430 196 390 533 243 525 433 1190 1250 705 830 5 192 532 212 400 517 395 511 445 1320 1600 726 699 6 225 500 210 410 520 456 505 537 1090 812 686 625 7 231 326 218 405 537 233 885 549 1100 632 559 9 274 123 193 386 544 193 403 675 1420 635 505 599 9 274 123 193 386 544 193 403 675 1420 638 529 465 557 10 239 106 197 413 544 377 373 748 1340 638 335 548 11 260 270 186 428 532 247 364 889 1680 1060 313 506 12 263 293 192 411 541 196 408 1020 1820 1180 482 459 13 237 271 196 409 544 146 418 919 1430 1140 657 414 14 233 205 205 204 425 538 153 426 710 842 1250 925 407 15 228 218 197 403 526 249 538 153 426 710 842 1250 925 407 16 237 255 193 401 526 449 597 587 1370 1010 652 444 17 258 273 184 432 523 437 879 589 1560 871 584 800 18 290 292 180 426 533 437 879 589 1560 871 584 800 18 290 292 180 426 533 437 879 589 1560 871 584 800 18 290 292 296 180 426 533 449 1040 574 11550 811 1010 811 293 292 295 180 426 435 449 1040 574 11550 811 1010 811 294 295 180 426 435 449 1040 574 11550 811 1010 811 294 295 180 426 435 485 495 954 783 1150 735 670 881 20 271 405 180 442 483 485 954 783 1150 735 556 700 881 21 263 338 185 446 610 500 908 932 445 574 11550 815 1010 811 224 225 238 194 446 510 500 908 932 445 575 575 575 575 575 575 575 575 575 | | | | | | | | | | | | | | | 6 225 500 210 410 557 395 511 445 1320 1080 728 699 6 225 500 210 410 557 395 511 445 1320 1080 728 699 7 231 326 218 405 537 233 485 549 1100 732 573 610 8 278 189 206 385 550 187 441 636 1450 529 465 555 577 10 239 106 197 413 544 377 373 748 1340 529 465 557 110 239 106 197 413 544 377 373 748 1340 529 465 557 111 260 270 186 428 532 247 364 898 1680 1060 313 506 112 263 293 192 411 541 196 408 1020 1820 1820 492 459 13 237 271 196 409 544 146 418 919 1430 1140 657 414 15 232 205 204 423 538 153 426 710 842 1550 475 16 237 255 193 401 566 449 597 587 1370 1100 652 444 11 256 277 31 184 435 523 447 879 589 1150 877 1370 1010 652 444 11 259 290 355 179 403 526 248 497 597 589 11560 877 1370 1010 652 444 11 259 290 355 179 403 526 248 498 485 999 591 1150 877 1370 1010 652 444 11 259 273 184 435 523 437 879 589 11560 877 1370 1010 652 444 11 259 273 184 435 523 437 879 589 11560 877 589 11560 871 589 120 879 879 879 879 879 879 879 879 879 879 | | | | | | | | | | | | | | | 7 231 326 218 405 537 233 485 549 1100 732 573 610 8 278 189 206 385 550 187 441 636 1450 635 505 599 9 274 123 193 386 544 193 403 675 1420 529 465 557 10 239 106 197 413 544 377 373 778 1340 638 335 554 11 260 270 186 428 532 247 364 898 1680 1060 313 506 12 263 293 192 411 541 196 408 1020 1820 1180 482 459 13 237 271 196 409 544 146 418 919 1430 1140 657 414 14 232 205 204 425 538 153 426 710 842 1250 925 441 15 228 218 197 403 526 260 473 613 1150 1210 776 473 16 237 255 193 401 526 449 557 587 1370 1010 652 444 17 258 273 184 412 523 437 879 569 1560 871 584 804 18 294 296 180 426 515 449 1040 574 1550 817 1010 652 20 271 405 180 442 483 485 954 1785 1550 817 1010 801 19 290 355 179 416 495 466 999 544 1450 655 1030 821 21 263 338 185 446 510 500 908 912 1450 7731 615 826 22 236 293 196 450 521 512 884 1140 1400 775 587 663 23 217 286 217 488 440 577 818 1140 777 778 1610 170 778 633 21 22 25 20 274 418 440 577 818 140 777 777 11610 1160 778 587 683 22 236 233 196 450 521 512 884 1140 1400
775 582 760 23 217 286 217 488 440 577 818 120 120 775 587 587 133 615 826 23 217 286 217 488 440 577 818 120 1250 575 515 483 25 200 277 405 180 422 433 635 777 778 1610 100 612 433 633 645 657 771 610 100 613 634 635 635 635 635 635 635 635 635 635 635 | 5 | 192 | 532 | 212 | 400 | 517 | 395 | | 445 | 1320 | 1080 | 728 | 699 | | 8 | | | | | | 520 | 456 | | | | | | | | 9 774 123 193 386 544 193 403 675 1420 529 465 557 10 239 106 197 413 544 377 373 748 1340 638 335 548 11 20 239 106 197 413 544 377 373 748 1340 638 335 548 11 20 239 106 197 413 541 196 408 1020 1180 1060 313 556 12 263 293 192 411 541 196 408 1020 1180 1060 313 556 13 226 225 204 425 538 153 426 710 842 1250 925 407 15 228 218 197 403 526 260 473 643 1150 1120 776 475 15 228 218 197 403 526 260 473 643 1150 1210 776 475 16 237 255 193 401 526 449 597 587 1370 1010 652 444 177 258 273 184 412 523 437 879 569 1560 871 584 800 18 294 296 180 426 515 449 1040 574 1550 817 1010 814 199 290 355 179 436 495 466 999 594 1450 655 1030 821 120 271 405 180 442 483 485 994 783 1530 556 706 834 120 271 405 180 442 483 485 994 783 1530 556 706 834 120 223 271 286 217 438 440 527 838 1290 1250 575 535 481 249 625 220 247 214 412 328 571 717 1540 1400 775 582 760 23 217 286 217 438 440 527 838 1290 1250 575 535 481 249 626 22 236 293 196 450 521 512 884 1140 1400 775 582 760 23 217 286 217 438 440 527 838 1290 1250 575 535 481 252 200 247 214 412 328 571 717 1540 1480 423 1520 396 626 224 240 224 434 307 537 708 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1480 423 1520 396 26 227 245 375 445 297 519 667 1570 1580 374 896 347 277 225 253 306 449 306 524 667 1540 1720 612 1580 361 822 127 225 253 306 449 306 524 667 1570 170 160 1480 423 1520 396 822 127 225 253 306 449 306 524 667 1540 1720 612 1580 361 820 148 82 148 8 | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 12 | 10 | 239 | 106 | 197 | 413 | 544 | 377 | 373 | 748 | 1340 | 638 | 335 | 548 | | 13 | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | 16 237 255 193 401 526 469 597 587 1370 1010 652 444 17 258 273 184 432 523 437 8879 569 1560 871 584 800 18 294 296 180 426 515 449 1040 574 1550 817 1010 814 19 290 355 179 436 495 466 999 594 1450 655 103 821 20 271 405 180 442 483 485 954 783 1550 877 1010 814 21 263 338 185 446 510 500 908 931 1400 775 582 766 22 236 293 196 450 521 512 884 1140 1400 775 582 760 23 217 286 217 438 440 527 838 1290 1250 575 535 481 24 196 265 220 422 356 556 771 1540 1320 529 515 430 25 200 247 214 412 328 571 717 1610 1480 423 1520 396 26 224 240 224 434 3307 537 708 1610 1860 423 1520 396 26 224 240 224 434 330 554 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 744 896 347 30 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 TOTAL 7325 8736 7044 1295 13820 11936 18909 28296 42702 26830 23971 17861 MEAN 236 291 227 419 477 385 630 913 1423 865 773 595 MAX 291 150 17330 13970 25780 27410 1266 130 8470 1910 773 909 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 5610 1860 1860 774 4896 347 ANNUAL RUSAN MATHYL MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 437 386 536 1987 1987 1981 1981 1987 1983 1981 1987 1987 1977 ANNUAL MEAN AND ALTER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 437 386 536 546 1980 3971 2705 2384 1209 ANNUAL TOTAL ANNUAL MEAN LOTAL MEAN LORDAR FEAR FLOW 11978 1978 1978 1979 1979 1979 1979 197 | | | | | | | | | | | | | | | 17 258 273 184 432 523 437 879 569 1560 871 584 800 18 294 296 180 426 515 449 1040 574 1550 817 1010 814 19 290 355 179 436 495 446 999 594 1450 655 1030 821 20 271 405 180 442 483 485 954 773 1530 556 706 834 21 263 338 185 446 510 500 908 932 1450 731 615 866 22 236 293 196 450 510 500 908 932 1450 731 615 826 23 237 236 277 438 440 510 577 884 1100 1400 775 532 760 24 196 265 220 422 345 556 571 1540 1200 575 535 430 25 200 247 214 412 328 571 7717 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1850 567 1560 374 27 225 253 306 449 306 524 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 773 909 334 30 241 237 384 444 534 539 1470 1910 773 909 334 MEAN 236 291 227 419 477 385 630 913 1423 865 773 595 MAX 294 532 393 450 257 5570 571 1040 1630 1960 773 909 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FORWARTE YEARS 1975 1992 WATER YEAR WY MEAN 405 402 330 446 437 386 538 1136 207 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1294 1979 1991 1 | | | | | | | | | | | | | | | 18 | 16 | 237 | 255 | 193 | 401 | 526 | 449 | 59 7 | 587 | 1370 | 1010 | 652 | 444 | | 19 | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | 22 236 293 196 450 521 512 884 1140 1400 775 582 760 23 217 286 217 438 440 527 838 1290 1250 575 535 481 24 196 265 220 422 336 556 771 1540 1120 529 515 430 25 200 247 214 412 328 571 717 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1850 567 1560 374 27 225 253 306 449 306 524 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 744 896 347 30 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 MEAN 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 884 442 3313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 8470 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY MATER YEAR (W) MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MIN 1995 1985 1985 1987 1985 1985 1985 1987 1987 1983 1983 1983 1984 1992 MIN 91.0 152 133 175 249 175 86.6 212 432 226 526 84.5 (WY) 1995 1985 1987 1991 1990 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR 1978 1978 1981 1977 1977 1978 1977 ANNUAL MEAN | | | | | | | | | | | | | | | 22 236 293 196 450 521 512 884 1140 1400 775 582 760 23 217 286 217 438 440 527 838 1290 1250 575 535 5481 24 196 265 220 422 356 556 5771 1540 1320 529 515 430 25 200 247 214 412 328 571 717 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1850 567 1560 374 27 225 253 306 449 306 524 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 744 896 347 30 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 MEAN 236 291 227 419 447 385 630 913 1423 865 773 595 MAX 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 484 442 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY MATER YEAR W) MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MIN 91.01 152 133 175 249 175 86.6 212 432 236 52.6 | 21 | 263 | 338 | 185 | 446 | 510 | 500 | 908 | 932 | 1450 | 731 | 615 | 826 | | 24 196 265 220 422 356 556 771 171 1540 1320 529 515 430 25 200 247 214 412 328 571 771 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1850 567 1560 374 27 225 253 306 449 306 524 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 744 896 347 30 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 MEAN 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MMX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1987 1985 1985 1987 1985 1985 1987 1987 1983 1983 1984 1982 MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 (WY) 1979 1979 1979 1991 1990 1978 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY)
SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR (WY) SO PERCENT EXCEEDS 1330 1710 1978 SANOUAL ROWS (AC-FTT) 396300 447700 5355 Aug 18 1610 1610 1610 1610 1610 1610 1610 1 | | | | 196 | 450 | 521 | 512 | | 1140 | | 775 | | | | 25 200 247 214 412 328 571 717 1610 1480 423 1520 396 26 224 240 224 434 307 537 708 1610 1850 567 1560 374 27 225 253 306 449 306 524 697 1540 1720 612 1580 361 28 227 245 375 445 297 519 697 1570 1590 594 924 351 29 216 241 393 450 283 527 643 1630 1960 744 896 347 30 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 MEAN 236 291 227 419 477 385 630 913 1423 865 773 595 MAX 294 532 393 450 550 5571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MIN 1985 1985 1985 1985 1985 1985 1985 1987 1987 1983 1983 1984 1982 MIN 91.0 152 133 175 249 195 1958 1966 212 432 286 526 84.5 MAY 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MIN 1990 1552 133 175 249 195 1958 1967 1983 1981 1977 1977 1978 1975 SUMMARY STATISTICS FOR 191 CALENDAR YEAR FOR 192 WATER YEAR WATER YEAR 1982 MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 KWY) 1979 1979 1991 1990 1978 1978 1978 1981 1987 1987 1987 1987 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 27 | 26 | 224 | 240 | 224 | 434 | 307 | 537 | 708 | 1610 | 1850 | 567 | 1560 | 374 | | 29 216 241 393 450 283 527 643 1630 1960 744 896 347 330 241 237 384 444 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 632 882 TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 MEAN 236 291 227 419 477 385 630 913 1423 865 773 595 MAX 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 434 347 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1987 1985 1987 1985 1985 1987 1985 1987 1983 1983 1984 1982 (WY) 1995 1995 1991 1990 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEAR 1977 1978 1979 1979 | | | | | | | | | | | | | | | 30 241 237 386 414 534 539 1470 1910 773 909 334 31 247 380 450 529 1290 832 882 832 882 832 882 832 882 832 882 832 882 832 882 832 882 832 882 832 882 82 82 82 82 82 82 82 82 82 82 82 8 | | | | | | | | | | | | | | | TOTAL 7325 8736 7044 12995 13820 11936 18909 28296 42702 26830 23971 17863 | | | | | | | | | | | | | | | MEAN 236 291 227 419 477 385 630 913 1423 865 773 595 MAX 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS FORNTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 437 386 518 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1229 MIN 91.0 | | | | | | | | | | | | | | | MAX 294 532 393 450 550 571 1040 1630 1960 1560 1580 1000 MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 416 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1985 1985 1985 1985 1985 1985 | TOTAL | 7325 | 8736 | 7044 | 12995 | 13820 | 11936 | 18909 | 28296 | 42702 | 26830 | 23971 | 17863 | | MIN 192 106 179 380 283 146 364 434 842 423 313 334 AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 MAX 1294 1985 1985 1985 1985 1985 1985 1985 1985 | | | | | | | | | | | | | | | AC-FT 14530 17330 13970 25780 27410 23680 37510 56130 84700 53220 47550 35430 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 1992, BY WATER YEAR (WY) MEAN | | | | | | | | | | | | | | | MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1987 1985 1985 1985 1987 1987 1983 1983 1984 1982 MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 (WY) 1979 1979 1991 1990 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1975 - 1992 ANNUAL TOTAL 199807 220427 ANNUAL MEAN 547 602 4740 HIGHEST ANNUAL MEAN 547 602 4740 HIGHEST ANNUAL MEAN 1250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 630 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 | | | | | | | | | | | | | | | MEAN 405 402 360 436 437 386 538 1136 2007 1362 973 420 MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1987 1985 1985 1985 1987 1987 1983 1983 1984 1982 MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 (WY) 1979 1979 1991 1990 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1975 - 1992 ANNUAL TOTAL 199807 220427 ANNUAL MEAN 547 602 4740 HIGHEST ANNUAL MEAN 547 602 4740 HIGHEST ANNUAL MEAN 1250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 630 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 | STATIST | rics of Mo | NTHLY MEAN | N DATA FO | R WATER | YEARS 1975 | - 1992 | . BY WATER | YEAR (WY) | | | | | | MAX 1234 925 773 854 1249 867 1526 3888 3971 2705 2384 1209 (WY) 1985 1985 1985 1985 1985 1985 1987 1983 1983 1984 1982 MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 (WY) 1979 1979 1991 1990 1978 1978 1978 1981 1977 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1975 - 1992 ANNUAL TOTAL 199807 220427 ANNUAL MEAN 547 602 4740 1292 1985 1000 1000 1000 1000 1000 1000 1000 10 | | | | | | | | | | | 1362 | 973 | 420 | | MIN 91.0 152 133 175 249 175 86.6 212 432 286 526 84.5 (WY) 1979 1979 1991 1990 1978 1978 1978 1978 1981 1977 1977 1977 | | 1234 | 925 | | | | | | | 3971 | | 2384 | 1209 | | (WY) 1979 1979 1991 1990 1978 1978 1978 1981 1977 1977 1978 1977 SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1975 - 1992 ANNUAL TOTAL 199807 220427 ************************************ | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1975 - 1992 ANNUAL TOTAL 199807 220427 ANNUAL MEAN 547 602 3740 HIGHEST ANNUAL MEAN 1292 1985 LOWEST ANNUAL MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 730 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 1STANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 497 430 | | | | | | | | | | | | | | | ANNUAL MEAN 547 602 a740 HIGHEST ANNUAL MEAN 1292 1985 LOWEST ANNUAL MEAN 351 1977 HIGHEST DAILY MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 30 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 3460 Aug 18 23300 Jul 10 1978 INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 353 497 430 | | | | | | | | | | | _ | | | | ANNUAL MEAN 547 602 a740 HIGHEST ANNUAL MEAN 1292 1985 LOWEST ANNUAL MEAN 351 1977 HIGHEST DAILY MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 30 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 3460 Aug 18 23300 Jul 10 1978 INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 353 497 430 | ANNUAL | TOTAL | | | 199807 | | | 220427 | | | | | | | LOWEST ANNUAL MEAN | | | | | 547 | | | | | | a740 | | | | HIGHEST DAILY MEAN 2250 Jul 2 1960 Jun 29 8480 Jul 10 1978 LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 30 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 3460 Aug 18 23300 Jul 10 1978 INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 497 430 | | | | | | | | | | | 253 | | | | LOWEST DAILY MEAN 45 Mar 6 106 Nov 10 30 Aug 14 1977 ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 3460 Aug 18 23300 Jul 10 1978 INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300
437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 497 430 | | | | | 2250 | Jul 2 | | 1960 | Jun 29 | | D8480 | Jul | | | ANNUAL SEVEN-DAY MINIMUM 66 Mar 5 185 Dec 16 46 Oct 2 1978 INSTANTANEOUS PEAK FLOW 3460 Aug 18 23300 Jul 10 1978 INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 497 430 | LOWEST | DAILY MEA | ιN | | 45 | | | 106 | Nov 10 | | ~30 | Aug : | 14 1977 | | INSTANTANEOUS PEAK STAGE 5.35 Aug 18 10.81 Jul 10 1978 ANNUAL RUNOFF (AC-FT) 396300 437200 535900 10 PERCENT EXCEEDS 1320 1260 1610 50 PERCENT EXCEEDS 353 497 430 | | | | | 66 | Mar 5 | | | | | 16 | | | | ANNUAL RUNOFF (AC-FT) 396300 437200 535900
10 PERCENT EXCEEDS 1320 1260 1610
50 PERCENT EXCEEDS 353 497 430 | | | | | | | | | | | 10.81 | | | | 50 PERCENT EXCEEDS 353 497 430 | ANNUAL | RUNOFF (A | C-FT) | | | | | 437200 | • | | 535900 | a-Average discharge for 9 years (water years 1965-73), 636 ft³/s, 460800 acre-ft/yr, prior to completion of Pueblo Dam. b-Maximum daily discharge for period of record, 43200 ft³/s, Jun 18, 1965. c-Also occurred Aug 14, 1977. d-Maximum discharge and stage for period of record, 43200 ft³/s, Jun 18, 1965, gage height, 7.95 ft, site and datum then in use, from rating curve extended above 13000 ft³/s, on basis of flow-over-dam computation of peak flow. 07119700 ARKANSAS RIVER AT CATLIN DAM, NEAR FOWLER, CO #### 07121500 TIMPAS CREEK AT MOUTH, NEAR SWINK, CO LOCATION.--Lat 38°00'11", long 103°39'20", in NW¹/4SW¹/4 sec.35, T.23 S., R.56 W., Otero County, HydrologicUnit 11020005, on left bank 40 ft shoreward, 125 ft upstream from left end of 20th Rd. Bridge, 1.7 mi southwest of Swink, and 2.9 mi upstream from mouth. DRAINAGE AREA .-- 496 mi2. PERIOD OF RECORD. -- January 1922 to September 1925, March 1968 to current year. REVISED RECORDS. -- WDR CO 76-1: 1975. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,120 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 29, 1975, at site 140 ft downstream at datum 0.13 ft, lower. REMARKS.--Estimated daily discharges: Apr. 11-15. Records good, except for estimated daily discharges, which are fair. Natural flow of stream affected by minor diversions upstream from station for irrigation, water imported from Arkansas River and Crooked Arroyo for irrigation upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1922, 21,400 ft³/s, June 17, 1965. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | 1991 | TO SEPTEM | BER 1992 | | | |---------------|-----------------------|------------|----------|-----------|----------|------------------|-----------------|----------|------------|--------------------|-----------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 31
33 | 79
46 | 18
18 | 15
15 | 13
13 | 32
28 | 27
23 | 45
50 | 91
110 | 85
71 | 41
47 | 99
93 | | 3 | 37 | 32 | 18 | 15 | 13 | 24 | 29 | 42 | 111 | 68 | 47 | 98 | | 4 | 38 | 27 | 18 | 15 | 14 | 26 | 33 | 35 | 110 | 52 | 45 | 87 | | 5 | 42 | 25 | 18 | 15 | 14 | 26 | 40 | 38 | 113 | 56 | 43 | 70 | | 6
7 | 47
46 | 24
22 | 18
18 | 14
15 | 14
14 | 25
26 | 41
34 | 36
35 | 112
122 | 53
43 | 42
37 | 53
51 | | 8 | 42 | 29 | 18 | 15 | 13 | 26 | 35 | 34 | 143 | 44 | 38 | 55 | | 9 | 41 | 26 | 18 | 14 | 13 | 32 | 35 | 41 | 135 | 54 | 39 | 75 | | 10 | 42 | 23 | 17 | 14 | 13 | 36 | 37 | 46 | 122 | 49 | 35 | 90 | | 11 | 46 | 22 | 17 | 14 | 13 | 28 | 47 | 46 | 162 | 46 | 34 | 81 | | 12 | 48 | 34 | 17 | 14 | 13 | 26 | 50 | 44 | 226 | 48 | 36 | 86 | | 13 | 48 | 37 | 17 | 14 | 13 | 27 | 60 | 45 | 78 | 49 | 45 | 98 | | 14 | 48 | 53 | 17 | 13 | 13 | 26 | 64 | 44 | 78 | 46 | 48 | 95 | | 15 | 45 | 55 | 17 | 13 | 13 | 26 | 50 | 50 | 108 | 91 | 53 | 103 | | 16 | 46 | 54 | 16 | 13 | 13 | 57 | 54 | 52 | 156 | 241 | 57 | 109 | | 17 | 52 | 48 | 16 | 14 | 13 | 86 | 74 | 46 | 103 | 135 | 54 | 108 | | 18
19 | 46 | 28 | 16 | 14 | 12 | 74 | 97 | 46
42 | 80
56 | 87
86 | 134
77 | 99
96 | | 20 | 47
51 | 24
23 | 16
16 | 14
14 | 12
13 | 75
50 | 73
81 | 37 | 5 6 | 71 | 66 | 103 | | | | | | | | | | | | | | | | 21 | 67 | 22 | 16 | 14 | 13 | 42 | 95 | 42 | 57 | 74 | 59 | 109
9 9 | | 22
23 | 74
67 | 21
21 | 16
16 | 14 | 13 | 6 4
50 | 79
81 | 48
50 | 277
61 | 82
71 | 53
60 | 99 | | 24 | 63 | 20 | 16 | 13
13 | 13
13 | 51 | 74 | 64 | 53 | 74 | 72 | 74 | | 25 | 54 | 20 | 16 | 13 | 13 | 43 | 77 | 92 | 53 | 72 | 174 | 56 | | 26 | 59 | 20 | 16 | | | | 51 | 90 | 70 | 91 | 95 | 60 | | 27 | 59
59 | 20 | 16 | 13
13 | 14
14 | 29
31 | 48 | 86 | 59 | 93 | 129 | 64 | | 28 | 70 | 20 | 16 | 13 | 16 | 34 | 59 | 82 | 71 | 74 | 102 | 60 | | 29 | 77 | 19 | 15 | 13 | 23 | 55 | 44 | 97 | 156 | 56 | 97 | 81 | | 30 | 91 | Ĩ9 | 15 | 13 | | 43 | 41 | 94 | 111 | 47 | 118 | 75 | | 31 | 114 | | 15 | 13 | | 27 | | 69 | | 42 | 113 | | | TOTAL | 1671 | 913 | 517 | 429 | 394 | 1225 | 1633 | 1668 | 3238 | 2251 | 2090 | 2519 | | MEAN | 53.9 | 30.4 | 16.7 | 13.8 | 13.6 | 39.5 | 54.4 | 53.8 | 108 | 72.6 | 67.4 | 84.0 | | MAX | 114 | 79 | 18 | 15 | 23 | 86 | 97 | 97 | 277 | 241 | 174 | 109 | | MIN | 31 | 19 | 15 | 13 | 12 | 24 | 23 | 34 | 5 3 | 42 | 34 | 51 | | AC-FT | 3310 | 1810 | 1030 | 851 | 781 | 2430 | 3240 | 3310 | 6420 | 4460 | 4150 | 5000 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | WATER YE | ARS 1922 | - 1992 | , BY WATER YE | EAR (WY | () | | | | | MEAN | 89.5 | 78.7 | 38.9 | 25.3 | 34.5 | 64.6 | 60.9 | 68.4 | 80.0 | 70.5 | 85.8 | 70.4 | | MAX | 265 | 210 | 109 | 60.4 | 84.6 | 201 | 170 | 150 | 318 | 200 | 401 | 159 | | (WY) | 1924 | 1924 | 1971 | 1923 | 1924 | 1924 | 1924 | 1987 | 1923 | 1923 | 1923 | 1986 | | MIN | 27.4 | 30.4 | 9.80 | 7.87 | 11.4 | 24.8 | 11.0 | 14.0 | 24.5 | 18.1 | 15.8 | 15.7 | | (WY) | 1979 | 1992 | 1979 | 1975 | 1976 | 1981 | 1978 | 1981 | 1981 | 1974 | 1974 | 1974 | | SUMMARY | STATISTI | CS | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | ł | WATER YE | ARS 1922 | - 1992 | | ANNUAL | | | | 16275 | | | 18548 | | | | | | | ANNUAL | | ID AN | | 44.6 | | | 50.7 | | | 64.2
130 | | 1923 | | | ANNUAL M
ANNUAL ME | | | | | | | | | 25.2 | | 1923 | | | ANNUAL ME
DAILY ME | | | 697 | Jul 8 | | 277 | Jun 22 | • | 2670 | Aug 1 | 7 1923 | | | DAILY MEA | | | 12 | Jan 13 | | ā ₁₂ | Feb 18 | | 3.3 | | 7 1977 | | | SEVEN-DAY | | | 13 | Jan 11 | | 13 | Feb 13 | | 5 7 | | 6 1978 | | | ANEOUS PE | | | | | | 1280 | Jun 22 | | D ₁₂₃₀₀ | | 0 1978 | | | ANEOUS PE | | | | | | 7.84 | Jun 22 | | 21.11 | | 0 1978 | | | RUNOFF (A | | | 32280 | | | 36790 | · | | 46480 | | | | | ENT EXCÉE | | | 70 | | | 97 | | | 127 | | | | | ENT EXCEE | | | 39 | | | 45 | | | 47 | | | | 90 PERC | ENT EXCEE | DS | | 16 | | | 14 | | | 15 | | | a-Also occurred Feb 19. b-From rating curve extended above 250 ${\rm ft}^3/{\rm s}$, on basis of contracted opening measurement of peak flow. c-From floodmark. #### 07122400 CROOKED ARROYO NEAR SWINK, CO LOCATION.--Lat 37°58'56", long 103°35'52", in SW¹/4SW¹/4 sec.5, T.24 S., R.55 W., Otero County, Hydrologic Unit 11020005, on right bank 54 ft downstream from bridge on State Highway 10, 2.0 mi upstream from mouth, and 2.8 ml southeast of Swink. DRAINAGE AREA. -- 108 mi2. PERIOD OF RECORD. -- February 1968 to current year. REVISED RECORDS. -- WDR CO-76-1: 1975. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good except for discharges above 100 ft³/s, which are fair. Natural flow of stream affected by minor diversions upstream from station for irrigation, water exported upstream from station to Timpas Creek, water imported from Arkansas River for irrigation upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER
Y MEAN | YEAR OCTOB
VALUES | ER 1991 T | O SEPTEM | BER 1992 | | | |---|---|--|-------------------------------------|---|-------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|-------------------------------------|---| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.2
4.1
4.0
4.1
9.8 | 12
7.2
6.0
5.7
5.6 | 4.5
4.3
4.1
4.1
4.5 | 3.9
3.9
3.9
3.9 | 3.0
3.0
3.0
3.0
3.0 | 2.3
2.4
2.5
3.4
4.5 | 11
6.7
9.1
10 | 7.7
6.5
7.0
9.0
9.0 | 26
20
21
15
11 | 6.2
6.7
12
9.2 | 11
12
11
12
8.9 | 9.8
13
8.6
9.4
15 | | 6
7
8
9
10 | 4.4
4.5
6.3
7.9
6.7 | 5.3
5.2
5.2
5.1
4.9 | 4.6
5.0
5.3
4.6
4.5 | 4.1
4.1
3.9
3.9
3.9 | 3.0
2.8
2.8
2.8
2.7 | 5.2
4.4
4.5
4.9
4.5 |
13
9.5
9.9
9.7
8.2 | 8.4
9.4
11
11
12 | 9.2
14
19
24
19 | 14
11
7.3
6.8
7.6 | 5.8
7.5
8.5
9.9
9.5 | 14
17
17
16
11 | | 11
12
13
14
15 | 9.2
8.1
8.7
12
9.8 | 4.7
4.5
4.5
4.5
4.5 | 4.3
4.3
4.1
3.9 | 3.9
3.9
3.9
3.6 | 2.6
2.6
2.6
2.6
2.6 | 4.9
4.4
4.7
4.3
4.4 | 6.5
7.2
10
12
9.5 | 18
11
8.8
12
9.3 | 19
20
6.0
4.9
8.7 | 10
10
10
8.6
10 | 4.8
5.0
9.7
11 | 10
16
15
20
24 | | 16
17
18
19
20 | 11
14
19
22
26 | 4.5
4.5
4.4
4.3
4.5 | 4.0
4.1
4.1
4.1 | 3.5
3.5
3.3
3.3 | 2.5
2.6
2.6
2.6
2.6 | 4.7
11
14
8.5
6.0 | 9.9
13
10
21
25 | 8.5
6.6
6.9
6.1
7.0 | 24
11
10
9.4
12 | 54
11
12
13
17 | 13
13
10
10 | 21
15
15
20
19 | | 21
22
23
24
25 | 26
18
16
14
18 | 4.5
4.4
4.3
4.3
4.2 | 4.1
4.1
4.1
4.1 | 3.1
3.1
3.1
3.1
3.2 | 2.5
2.3
2.3
2.2
2.2 | 18
11
17
11
5.9 | 11
12
12
11
10 | 9.4
12
15
21
6.3 | 8.1
11
7.2
6.2
5.4 | 32
16
28
29
16 | 12
12
12
17
16 | 22
16
13
7.7
13 | | 26
27
28
29
30
31 | 14
14
23
19
26
29 | 4.2
4.3
4.3
4.3
4.3 | 4.1
4.1
4.1
3.9
3.9 | 3.3
3.2
3.0
3.0
3.0 | 2.2
2.2
2.2
2.2 | 6.6
11
15
15
7.7
9.1 | 16
18
8.0
6.3
7.5 | 6.3
9.0
19
24
22
19 | 6.3
12
18
14
5.8 | 27
19
9.6
11
10
7.0 | 18
15
12
20
20 | 14
15
13
7.9
6.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 412.8
13.3
29
4.0
819 | 150.2
5.01
12
4.2
298 | 131.5
4.24
5.3
3.9
261 | 109.9
3.55
4.1
3.0
218 | 75.3
2.60
3.0
2.2
149 | 232.8
7.51
18
2.3
462 | 334.0
11.1
25
6.3
662 | 348.2
11.2
24
6.1
691 | 397.2
13.2
26
4.9
788 | 452.0
14.6
54
6.2
897 | 366.6
11.8
20
4.8
727 | 433.6
14.5
24
6.2
860 | | | TICS OF M | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.6
40.1
1985
.062
1979 | 13.2
32.9
1980
.56
1979 | 5.67
25.8
1970
.59
1979 | 2.94
9.53
1969
.45
1979 | 4.30
22.4
1971
.23
1979 | 8.54
19.3
1970
2.75
1983 | 10.3
31.6
1984
.33
1978 | 14.6
46.3
1985
.64
1981 | 18.4
47.2
1983
2.69
1977 | 16.0
40.5
1983
1.38
1977 | 15.1
37.3
1984
.50
1974 | 14.0
30.9
1986
.003
1974 | | SUMMARY | Y STATIST | ics | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1968 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERO 50 PERO | MEAN F ANNUAL M F DAILY M DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 2955.1
8.10
29
a1.9
2.0
5860
18
5.6
2.4 | Jun 7
Feb 24
Feb 19 | | 3444.1
9.41
54
2.2
2.141
3.61
6830
19
7.9
3.1 | Jul 16
Feb 24
Feb 23
Jul 16 | | 11.5
21.5
5.24
354
5.00
d ₁₂₀₀
7.91
8330
27
7.4 | Aug
Sep
Sep
Aug | 1970
1977
22 1984
4 1974
4 1974
7 1971
7 1971 | a-Also occurred Feb 25. b-No flow at times most years. c-From rating curve extended above 50 $\rm ft^3/s$, on basis of slope-area measurements of peak flow. d-From rating curve extended above 87 $\rm ft^3/s$. #### 07123000 ARKANSAS RIVER AT LA JUNTA, CO LOCATION.—Lat $37^{\circ}59^{\circ}26^{\circ}$, long $103^{\circ}31^{\circ}55^{\circ}$, in $SE^{1}/4NE^{1}/4$ sec.2, T.24 S., R.55 W., Otero County, Hydrologic Unit 11020005, on right bank at upstream side of bridge on State Highway 109 in La Junta, 450 ft upstream from King Arroyo. DRAINAGE AREA.--12,210 mi^2 , of which 115 mi^2 is probably non-contributing. PERIOD OF RECORD.—May to August 1889, September 1893 to December 1895 (gage heights, discharge measurements, and flood data only), April to October 1903, June to November 1908 (gage heights and discharge measurements only), April 1912 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as "near La Junta" in 1903. Statistical summary computed for 1975 to current year. REVISED RECORDS.--WSP 1341: Drainage area. WSP 1731: 1922. GAGE.--Water-stage recorder with satellite telemetry, and nonrecording gage read twice daily. Datum of gage is 4,039.60 ft above National Geodetic Vertical Datum of 1929. See WSP 1711 or 1731 for history of changes prior to June 13, 1940. June 13, 1940, to June 6, 1967, water-stage recorder at site 300 ft upstream at present datum. REMARKS.--Estimated daily discharges: Nov. 1-9, 12, 13, 15-24. Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 400,000 acres, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | 501 • • | -y · | 2.5.5 | | | | | | 1001 | mo annmmu | nn 1000 | | | |---------|------------|------------|----------|-----------|-----------|--------|---------------------|---------|------------|--------------------|------------|--------------| | | | DISCHARG | E, CUBIC | FEET PE | | | YEAR OCTOBER VALUES | 1991 | TO SEPTEMB | ER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 47 | 150 | 85 | 93 | 90 | 132 | 28 | 242 | 470 | 557 | 231 | 392 | | 2 | 50 | 180 | 82 | 96 | 143 | 111 | 22 | 221 | 475 | 547 | 233 | 31 8 | | 3 | 58 | 180 | 91 | 98 | 166 | 111 | 23 | 197 | 455 | 678 | 204 | 291 | | 4 | 60 | 193 | 89 | 130 | 183 | 114 | 29 | 213 | 307 | 784 | 125 | 283 | | 5 | 58 | 247 | 92 | 106 | 193 | 110 | 28 | 202 | 330 | 776 | 84 | 298 | | 6 | 63 | 392 | 91 | 104 | 187 | 149 | 27 | 179 | 234 | 623 | 38 | 289 | | 7 | 76 | 240 | 92 | 147 | 186 | 137 | 24 | 146 | 319 | 489 | 67 | 293 | | 8 | 65 | 186 | 87 | 188 | 173 | 119 | 24 | 160 | 497 | 388 | 64 | 348 | | 9 | 50 | 123 | 86 | 156 | 177 | 125 | 31 | 239 | 697 | 203 | 28 | 378 | | 10 | 43 | 47 | 84 | 149 | 181 | 128 | 31 | 304 | 348 | 170 | 19 | 328 | | | | | | | | | | | | | | | | 11 | 42 | 38 | 80 | 154 | 189 | 112 | 30 | 394 | 513 | 288 | 31 | 308 | | 12 | 64 | 42 | 82 | 158 | 317 | 103 | 30 | 480 | 729 | 454 | 24 | 258 | | 13 | 75 | 37 | 83 | 150 | 328 | 106 | 33 | 551 | 409 | 521 | 74 | 223 | | 14 | 67 | 35 | 82 | 142 | 334 | 84 | 37 | 443 | 221 | 456 | 186
294 | 196
190 | | 15 | 67 | 219 | 83 | 138 | 348 | 32 | 33 | 340 | 43 | 479 | | | | 16 | 70 | 193 | 84 | 214 | 354 | 21 | 32 | 284 | 256 | 544 | 285 | 224 | | 17 | 72 | 196 | 85 | 213 | 357 | 19 | 35 | 227 | 397 | 371 | 243 | 160 | | 18 | 75 | 165 | 84 | 264 | 352 | 22 | 250 | 223 | 553 | 278 | 259 | 140 | | 19 | 117 | 159 | 83 | 238 | 352 | 15 | 432 | 228 | 543 | 266 | 354 | 168 | | 20 | 124 | 153 | 80 | 196 | 358 | 18 | 417 | 257 | 608 | 383 | 424 | 178 | | 21 | 133 | 101 | 78 | 125 | 358 | 30 | 379 | 428 | 536 | 392 | 319 | 214 | | 22 | 129 | 101 | 79 | 107 | 360 | 25 | 291 | 673 | 668 | 213 | 221 | 216 | | 23 | 109 | 98 | 81 | 97 | 353 | 31 | 364 | 562 | 567 | 150 | 193 | 194 | | 24 | 82 | 89 | 79 | 98 | 251 | 32 | 367 | 500 | 594 | 115 | 199 | 235 | | 25 | 69 | 87 | 79 | 96 | 173 | 25 | 387 | 543 | 626 | 175 | 291 | 165 | | 26 | 86 | 95 | 81 | 94 | 164 | 25 | 451 | 591 | 646 | 128 | 364 | 122 | | 27 | 104 | 93 | 83 | 94 | 144 | 27 | 410 | 602 | 678 | 48 | 211 | 113 | | 28 | 111 | 91 | 85 | 94 | 144 | 36 | 380 | 570 | 399 | 30 | 307 | 94 | | 29 | 122 | 89 | 86 | 92 | 137 | 39 | 351 | 613 | 817 | 25 | 445 | 94 | | 30 | 126 | 87 | 88 | 89 | | 31 | 314 | 480 | 691 | 37 | 464 | 87 | | 31 | 140 | | 89 | 90 | | 25 | | 463 | | 134 | 433 | | | | | | | | | | | | | | | | | TOTAL | 2554 | 4106 | 2613 | 4210 | 7052 | 2094 | | 11555 | 14626 | 10702 | 6714 | 6797 | | MEAN | 82.4 | 137 | 84.3 | 136 | 243 | 67.5 | 176 | 373 | 488 | 345 | 217 | 227 | | MAX | 140 | 392 | 92 | 264 | 360 | 149 | 451 | 673 | 817 | 784 | 464 | 392 | | MIN | 42 | 35 | 78 | 89 | 90 | 15 | 22 | 146 | 43 | 25 | 19 | 87 | | AC-FT | 5070 | 8140 | 5180 | 8350 | 13990 | 4150 | 10490 2 | 22920 | 29010 | 21230 | 13320 | 13480 | | STATIST | ICS OF MON | NTHLY MEAN | DATA FOR | R WATER Y | EARS 1975 | - 1992 | , BY WATER YE | EAR (W | () | | | | | MEAN | 195 | 120 | 118 | 152 | 146 | 97.5 | 124 | 513 | 725 | 462 | 301 | 133 | | MAX | 1189 | 545 | 335 | 453 | 620 | 400 | 770 | 3082 | 1581 | 1299 | 1345 | 463 | | (WY) | 1985 | 1987 | 1987 | 1987 | 1985 | 1987 | 1987 | 1987 | 1987 | 1983 | 1984 | 1982 | | MIN | 8.82 | 4.21 | 13.5 | 9.50 | 6.37 | 19.6 | 6.67 | 21.9 | 103 | 80.2 | 66.2 | 9.5 9 | | (WY) | 1978 | 1979 | 1976 | 1976 | 1976 | 1978 | 1978 | 1981 | 1988 | 1981 | 1987 | 1977 | | SUMMARY | STATISTIC | cs | FOR 19 | 991 CALEN | DAR YEAR | | FOR 1992 WATE | ER YEAI | ₹ | WATER YE | ARS 1975 | - 1992 | | ANNUAL | ጥር ጥል ፣. | | | 77542 | | | 78313 | | | | | | | ANNUAL | | | | 212 | | | 214 | | | ^a 258 | | | | | ANNUAL MI | EAN | | | | | | | | 659 | | 1987 | | | ANNUAL ME | | | | | | | | | 107 | | 1981 | | | DAILY MEA | | | 1100 | Jul 3 | | 817 | Jun 29 | • | b ₉ 790 | Aug 2 | 2 1984 | | | DAILY MEAN | | | 23 | May 11 | | | Mar 19 | | d _{2.5} | | 8 1978 | | | SEVEN-DAY | | | 31 | Apr 23 | | | Mar 1 | 5 | 3.0 | Dec | 4 1978 | | | ANEOUS PEA | | | 31 | uhr sa | | 1180 | Jun 2 | 5 | e ₁₈₀₀₀ | | 2 1984 | | | ANEOUS PEA | | | | | | 7.90 | Jun 22 | | f _{11.09} | | 2 1984 | | |
ANEOUS PEA | | , | 53800 | | | 155300 | Juil Za | | 186800 | Aug 2 | 2 1 204 | | | ENT EXCEED | | 1 | 593 | | | 479 | | | 597 | | | | | ENT EXCEED | | | 109 | | | 157 | | | 101 | | | | | ENT EXCEED | | | 43 | | | 34 | | | 17 | | | | 20 12RO | L LAVEEL | | | 43 | | | 31 | a-Average discharge for 61 years (water years 1913-73), 244 ${ m ft}^3/{ m s}$; 176800 acre-ft/yr, prior to completion of Pueblo Dam. c-Also occurred May 12. b-Maximum daily discharge for period of record, 61100 ft³/s, Jun 4, 1921. d-Minimum daily discharge for period of record, no flow, Jan 20-22 and Mar 20-22, 1915. e-Maximum discharge and stage for period of record, 200000 ft³/s, Jun 4, 1921, gage height, 18.40 ft, site and datum then in use, from rating curve extended above 15000 ft³/s, on basis of slope-area measurement of peak flow f-Maximum gage height for statistical period, 11.87 ft, Jul 10, 1978. #### 07123675 HORSE CREEK NEAR LAS ANIMAS, CO LOCATION.--Lat $38^{\circ}05^{\circ}06^{\circ}$, long $103^{\circ}21^{\circ}12^{\circ}$, in SE $^{1}/45$ W $^{1}/4$ sec.33, T.22 S., R.53 W., Bent County, Hydrologic Unit 11020008, 15 ft right of right upstream end of box culverts on State Highway 194, 3.2 mi upstream of mouth, 3.4 mi downstream from Fort Lyon Canal Aqueduct, and 7.5 mi west of Las Animas. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1979 to current year. REVISED RECORDS. -- WDR CO-91-1: 1989 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 3,975 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 14-16. Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by seepage and sluicing from Fort Lyon Canal. There is some irrigation upstream, however, amounts are unknown. | | | DISCHAF | GE, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOBER | R 1 9 91 T | O SEPTEMB | ER 1992 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--|--|---|--------------------------------------|--|---------------------------------------|---| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.7
2.6
2.5
2.5
2.7 | 4.8
44
14
7.4
20 | 6.1
5.8
5.7
5.6
5.7 | 5.5
5.4
5.3
5.3 | 5.4
5.6
6.4
7.8
8.3 | 4.3
4.3
4.5
5.3
5.8 | 3.9
3.9
4.2
4.1
3.9 | 3.2
2.9
3.4
3.9
3.6 | 4.9
5.8
4.9
6.4
9.0 | 2.7
2.5
2.8
2.6
2.3 | 4.4
4.3
4.0
3.7
3.5 | 4.5
4.2
4.0
4.2
4.0 | | 6
7
8
9
10 | 2.7
2.7
2.7
2.8
2.8 | 43
11
8.4
6.7
6.6 | 6.0
6.3
6.4
6.5
6.2 | 5.5
5.5
5.4
5.5 | 7.8
6.9
6.5
6.2
5.8 | 6.0
6.0
6.0
6.2
6.9 | 3.7
3.6
3.5
3.4
3.9 | 3.1
3.3
3.0
2.6
2.4 | 8.7
9.8
7.9
7.0
8.0 | 2.4
2.3
2.6
3.4
3.6 | 3.5
3.7
3.7
3.5
3.3 | 4.3
3.7
3.5
3.4
3.4 | | 11
12
13
14
15 | 2.9
3.3
3.2
3.2
3.4 | 6.3
6.1
5.9
5.7
5.4 | 5.7
5.7
5.7
5.6
5.5 | 5.5
5.4
5.4
5.3
5.2 | 5.5
5.5
5.3
5.2
5.3 | 7.1
7.1
7.0
6.8
7.9 | 4.7
3.7
3.9
4.1
3.9 | 2.6
2.6
2.7
2.8
3.7 | 5.5
6.0
8.3
7.7
4.8 | 3.3
3.7
3.6
3.3
3.3 | 3.7
4.8
4.7
4.2
4.0 | 3.4
3.4
3.2
3.1 | | 16
17
18
19
20 | 3.4
3.5
3.6
3.7
3.8 | 5.5
5.9
6.8
8.1
9.1 | 5.4
5.3
5.3
5.4
5.5 | 5.1
5.2
5.1
5.0
5.1 | 5.1
5.1
4.8
4.7
4.5 | 25
7.7
6.0
5.7
5.3 | 3.6
4.0
4.1
4.4
4.7 | 4.3
2.7
2.4
2.2
2.3 | 5.4
6.0
5.7
6.2
7.2 | 4.5
5.4
6.0
4.1
3.6 | 3.5
3.3
3.7
3.8
4.1 | 3.0
2.8
2.8
2.9
2.9 | | 21
22
23
24
25 | 3.8
3.9
4.0
3.9
4.0 | 8.5
7.5
6.7
6.4
6.3 | 5.7
5.8
5.8
5.8
5.6 | 5.3
5.1
5.0
5.1
5.1 | 4.6
4.5
4.5
4.5
4.5 | 4.7
4.4
4.4
4.1
4.2 | 4.1
4.5
4.2
3.8
4.2 | 2.6
2.4
2.4
3.4
5.0 | 8.8
7.1
7.0
6.4
6.1 | 4.0
4.0
4.3
4.2
4.9 | 3.9
3.7
3.7
4.1
7.4 | 3.2
4.0
3.7
3.2
3.0 | | 26
27
28
29
30
31 | 4.0
4.1
4.0
4.1
4.2
4.4 | 6.1
6.3
6.2
6.3
6.2 | 5.5
5.4
5.3
5.4
5.4 | 5.3
5.6
5.7
5.7
5.6
5.5 | 4.4
4.3
4.4
4.4 | 3.7
3.8
3.8
3.7
3.8
3.9 | 4.2
3.8
3.5
3.3
3.2 | 4.4
6.0
8.2
7.1
5.2
4.6 | 6.3
5.3
4.7
4.9
3.3 | 7.2
5.7
5.3
6.6
6.5
5.3 | 6.9
8.6
11
6.5
5.1
5.3 | 3.1
2.7
2.6
2.6
2.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 105.1
3.39
4.4
2.5
208 | 297.2
9.91
44
4.8
589 | 176.5
5.69
6.5
5.3
350 | 165.5
5.34
5.7
5.0
328 | 157.8
5.44
8.3
4.3
313 | 185.4
5.98
25
3.7
368 | 118.0
3.93
4.7
3.2
234 | 111.0
3.58
8.2
2.2
220 | 195.1
6.50
9.8
3.3
387 | 126.0
4.06
7.2
2.3
250 | 143.6
4.63
11
3.3
285 | 100.8
3.36
4.5
2.6
200 | | STATIST | CICS OF MO | NTHLY MEA | N DATA FO | R WATER YE | ARS 1980 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.9
32.4
1985
.84
1980 | 7.77
14.4
1986
2.02
1980 | 7.53
20.3
1987
2.98
1980 | 11.3
46.2
1986
2.52
1982 | 9.89
28.1
1986
3.02
1981 | 10.1
23.2
1983
3.80
1982 | 11.1
27.9
1985
1.87
1982 | 21.3
67.5
1987
2.86
1981 | 22.7
51.8
1983
1.79
1981 | 21.8
55.4
1985
.16
1981 | 15.9
49.3
1984
2.60
1990 | 10.6
33.3
1984
1.78
1990 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1980 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC | MEAN ANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE RUNOFF (A ENT EXCEE | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT) | | 1945.1
5.33
44
1.6
1.8
3860
7.5 | Nov 2
Sep 2
Aug 27 | | 1882.0
5.14
44
2.2
2.4
118
3.46
3730
7.0 | Nov 2
May 19
May 17
Nov 2
Nov 2 | | 13.4
26.9
3.37
585
a.00
b1210
6.61
9740
33 | Jul
Jul
Jul
Jul | 1985
1981
15 1989
12 1981
12 1981
15 1989
15 1989 | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | 5.1
2.7 | | | 4.6
2.8 | | | 6.9
2.6 | | | a-No flow many days in 1981. b-From rating curve extended above 240 ft³/s, on basis of culvert and flow-over-road measurement of peak flow 07123675 HORSE CREEK NEAR LAS ANIMAS, CO #### 07124000 ARKANSAS RIVER AT LAS ANIMAS. CO LOCATION.--Lat 38°04'51", long 103°13'09", in SE¹/4NE¹/4 sec.3, T.23 S., R.52 W., Bent County, Hydrologic Unit 11020009, on right bank at upstream side of bridge on U.S. Highway 50, 1.1 mi north of courthouse in Las Animas, and 4.2 mi upstream from Purgatoire River. DRAINAGE AREA.--14,417 \min^2 , of which 441 \min^2 are probably non-contributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May to November 1898 (gage heights only), August to November 1909 (gage heights and discharge measurements only), May 1939 to current year. Statistical summary computed for 1975 to current year. REVISED RECORDS. -- WSP 1341: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 3,883.97 ft above National Geodetic Vertical Datum of 1929. May 13 to Nov. 12, 1898, and Aug. 1 to Nov. 10, 1909, nonrecording gages near present site at different datums. May 23, 1939 to Apr. 27, 1967, water-stage recorder at site 0.4 mi downstream at datum 9.00 ft, lower. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 1 and Jan. 13-16. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 412,000 acres, and return flow from irrigated areas. Flow partly regulated by Pueblo Reservoir (station 07099350) since Jan. 9, 1974. DISCUARCE CHRIC FEFT BED SECOND WATER VEAD OCTOBER 1991 TO SERTEMBER 1993 | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 | TO SEPTEME | BER 1992 | | | |---------|-----------|-------------|----------|-----------------|-----------|--------|------------------------|---------|------------|-------------------|-------------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 35 | 100 | 124 | 121 | 123 | 161 | 27 | 206 | 425 | 553 | 182 | 423 | | 2 | 24 | 110 | 126 | 122 | 136 | 152 | 25 | 154 | 445 | 473 | 285 | 378 | | 3 | 22 | 376 | 129 | 118 | 189 | 139 | 24 | 144 | 473 | 541 | 242 | 271 | | 4 | 21 | 454 | 136 | 124 | 206 | 150 | 23 | 133 | 379 | 715 | 216 | 249 | | 5 | 22 | 123 | 142 | 138 | 213 | 148 | 23 | 143 | 317 | 760 | 144 | 258 | | 6 | 23 | 505 | 135 | 120 | 222 | 138 | 22 | 128 | 336 | 673 | 90 | 277 | | 7 | 25 | 348 | 124 | 120 | 215 | 178 | 22 | 108 | 282 | 519 | 54 | 261 | | 8 | 33 | 205 | 124 | 177 | 225 | 146 | 22 | 86 | 352 | 408 | 59 | 257 | | 9 | 32 |
17 7 | 124 | 197 | 212 | 138 | 22 | 98 | 681 | 287 | 54 | 337 | | 10 | 28 | 119 | 124 | 172 | 207 | 137 | 22 | 171 | 487 | 99 | 37 | 315 | | 11 | 24 | 80 | 126 | 172 | 202 | 142 | 22 | 243 | 386 | 159 | 35 | 280 | | 12 | 24 | 68 | 126 | 179 | 249 | 143 | 22 | 355 | 710 | 277 | 42 | 248 | | 13 | 27 | 63 | 126 | 170 | 355 | 137 | 21 | 447 | 548 | 421 | 74 | 199 | | 14 | 37 | 63 | 119 | 160 | 374 | 132 | 21 | 471 | 332 | 462 | 72 | 173 | | 15 | 38 | 86 | 112 | 150 | 376 | 117 | 22 | 343 | 178 | 396 | 20 6 | 154 | | 16 | 39 | 195 | 109 | 180 | 376 | 71 | 22 | 282 | 69 | 524 | 270 | 155 | | 17 | 42 | 190 | 111 | 253 | 381 | 46 | 22 | 213 | 256 | 401 | 253 | 161 | | 18 | 43 | 192 | 114 | 264 | 381 | 39 | 22 | 179 | 455 | 315 | 202 | 114 | | 19 | 48 | 188 | 118 | 331 | 374 | 37 | 329 | 170 | 517 | 227 | 284 | 116 | | 20 | 66 | 187 | 121 | 275 | 378 | 34 | 387 | 163 | 579 | 245 | 311 | 133 | | 21 | 79 | 182 | 124 | 185 | 370 | 33 | 387 | 228 | 574 | 442 | 354 | 137 | | 22 | 85 | 160 | 124 | 154 | 378 | 33 | 271 | 467 | 580 | 326 | 290 | 174 | | 23 | 81 | 151 | 122 | 143 | 393 | 31 | 247 | 580 | 532 | 223 | 205 | 188 | | 24 | 76 | 142 | 120 | 140 | 368 | 29 | 292 | 438 | 544 | 143 | 183 | 200 | | 25 | 67 | 140 | 114 | 136 | 238 | 29 | 290 | 452 | 612 | 119 | 261 | 199 | | 26 | 60 | 136 | 113 | 135 | 197 | 28 | 338 | 501 | 591 | 234 | 278 | 142 | | 27 | 59 | 129 | 110 | 132 | 186 | 28 | 375 | 471 | 619 | 147 | 263 | 112 | | 28 | 62 | 134 | 111 | 121 | 166 | 28 | 320 | 497 | 456 | 88 | 116 | 103 | | 29 | 68 | 135 | 113 | 114 | 163 | 31 | 313 | 523 | 503 | 69 | 324 | 95 | | 30 | 75 | 132 | 113 | 116 | | 32 | 263 | 490 | 683 | 70 | 452 | 89 | | 31 | 90 | | 120 | 119 | | 28 | | 403 | | 70 | 446 | | | TOTAL | 1455 | 5270 | 3754 | 5038 | 7853 | 2715 | 4218 | 9287 | 13901 | 10386 | 6284 | 6198 | | MEAN | 46.9 | 176 | 121 | 163 | 271 | 87.6 | 141 | 300 | 463 | 335 | 203 | 207 | | MAX | 90 | 505 | 142 | 331 | 393 | 178 | 387 | 580 | 710 | 760 | 452 | 423 | | MIN | 21 | 63 | 109 | 114 | 123 | 28 | 21 | 86 | 69 | 69 | 35 | 89 | | AC-FT | 2890 | 10450 | 7450 | 9990 | 15580 | 5390 | 8370 | 18420 | 27570 | 20600 | 12460 | 12290 | | STATIST | ICS OF MC | NTHLY MEAN | DATA FOR | WATER Y | EARS 1975 | - 1992 | , BY WATER Y | EAR (W | () | | | | | MEAN | 167 | 119 | 130 | 168 | 179 | 107 | 119 | 485 | 697 | 426 | 248 | 112 | | MAX | 1092 | 532 | 378 | 453 | 761 | 405 | 877 | 3205 | 1807 | 1705 | 1051 | 373 | | (WY) | 1985 | | 1987 | 1985 | 1985 | 1987 | 1987 | 1987 | 1987 | 1983 | 1984 | 1984 | | MIN | 5.13 | | 8.40 | 8.45 | 18.5 | 9.44 | 10.8 | 14.1 | 36.4 | 30.5 | 55.2 | 9.12 | | (WY) | 1978 | 1975 | 1978 | 1978 | 1978 | 1975 | 1978 | 1981 | 1988 | 1981 | 1987 | 1977 | | SUMMARY | STATISTI | CS | FOR 19 | 91 CALENI | DAR YEAR | | FOR 1992 WAT | ER YEAR | ₹ | WATER YE | ARS 1975 | - 1992 | | ANNUAL | TOTAL | | | 67321 | | | 76359 | | | | | | | ANNUAL | MEAN | | | 184 | | | 209 | | | ^a 247 | | | | HIGHEST | ANNUAL M | (EAN | | | | | | | | 700 | | 1987 | | | ANNUAL ME | | | | | | | | | h 84.1 | | 1976 | | | DAILY ME | | | 804 | Jul 3 | | 760
8 ₂₁ | Jul 9 | | b5930.1 | | 22 1987 | | LOWEST | DAILY MEA | N | | ^c 17 | Apr 18 | | | Oct 4 | l | ~3.0 | | 30 1974 | | | SEVEN-DAY | | | 17 | May 11 | | 22 | Apr 8 | | f 4.1 | | 26 1977 | | INSTANT | ANEOUS PE | AK FLOW | | | | | 930 | Jun 9 | • | f ₇₁₅₀ | Aug 2 | 24 1984 | | INSTANT | ANEOUS PE | AK STAGE | | | | | 5.88 | Jun 9 | } | g _{7.38} | Aug 2 | 24 1984 | | | RUNOFF (A | | 1 | .33500 | | | 151500 | | | 178700 | • | | | | ENT EXCEE | | | 467 | | | 454 | | | 522 | | | | | ENT EXCEE | | | 126 | | | 154 | | | 107 | | | | 90 PERC | ENT EXCEE | DS | | 22 | | | 32 | | | 12 | | | a-Average discharge for 34 years (water years 1940-73), 203 ft³/s; 147100 acre-ft/yr, prior to completion of Pueblo Dam. b-Maximum daily discharge for period of record, 25800 ft³/s, May 20, 1955. c-Also occurred Apr 20, 22, May 11-16, 18, 20, and 21. d-Also occurred Apr 13 and 14. e-Minimum daily discharge for period of record, 0.9 ft³/s, Jul 31, Aug 1, and 3, 1964. f-Maximum discharge and stage for period of record, 44000 ft³/s, May 20, 1955, gage height, 15.03 ft, site and datum then in use, from rating curve extended above 24000 ft³/s, on basis of slope-area measurement of peak g-Maximum gage height for statistical period, 7.81 ft, May 24, 1987. 07124000 ARKANSAS RIVER AT LAS ANIMAS, CO #### 07124200 PURGATOIRE RIVER AT MADRID, CO LOCATION.--Lat 37°07'46", long 104°38'20", in SW¹/4NE¹/4 sec.35, T.33 S., R.65 W., Las Animas County, Hydrologic Unit 11020010, on left bank 70 ft downstream from county bridge, 0.3 mi northeast of Madrid, and 1.0 mi downstream from Burro Canyon. DRAINAGE AREA. -- 505 mi2. PERIOD OF RECORD.--Streamflow records, March 1972 to current year. Water-quality data available October 1978 to September 1981. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,261.61 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Corps of Engineers bench mark). REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 5, Nov. 21, 22, Dec. 4-7, 16-19, 25-27, 30, Jan. 1, 4-6, Jan. 14-25, and Feb. 7, 8. Records good except those for Aug. 1-27, and those above 600 ft³/s, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 6,000 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. a-Also occurred Feb 24 to Mar 2, 1977. b-From rating curve extended above 300 ft³/s, on basis of drift-timed measurement, and slope-area measurements of peak flow. c-From floodmarks. #### 07124400 TRINIDAD LAKE NEAR TRINIDAD, CO LOCATION.--Lat 37°08'27", long 104°33'03", in NE¹/4SW¹/4 sec.27, T.33 S., R.64 W., Las Animas County, Hydrologic Unit 11020010, in valve house near center of dam on Purgatoire River and 3.2 mi southwest of courthouse in Trinidad. DRAINAGE AREA .-- 672 mi2. PERIOD OF RECORD. -- August 1977 to current year. REVISED RECORDS.--WDR CO-78-1: 1977 (M). WDR CO-83-1: 1981-82 (contents). WDR CO-89-1: 1988 (contents). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,073.64 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army, Corps of Engineers). REMARKS.--Estimated daily contents: May 30-31, and Sept. 12-13. Records good. Reservoir is formed by a rock and earthfill dam completed in 1977. Storage began Aug. 19, 1977. Reservoir area-capacity tables were revised beginning Nov. 1, 1987 after a resurvey by the Corp of Engineers. Total capacity, 185,000 acre-ft, at elevation 6,284.99 ft. Elevation of high crest of spillway, 6,258 ft, with capacity of 121,400 acre-ft. Elevation of notch crest in spillway is 6,243.0 ft, capacity, 93,600 acre-ft. Permanent pool is 4,500 acre-ft at elevation 6,143.1 ft. Elevation of outlet invert is 6,095.0 ft. Reservoir is used for flood control, storage for irrigation, and to help control sedimentation. Figures given are total contents. COOPERATION .-- Capacity tables provided by U.S. Army, Corps of Engineers. EXTREMES (AT 2400) FOR PERIOD OF RECORD.--Maximum contents, 61,800 acre-ft, Apr. 26, 1983, elevation, 6,222.66 ft; no contents prior to Aug. 19, 1977. EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, 19,500 acre-ft, Apr. 27, elevation, 6,176.73 ft; minimum contents, 5,010 acre-ft, Sept. 30, elevation, 6,145.02 ft. Capacity table (elevation, in feet, and contents, in acre-feet) | 6,145.0 | 5,010 | 6,170.0 | 15,600 | |---------|--------|---------|--------| | 6,150,0 | 6,690 | 6,175.0 | 18,500 | | 6,155.0 | 8,670 | 6,180.0 | 21,700 | | 6,160.0 | 10,800 | 6,185.0 | 25,300 | | 6,165.0 | 13,100 | 6,190.0 | 29,300 | ## RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY OBSERVATION AT 24:00 VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|----------------|-------|-------|----------------|-------|---------------|-------|-------| | 1 | 9610 | 11800 | 13500 | 15200 | 16300 | 17200 | 18400 | 19400 | 10200 | 9250 | 9680 | 11200 | | 2 | 9730 | 11800 | 13500 | 15200 | 16300 | 17300 | 18500 | 19100 | 10000 | 9030 | 9170 | 11100 | | 3 | 9820 | 11900 | 13600 | 15200 | 16300 | 17300 | 18500 | 18800 | 9910 | 8790 | 9130 | 11100 | | 4 | 9880 | 12000 | 13700 | 15300 | 16300 | 17400 | 18500 | 18300 | 9900 | 8550 | 9210 | 11100 | | 5 | 9970 | 12100 | 13700 | 15300 | 16400 | 17400 | 18600 | 17800 | 9900 | 8310 | 9230 | 11100 | | 6 | 10100 | 12200 | 13800 | 15400 | 16400 | 17500 | 18600 | 17300 | 9880 | 8210 | 9210 | 11100 | | 7 | 10100 | 12300 | 13900 | 15400 | 16400 | 17500 | 18600 | 16900 | 9900 | 8180 | 9180 | 11100 | | 8 | 10200 | 12300 | 14000 | 15500 | 16500 | 17600 | 18600 | 16400 | 9940 | 8240 | 9160 | 10900 | | 9 | 10200 | 12400 | 14000 | 15500 | 16500 | 17600 | 18700 | 16000 | 10000 | 8370 | 9130 | 10700 | | 10 | 10300 | 12300 | 14100 | 15500 | 1 66 00 | 17600 | 18700 | 15 6 00 | 10000 | 8430 | 9260 | 10300 | | 11 | 10400 | 12300 | 14100 | 15600 | 16600 | 17700 | 18700 | 15200 | 9820 | 8370 | 9390 | 9770 | | 12 | 10500 | 12200 | 14200 | 15600 | 16600 | 17700 | 18700 | 14700 | 9910 | 8330 | 9820 | 9170 | | 13 | 10600 | 12100 | 14300 | 15700 | 16700 | 17700 | 18800 | 14300 | 9930 | 8200 | 9550 | 8570 | | 14 | 10600 | 12200 | 14300 | 15700 | 16700 | 17800 | 18800 | 13900 | 9920 | 7960 | 9410 | 7980 | | 15 | 10700 | 12300 | 14300 | 15700 | 16700 | 17800 | 18900 | 13500 | 9880 | 7 6 10 | 9290 | 7370 | | 16 | 10800 | 12400 | 14400 | 15800 | 16700 | 17900 | 18900 | 13200 | 9840 | 8340 | 8980 | 6960 | | 17 | 10900 | 12500 | 14400 | 15800 | 16700 | 17900 | 19000 | 12900 | 9790 | 8280 | 9700 | 6620 | | 18 | 10900 | 12600 | 14500 | 15800 | 16800 | 17900 | 19100 | 12600 | 9710 | 8040 | 10100 | 6330 | | 19 | 11000 | 12700 | 14600 | 15900 | 16800 | 18000 | 19200 | 12200 | 9610 | 7470 | 10300 | 6070 | | 20 | 11100 | 12700 | 14600 | 15900 | 16800 | 18000 | 19300 |
11900 | 9540 | 7280 | 9410 | 5820 | | 21 | 11100 | 12800 | 14700 | 15900 | 16900 | 18100 | 19300 | 11600 | 9470 | 7930 | 9110 | 5710 | | 22 | 11200 | 12900 | 14700 | 16000 | 16900 | 18100 | 19400 | 11200 | 9380 | 7930 | 9150 | 5690 | | 23 | 11300 | 13000 | 14800 | 16000 | 17000 | 18100 | 19400 | 11000 | 9300 | 8210 | 91 60 | 5670 | | 24 | 11300 | 13000 | 14800 | 16100 | 17000 | 18100 | 19500 | 10800 | 9240 | 7640 | 9990 | 5650 | | 25 | 11400 | 13100 | 14900 | 16100 | 17000 | 18100 | 19500 | 10500 | 9540 | 8370 | 10600 | 5600 | | 26 | 11500 | 13200 | 14900 | 16100 | 17100 | 18100 | 19500 | 10300 | 9410 | 8390 | 10900 | 5560 | | 27 | 11500 | 13300 | 14900 | 16200 | 17100 | 18100 | 19500 | 10100 | 9500 | 8310 | 11100 | 5520 | | 28 | 11600 | 13300 | 15000 | 16200 | 17200 | 18200 | 19500 | 10000 | 9610 | 8420 | 11200 | 5380 | | 29 | 11600 | 13400 | 15000 | 16200 | 17200 | 18200 | 19500 | 9980 | 9560 | 8530 | 11200 | 5190 | | 30 | 11700 | 13500 | 15100 | 16300 | | 18300 | 19500 | 10000 | 9420 | 8910 | 11300 | 5010 | | 31 | 11700 | | 15100 | 16300 | | 18300 | | 10100 | | 10200 | 11300 | | | MAX | 11700 | 13500 | 15100 | 16300 | 17200 | 18300 | 19500 | 19400 | 10200 | 10200 | 11300 | 11200 | | MIN | 9610 | 11800 | 13500 | 15200 | 16300 | 17200 | 18400 | 9980 | 9240 | 7280 | 8980 | 5010 | CAL YR 1991 MAX 15100 MIN 5970 WTR YR 1992 MAX 19500 MIN 5010 #### 07124410 PURGATOIRE RIVER BELOW TRINIDAD LAKE, CO LOCATION (REVISED).--Lat 37°08'37", long 104°32'49", in NE¹/4SW¹/4 sec.27, T.33 S., R.64 W., Las Animas County, Hydrologic Unit 11020010, on left bank of flip bucket outlet, 500 ft downstream from base of dam, 0.8 mi upstream from Santa Fe Railroad bridge, and 3.0 mi southwest of courthouse in Trinidad. DRAINAGE AREA. -- 672 mi2. PERIOD OF RECORD.--Streamflow records, December 1976 to current year. Water-quality data available, March 1977 to September 1984. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is 6,073.64 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army, Corps of Engineers). Auxillary gage is water-stage recorder in shelter about 1,000 ft downstream. REMARKS.--No estimated daily discharges. Records good except those below 0.5 ft³/s, which are poor. Natural flow of stream affected by diversions upstream from station for irrigation of about 6,000 acres. Flow since Aug. 19, 1977, completely regulated by Trinidad Lake (station 07124400) immediately upstream. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBIC | FEET P | | | YEAR OCTOB | ER 1991 ' | TO SEPTEM | BER 1992 | | | |--|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|------------------------------------|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.4
3.4
6.7
9.9
9.6 | .24
.22
.19
.18 | .08
.08
.08 | .06
.06
.06
.06 | 25
34
22
.38
.38 | .22
.21
.18
.18 | .38
4.0
12
15 | 113
204
203
276
321 | 233
326
276
236
236 | 205
204
202
201
200 | 333
316
112
49
65 | 149
125
85
62
59 | | 6
7
8
9
10 | 8.6
8.7
9.5
9.9 | .17
.18
.18
32
47 | .08
.08
.08
.08 | .04
.04
.04
.04 | .38
.38
.38
.38 | .14
.12
.11
.11 | 17
18
18
18 | 305
288
281
277
276 | 237
237
238
238
268 | 122
81
64
32
88 | 85
79
72
68
67 | 56
56
119
151
237 | | 11
12
13
14
15 | 8.0
6.8
5.0
.84
.71 | 77
93
46
.60
.51 | .08
.07
.06
.06 | .04
.04
.04
.03 | .33
.33
.33
6.3 | .11
.10
.08 | 18
18
22
22
19 | 275
274
272
271
268 | 328
195
238
238
238 | 136
136
193
209
236 | 74
159
352
317
252 | 289
294
290
285
281 | | 16
17
18
19
20 | .67
.64
.58
.58 | .46
.44
.44
.89 | .06
.06
.06
.06 | .04
.03
.03
.03 | .21
.22
.22
.22 | .11
.11
.11
.11 | 19
16
14
14
13 | 256
251
249
250
250 | 223
196
185
186
186 | 148
241
315
311
151 | 248
153
161
389
513 | 201
157
140
130
128 | | 21
22
23
24
25 | .58
.58
.58
.48 | .11
.11
.11
.11 | .06
.06
.06
.06 | .03
.02
.01
.00 | .22
.22
.22
.22
.22 | .11
.22
34
23 | 15
15
14
14
19 | 250
247
247
245
236 | 186
186
186
186
186 | 30
128
234
354
180 | 230
78
78
109
45 | 75
45
44
44 | | 26
27
28
29
30
31 | .35
.33
.30
.28
.30 | .11
.10
.08
.09
.11 | .06
.06
.06
.06
.06 | .00
.00
.10
.08
.08 | .22
.22
.22
.22 | .68
.67
.56
.45 | 23
37
48
45
48 | 234
222
202
191
188
177 | 281
122
120
197
206 | 213
174
63
58
58
47 | 1.0
.74
61
93
92
129 | 44
44
78
96
96 | | TOTAL
MEAN
MAX
MIN
AC-FT | 112.53
3.63
10
.27
223 | 301.37
10.0
93
.08
598 | 2.09
.067
.08
.06
4.1 | 1.24
.040
.10
.00
2.5 | 121.75
4.20
34
.21
241 | 94.58
3.05
34
.08
188 | 588.38
19.6
48
.38
1170 | 7599
245
321
113
15070 | 6594
220
328
120
13080 | 5014
162
354
30
9950 | 4780.74
154
513
.74
9480 | 3904
130
294
44
7740 | | MEAN
MAX
(WY)
MIN
(WY) | 21.2
96.0
1984
.35
1989 | 7.94
25.9
1984
.015
1982 | 3.07
11.9
1979
.067
1992 | 3.17
14.7
1977
.012
1985 | 4.02
13.1
1977
.056
1984 | 4.45
17.8
1977
.007
1982 | 35.0
91.7
1982
.073
1984 | 154
266
1983
25.5
1980 | 198
614
1983
51.5
1977 | 172
306
1983
40.5
1977 | 152
285
1991
36.1
1977 | 116
283
1984
5.15
1987 | | ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER | MEAN T ANNUAL ANNUAL I T DAILY I DAILY MI SEVEN-DAILY TANEOUS I | MEAN MEAN MEAN MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE (AC-FT) EEDS | FOR 1 | 29260.0
80.2
743 | Aug 7
1 Feb 6
2 Feb 1 | | FOR 1992 WA 29113.68 79.5 513 6.00 .01 546 7.23 57750 250 15 | Aug 20
Jan 24
Jan 21
Aug 20
Aug 20 | -27 | 76.1
146
42.8
917
0.0
963
7.8
55150
237 | Sep
0 Aug
0 Nov
Sep
9 Sep | 1983
1978
11 1981
20 1977
18 1979
10 1981 | a-Also occurred Feb 7. b-Also occurred Jan 25-27. c-No flow at times most years. #### 07126140 VAN BREMER ARROYO NEAR TYRONE, CO LOCATION.--Lat 37°23'58", long 104°06'55", in SW¹/4SW¹/4, sec.27, T.30 S., R. 60 W., Las Animas County, Hydrologic Unit 11020010, on left bank, on Pinon Canyon Army Maneuver Site, 200 ft downstream from military road at gas line crossing near Brown Sheep Camp, 6 mi southeast of Tyrone, and 11 mi upstream from mouth. DRAINAGE AREA. -- 132 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1985 to current year. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 5,310 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 1-8, and Sept. 27-30. Records good except for estimated daily discharges, which are poor. Natural flow affected by return flow from irrigation and storage in a small channel reservoir upstream. | | | DISCHARGE | , CUBIC | FEET PER | SECOND,
DAIL | WATER
Y MEAN | YEAR OCTOBER | 1991 | TO SEPTEMB | ER 1992 | | | |--|------------------------------|-----------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|--------------------------------------|--|-------------------------------------|--|-----------------------------------| | YAC | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
1.2
.18 | .00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00 .00 | .13
124
7.7
1.1
.20 | .00
.00
.00 | .00
.00
.00 | 1.3
1.4
1.6
1.7 | | 11
12
13
14
15 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 |
.00
.00
.00 | .00
.00
.00 | 2.0
2.2
2.6
3.3
2.9 | | 16
17
18
19
20 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | 2.0
2.0
2.1
2.9
3.3 | | 21
22
23
24
25 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.06 | 3.5
3.1
1.8
.81
.32 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 1.0
.09
.00
.00 | .00
21
6.4
.96
.05 | 1.0
1.1
.30
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.000
.00
.00 | .000
.00
.00 | 0.00
.000
.00 | 0.00
.000
.00 | 0.00
.000
.00 | 0.00
.000
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 133.13
4.44
124
.00
264 | 1.58
.051
1.0
.00
3.1 | 29.85
.96
21
.00
59 | 43.85
1.46
3.5
.00
87 | | MEAN
MAX
(WY)
MIN
(WY) | 2.65
17.3
1986
.000 | .066
.23
1986
.000 | .033
.11
1987
.000 | .027
.16
1987
.000
1989 | .070
.48
1987
.000
1989 | .006
.035
1987
.000
1989 | .018
.10
1986
.000
1989 | 1.15
5.11
1987
.000
1990 | 2.06
7.44
1985
.000
1990 | .79
2.74
1990
.051
1992 | 2.88
8.30
1986
.004
1985 | 2.79
10.3
1988
.000 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEA | R | WATER YE | ARS 1985 | - 1992 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 17.80
.049
3.2
a.00
.00 | Jul 7
Jan 1
Jan 1 | | 208.41
.57
124
a.00
b347
10.17
413
.07
.00 | Oct
Oct
Jun | 7
1
1
7
7 | .97
2.53
.04
171
2.00
b ₅₁₁
c _{10.02}
700
2.1
.00 | Aug Jul Aug Aug Aug Aug S | 1986
1991
23 1986
27 1985
5 1985
23 1986
23 1986 | | a-No flow many days most years. b-From rating curve extended above 45 $\rm ft^3/s$, on basis of flow through culvert computation. c-Maximum gage height, 10.17 ft, Jun 7, 1992. 07126140 VAN BREMER ARROYO NEAR TYRONE, CO 07126200 VAN BREMER ARROYO NEAR MODEL, CO 269 #### 07126300 PURGATOIRE RIVER NEAR THATCHER, CO LOCATION.--Lat 37°21'30", long 103°53'44", in sec.10, T.31 S., R.58 W., Las Animas County, Hydrologic Unit 11020010, on right bank 250 ft downstream from county road bridge at gas line crossing, 1.2 mi downstream from Van Bremer Arroyo, and 18 mi southeast of Thatcher. DRAINAGE AREA. -- 1,791 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1966 to current year. Statistical summary computed for 1976 to current year, subsequent to completion of Trinidad Reservoir. REVISED RECORDS. -- WDR CO-84-1: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,790 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 3, Dec. 1, 2, Jan 1, and Jan. 12-18. Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 30,000 acres. Peak flows regulated to some extent by Trinidad Dam, 52 mi upstream, since January 1975. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of July 22, 1954, and May 19, 1955, reached stages of 26.7 and 25.2 ft, respectively, from floodmarks. Flood of June 18, 1965, reached a stage of 23.5 ft, from floodmarks, discharge, 47,700 ft³/s. | · | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBE
VALUES | R 1991 | TO SEPTEM | BER 1992 | | | |---|-------------------------------------|--|--------------------------------------|--|--------------------------------------|---|--|--|------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
23
23
20
17 | 18
17
20
25
30 | 29
26
27
28
30 | 27
30
31
32
26 | 24
24
27
31
30 | 24
25
25
25
26 | 30
39
49
48
46 | 12
10
15
13 | 18
21
26
21
19 | 20
18
16
14
13 | 188
256
176
52
37 | 141
130
123
99
67 | | 6
7
8
9
10 | 20
22
21
20
20 | 30
33
31
29
26 | 32
36
34
33
32 | 30
33
39
31
29 | 26
27
26
26
27 | 26
26
24
22
22 | 42
37
40
52
58 | 20
11
8.8
8.3
9.0 | 24
131
95
46
37 | 15
12
9.7
14
9.8 | 33
73
33
23
21 | 43
36
33
32
24 | | 11
12
13
14
15 | 25
23
21
17
18 | 27
41
31
25
27 | 30
32
32
33
40 | 27
26
25
22
21 | 26
26
25
25
25 | 22
21
21
21
20 | 50
46
39
37
31 | 8.6
7.9
14
10
8.8 | 31
26
44
37
45 | 7.4
7.9
19
81
76 | 119
47
329
119
154 | 20
16
16
14
16 | | 16
17
18
19
20 | 18
18
17
17 | 31
39
41
51
48 | 43
41
36
33
31 | 21
22
23
25
26 | 25
23
23
22
22 | 20
20
21
26
27 | 30
34
61
38
39 | 8.4
7.2
5.4
7.0
7.6 | 37
38
31
23
72 | 37
338
118
37
22 | 93
68
297
109
157 | 16
16
16
15
15 | | 21
22
23
24
25 | 19
19
19
16
18 | 39
39
42
31
33 | 33
33
38
35
33 | 27
30
31
28
30 | 23
24
25
26
24 | 25
23
25
28
28 | 35
30
28
25
23 | 5.8
5.7
5.3
7.9 | 45
31
28
18
16 | 500
222
103
212
432 | 244
139
88
76
1820 | 13
13
13
14
14 | | 26
27
28
29
30
31 | 19
19
19
19
19 | 33
33
34
33
33 | 33
32
30
29
30
30 | 29
28
26
25
24
24 | 24
23
23
23
 | 25
22
21
50
43
30 | 21
20
18
15
13 | 10
10
13
14
14 | 18
21
30
49
33 | 334
103
79
76
39
115 | 271
135
124
110
109
147 | 14
14
17
22
27 | | TOTAL
MEAN
MAX
MIN
AC-FT | 602
19.4
25
16
1190 | 970
32.3
51
17
1920 | 1014
32.7
43
26
2010 | 848
27.4
39
21
1680 | 725
25.0
31
22
1440 | 784
25.3
50
20
1560 | 35.8
61
13
2130 | 316.7
10.2
20
5.3
628 | 1111
37.0
131
16
2200 | 3099.8
100
500
7.4
6150 | 5647
182
1820
21
11200 | 1049
35.0
141
13
2080 | | MEAN
MAX
(WY)
MIN
(WY) | 32.3
84.0
1986
.73
1979 | NTHLY MEAN
28.2
52.3
1987
3.71
1979 | 26.8
44.3
1987
12.1
1979 | 26.1
43.2
1988
10.6
1978 | 29.3
53.3
1987
11.5
1976 | - 1992
30.4
105
1987
5.97
1977 | 79.9
467
1983
1.38
1978 | 128
592
1987
6.22
1991 | 114
764
1983
6.69
1976 | 101
547
1981
8.80
1989 | 159
910
1981
9.10
1976 | 62.8
302
1981
.64
1978 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | EARS 1976 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS | | 13299.27
36.4
1160
.12
.55
26380
51
22
5.7 | Aug 4
Jun 4
May 30 | | 17240.5
47.1
1820
5.3
6.3
4090
9.04
34200
89
26
14 | Aug 25
May 23
May 17
Aug 25
Aug 25 | | a 68.4
181
12.3
10000
b 000
c 42400
22.00
49570
109
27 | Jul
) Jun 2
) Jun 2
Jul | 1981
1976
3 1981
8 1976
8 1976
3 1981
3 1981 | a-Average discharge for 10 years (water years 1967-76), 37.9 ft³/s; 27460 acre-ft/yr, prior to completion of Trinidad Dam. b-No flow at times in most years. c-From rating curve extended above 2100 ft³/s, on basis of two slope-area measurements of peak flow. ARKANSAS RIVER BASIN 07126300 PURGATORIE RIVER NEAR THATCHER, CO #### 07126325 TAYLOR ARROYO BELOW ROCK CROSSING, NEAR THATCHER, CO LOCATION.--Lat 37°25'26", long 103°55'09", in SE¹/4SE¹/4 sec.17, T.30 S., R.58 W., Las Animas County, Hydrologic Unit 11020010, on left bank 5 mi upstream from mouth, 1.6 mi southeast of Rock Crossing, and 13.5 mi southeast of Thatcher. DRAINAGE AREA. -- 48.4 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1983 to current year. GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is 4,982 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records fair. | | | DISCHARG | SE, CUBI | C
FEET PER | | | YEAR OCTOBER
VALUES | 1991 | TO SEPTEMB | ER 199 2 | | | |--|-------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|-------------------------------------|--|---|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00 | .00 | .00 | .00 | .00
.00
.00 | .00 | .00
.00
.00
.00 | .00 | .00
.00
.00
10
2.8 | .00 | .00
.00
.00
.00 | .55
.01
.00
.00 | | 6
7
8
9
10 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00 | .00
.00
.00 | .00 | .14
79
.89
.20 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .00 | .00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00 | .00
.00
.00 | .00 | .03
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | | 16
17
18
19
20 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00 | .00
.00
.00 | .00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00 | | 21
22
23
24
25 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00 | .00 | .00
.00
.00
.00 | .00 | .00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00 | .00 | .00 | .00 | .00 | .00
.00
.00
.00 | .00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00
.00 | .00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.000
.00 | 0.00
.000
.00 | 0.00 | 0.00
.000
.00 | 0.00
.000
.00 | 0.00
.000
.00 | 0.00
.000
.00
.00 | 0.00 | 93.18
3.11
79
.00
185 | 0.00
.000
.00 | 0.60
.019
.60
.00 | 0.56
.019
.55
.00 | | | | | | | | | , BY WATER YE | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | .028
.14
1987
.000
1984 | .000
.000
1991
.000
1984 | .000
.000
1984
.000
1984 | .000
.000
1984
.000
1984 | .000
.000
1984
.000
1984 | .000
.000
1984
.000
1984 | .000 | .066
.50
1987
.000
1983 | .47
3.11
1992
.000
1984 | 1.02
7.60
1989
.000
1983 | .64
2.72
1987
.000
1988 | .032
.30
1986
.000
1983 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 WATE | R YEAR | 2 | WATER YE | ARS 1983 - | - 1992 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 18.33
.050
17
a.00
.00
.00 | Jun 11
Jan 1
Jan 1 | | a.00
.00
661 | Oct I
Jun I | L | .21
.67
.05
144
a.00
.00
b2820
10.96
153
.00
.00 | 0
Jul 31
Mar 18
Mar 18
Jul 31 | 8 1983
8 1983 | | a-No flow most of the time. b-From rating extended to peak flow on the basis of slope-conveyance. 07126325 TAYLOR ARROYO BELOW ROCK CROSSING, NEAR THATCHER, CO 273 LOCATION.--Lat 37°29'37", long 103°49'47", in SE¹/4NW¹/4 sec.30, T29 S., R.57 W., Las Animas County, Hydrologic Unit 11020010, on right bank 0.6 mi downstream from Sharp Ranch, 5.3 mi upstream from mouth, and 16 mi southeast DRAINAGE AREA .-- 41.4 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1983 to current year. Prior to May 3, 1989, gage located 1,000 ft upstream, low-flow records are not equivalent because of undetermined flow loss between the sites. Statistical summary computed for 1990 to current year. REVISED RECORDS. -- WDR CO-86-1: 1983, 1984. GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is 4,815 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 3, 1989, at site 1,000 ft upstream, at different datum. DISCHARGE CURIC FEET PER SECOND WATER VEAR OCTORER 1001 TO SERTEMBER 1002 REMARKS. -- No estimated daily discharge. Records are poor. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER VALUES | 1991 T | O SEPTEMBE | R 1992 | | | |--|------------------------------|---|---|--|------------------------------|--|----------------------------------|---|----------------------------------|---|------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00 | .00
.00
.00
1.1 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 6
7
8
9
10 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
9.6
.15 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 16
17
18
19
20 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | 21
22
23
24
25 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00 | .00
.00
.00 | | 26
27
28
29
30
31 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 0.00
.000
.00
.00 | | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 10.86
.36
9.6
.00
22 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00 | | STATIST MEAN MAX (WY) MIN (WY) | .000
.000
1990
.000 | .000 .
.000 .
1990 . | OATA FOR
.000
.000
.0990
.000 | .000
.000
.000
1990
.000
1990 | .000
.000
1990
.000 | - 1992
.000
.000
1990
.000
1990 | .000 | .000
.000
1990
.000 | .12
.36
1992
.000 | .20
.60
1990
.000 | .006
.018
1990
.000 | .000
.000
1990
.000 | | | STATISTIC | | | 91 CALEND | | | FOR 1992 WATE | 1990
R YEAR | 1990 | 1991
Water ye <i>i</i> | 1991
ARS 1990 | 1990
- 1992 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | AN
AN
WINIMUM
AK FLOW
AK STAGE
C-FT) | | b.00
b.00 | Jan 1
Jan 1 | | b.00
b.00
c ₃₃₂ | Jun 8
Oct 1
Oct 1
Jun 8
Jun 8 | c, | a.027
b.053
0.00
9.6
b.00
b.00
,d332
f7.04
20
b.00 | Jun
Oct
Oct
Jun | 1990
1991
8 1992
1 1989
1 1989
8 1992
8 1992 | a-Average discharge for 5 years (water years 1984-88), 0.17 ft³/s; 123 acre-ft/year, at former location 1000 ft upstream. upstream. b-No flow most of the time. c-From rating curve extended above 5 ft³/s, on the basis of slope-area measurement of peak flow. d-Maximum discharge for period of record, 1070 ft³/s, May 22, 1987, from rating curve extended above 5 ft³/s, on basis of slope-area measurements at gage heights, 9.42 ft, and 10.39 ft. e-From floodmark. f-Maximum gage height for period of record, 10.39 ft, from floodmark, site and datum then in use. 07126390 LOCKWOOD CANYON CREEK NEAR THATCHER, CO #### 07126470 CHACUACO CREEK AT MOUTH NEAR TIMPAS, CO LOCATION.--Lat 37°32'38", long 103°37'54", in SE¹/4SE¹/4 sec.1,
T.28 S., R.56 W., Las Animas County, Hydrologic Unit 11020010, on right bank at Red Rocks Ranch, 1.5 mi upstream from mouth, 3.3 mi upstream from Bent Canyon Creek, and 21 mi southeast of Timpas. DRAINAGE AREA .-- 424 ml2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- May 1983 to current year. REVISED RECORDS. -- WDR CO-85-1: 1984 (M). GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is 4,350 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS .-- No estimated daily discharges. Records poor. EXTREMES OUTSIDE PERIOD OF RECORD.—Floods of May 19, 1955, and June 17, 1965, reached discharges of 3,170 ft 3 /s, and 38,900 ft 3 /s, respectively, at a different site, from slope-area measurements of peak flows. | -, | | DISCHARC | | יים מיים מיים | | MARED | • | D 1001 m | o cepme | MDED 1000 | or peu | A IIOWS | |--|------------------------|--------------|--------------|---------------|----------------|--------------|-----------------------|----------------|--------------|--------------|--------------|------------------| | | | DISCHARG | e, COBIC | . FEET FER | | Y MEAN | YEAR OCTOBE
VALUES | K 1991 1 | O SEPIE | MBER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 2
3 | .00 | .00
.00 | .00 | .00
.00 | .00 | .00 | .00 | .00
.00 | .00 | .00 | .00 | .00 | | 4 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 5 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 6
7 | .00 | .00
.00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 8 | .00 | .00 | .00 | .00 | .00 | .00 | .00
.00 | .00 | .00 | .00
1330 | .00 | .00 | | 9 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 322 | .00 | .00 | | 10 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 4.2 | .00 | .00 | | 11 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .27 | .00 | .00 | | 12
13 | .00 | .00
.00 | .00 | .00 | .00 | .00 | .00
.00 | .00 | .00 | .00
.19 | .00 | .00 | | 14 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .67 | .00 | .00 | | 15 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 16
17 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 18 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .11 | .00 | | 19 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 20 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .01 | .00 | .00 | | 21
22 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .02 | .00 | .00 | | 23 | .00 | .00
.00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 24 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 25 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 46 | 33 | .00 | .00 | | 26 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 14 | 4.2 | .00 | .00 | | 27
28 | .00 | .00
.00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 29 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 30 | .00 | .00 | .00 | .00 | | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | 31 | .00 | | .00 | .00 | | .00 | | .00 | | .00 | .01 | | | TOTAL
MEAN | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 60.00 | 1694.56 | 0.12 | 0.00 | | MAX | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .000 | 2.00
46 | 54.7
1330 | .11 | .000 | | MIN | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | | AC-FT | .00 | .00 | .00 | .00 | .00 | .00 | .00 | .00 | 119 | 3360 | .2 | .00 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 1983 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN | .12 | .000 | .000 | .17 | .000 | .000 | .000 | 2.73 | 1.29 | 8.90 | 4.05 | .42 | | MAX
(WY) | .91
1985 | .000
1984 | .000
1984 | 1.52
1987 | .000
1985 | .000
1984 | .000
1984 | 14.4
1987 | 6.52
1986 | 54.7
1992 | 15.4
1989 | 2.82
1989 | | MIN | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .000 | | (WY) | 1984 | 1984 | 1984 | 1984 | 1985 | 1984 | 1984 | 1983 | 1983 | 1983 | 1983 | 1983 | | SUMMARY | STATISTI | CS | FOR 1 | 991 CALENI | DAR YEAR | 5 | FOR 1992 WAT | ER YEAR | | WATER YEA | RS 1983 | - 1992 | | ANNUAL | | | | 657.54 | | | 1754.68 | | | | | | | ANNUAL | MEAN
ANNUAL M | IEAN | | 1.80 | | | 4.79 | | | 1.77
4.79 | | 1992 | | | ANNUAL ME | | | | | | | | | .32 | | 1988 | | | DAILY ME | | | 172 | Aug 9 | | 1330 | Jul 8 | | 1330 | | 8 1992 | | | DAILY MEA
SEVEN-DAY | | | a.00 | Jan 1
Jan 1 | | a.00
.00 | Oct 1
Oct 1 | | a.00 | | 1 1983
1 1983 | | | ANEOUS PE | | | .00 | Jan 1 | | D11800 | Jul 8 | | D11800 | | 3 1992 | | | ANEOUS PE | | | | | | 16.22 | Jul 8 | | ~16.22 | | 8 1992 | | | RUNOFF (A
ENT EXCEE | | | 1300 | | | 3480
.00 | | | 1290
.00 | | | | 50 PERC | ENT EXCEE | DS | | .00 | | | .00 | | | .00 | | | | 50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | .00 | | | .00 | | | .00 | | | a-No flow most of time. b-From rating curve extended on basis of slope-area measurement of peak flow. c-From floodmarks. ### 07126470 CHACAUCO CREEK AT MOUTH NEAR TIMPAS, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- June 1983 to current year. PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: June 1983 to current year. WATER TEMPERATURE: June 1983 to current year. SUSPENDED SEDIMENT: June 1983 to current year. INSTRUMENTATION .-- Water-quality monitor since June 1983. Automatic pumping sediment sampler since June 1983. REMARKS.--Records for daily specific conductance and water temperature are good except those for July 8-9, which are poor. Daily data that are not published are either missing, of unacceptable quality, or during periods of no flow. Maximum and minimum specific conductance and water temperature are published only for the period of flow during the day that was recorded. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,510 microsiemens, June 10, 1989; minimum, 105 microsiemens, July 20, 1990. WATER TEMPERATURE: Maximum, 35.5°C, July 13, 1992; minimum, 4.0°C, Oct.4, 1984. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 1,370 microsiemens, July 25; minimum, 154 microsiemens, July 21. WATER TEMPERATURE: Maximum, 35.56C, July 13; minimum, 12.16C, July 8. SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES | DAY | MAX | MIN | |-------|-----|------|------|------|------|-------|------|----------|------|-------|-----------|-----| | | OCT | OBER | NOVE | MBER | DECE | EMBER | JANU | ARY | FEBI | RUARY | MAF | СН | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | 31 | | | | | | | | - | | | - | | | MONTH | | | | | | | | | | | | | # 07126470 CHACAUCO CREEK AT MOUTH NEAR TIMPAS, CO--Continued SPECIFIC CONDUCTANCE, (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MEAN VALUES | DAY | MAX | MIN | | |-------|-------|-----|-----|-----|------|-----|------|------|--------|-----|-------|-----------|--| | | APRIL | | MAY | | JUNE | | JULY | | AUGUST | | SEPTE | SEPTEMBER | | | 1 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | 4 | | ~ | | | | | | | | | | | | | 5 | 6 | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | 8 | | | | | | | 398 | 356 | | | | | | | 9 | | | | | | | 447 | 351 | | | | | | | 10 | | | | | | | 573 | 447 | 11 | | | | | | | 625 | 573 | | | | | | | 12 | | | | | | | | | | | | | | | 13 | | | | | | | 791 | 669 | | | | | | | 14 | | | | | | | 1080 | 937 | | | | | | | 15 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | 254 | 254 | | | | | 18 | | | | | | | | | 354 | 354 | | | | | 19 | 20 | | | | | | | 202 | 180 | | | | | | | 21 | | | | | | | 180 | 154 | | | | | | | 22 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | 25 | | | | | 510 | 385 | 1370 | 1180 | 26 | | | | | 385 | 278 | 1180 | 532 | | | | | | | 27 | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | | 07126470 CHACAUCO CREEK AT MOUTH NEAR TIMPAS, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | COTOBER NOVEMBER DECEMBER JANUARY FEBRUARY HARCH | DAY | MAX | MIN | MAX | MIN | XAM | MIN | MAX | MIN | XAM | MIN | XAM | MIN | |
--|--|--------------------------------------|----------|----------|----------|------------------------------|----------------------------------|--|--|------|----------|------------------------------|-------|--| | 2 | | OCTOBER | | NOV | NOVEMBER | | DECEMBER | | JANUARY | | FEBRUARY | | MARCH | | | 3 | | | | | | | | | | | | | | | | ## APRIL MAY JUNE JULY AUGUST SEPTEMBER A | | | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | | 122 | | | | | | | | | | | | | | | | 13 | 11 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | | 188 | | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | | 22 | 20 | | | | | | | | | | | | | | | 22 | 21 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | | APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 | | | | | | | | | | | | | | | | MONTH APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 | | | | | | | | | | | | | | | | APRIL MAY JUNE JULY AUGUST SEPTEMBER 1 | | | | | | | | | | | | | | | | 1 | MONTH | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | 2 | | API | RIL | MA | Υ | J | UNE | J | ULY | UA | GUST | SEPTE | MBER | | | \$ | 1 | | | | | | | | | | | | | | | 5 | 2 | | | | | | | | | | | | | | | 8 | 2
3 | | | | | | | | | | | | | | | 8 | 2
3
4 | | | | | | | | | | | | | | | 9 | 2
3
4
5 | | | | | | | | | | |

 | | | | 10 | 2
3
4
5 | | |

 | |

 | | | | | | | | | | 111 26.0 17.2 <td< td=""><td>2
3
4
5
6
7
8</td><td>

</td><td></td><td></td><td></td><td></td><td></td><td>

17.4</td><td>

12.1</td><td></td><td></td><td></td><td></td></td<> | 2
3
4
5
6
7
8 |

 | | | | | |

17.4 |

12.1 | | | | | | | 12 | 2
3
4
5
6
7
8 | |

 |

 | | | |

17.4
21.4 |

12.1
12.3 | | | | | | | 13 | 2
3
4
5
6
7
8 | |

 |

 | | | |

17.4
21.4 |

12.1
12.3 | | | | | | | 14 | 2
3
4
5
6
7
8
9
10 | | === | | | ====
====
====
==== | | 17.4
21.4
25.8 |

12.1
12.3
17.4 | | | | | | | 16 | 2
3
4
5
6
7
8
9
10 | ====
====
====
====
==== | | | | | | 17.4
21.4
25.8
26.0 |

12.1
12.3
17.4 | | | | | | | 17 | 2
3
4
5
6
7
8
9
10 | | | | | | | 17.4
21.4
25.8
26.0 |

12.1
12.3
17.4
17.2 | | |

 | | | | 17 | 2
3
4
5
6
7
8
9
10 | | | | | | | 17.4
21.4
25.8
26.0 | 12.1
12.3
17.4
17.2
19.9
17.9 | | |

 | | | | 18 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | | | | | | 17.4
21.4
25.8
26.0

35.5
31.9 | 12.1
12.3
17.4
17.2
19.9 | | |

 | | | | 19 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | | | | | | 17.4
21.4
25.8
26.0 | 12.1
12.3
17.4
17.2
19.9 | | | | | | | 21 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | | | | | | 17.4
21.4
25.8
26.0 | 12.1
12.3
17.4
17.2 | | |

 | | | | 22 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | | | | | | 17.4
21.4
25.8
26.0

35.5
31.9 | 12.1
12.3
17.4
17.2
19.9 | 19.8 | 19.8 |

 | | | | 23 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | | | | | | 17.4
21.4
25.8
26.0 | 12.1
12.3
17.4
17.2
19.9
17.9 | 19.8 | 19.8 | | | | | 24 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | | | | | | 17.4
21.4
25.8
26.0
35.5
31.9 | 12.1
12.3
17.4
17.2
19.9
17.9 | 19.8 | 19.8 | | | | | 25 17.8 15.0 22.8 22.3 25.5 15.7 30.3 20.5 27 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | | | | | | 17.4
21.4
25.8
26.0
35.5
31.9 | 12.1
12.1
12.3
17.4
17.2
19.9
17.9 | 19.8 | 19.8 | | | | | 27 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | | | | | | 17.4
21.4
25.8
26.0
35.5
31.9 | 12.1
12.3
17.4
17.2
19.9
17.9 | 19.8 | 19.8 | | | | | 28 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | | | | | | 17.4
21.4
21.4
25.8
26.0
35.5
31.9 | 12.1
12.3
17.4
17.2
19.9
17.9 | 19.8 | 19.8 | | | | | 29 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | | | | 17.8 | | 17.4
21.4
21.4
25.8
26.0
35.5
31.9

18.0
17.9

22.8 | 12.1
12.3
17.4
17.2
19.9
17.9

17.7
17.7
22.3 | 19.8 | 19.8 | | | | | 30 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27 | | | | | 17.8 |

15.0 | 17.4
21.4
25.8
26.0
35.5
31.9

18.0
17.9

22.8 | 17.2
19.9
17.7
17.7
17.7
22.3 | 19.8 | 19.8 | | | | | 31 | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | 17.8 | 15.0 | 17.4
21.4
25.8
26.0
35.5
31.9

18.0
17.9

22.8 | 17.2
19.9
17.7
17.7
17.7
22.3 | 19.8 | 19.8 | | | | | MONTH | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
22
23
24
24
25
26
26
27
27
28
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | 17.8 | 15.0 | 17.4
21.4
21.4
25.8
26.0
35.5
31.9

18.0
17.9

22.8 | 12.1
12.3
17.4
17.2
19.9
17.9

17.7
17.7
22.3 | 19.8 | 19.8 | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
20
21
22
23
24
25
26
27
28
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | | | | 17.8 | 15.0 | 17.4
21.4
25.8
26.0
35.5
31.9

18.0
17.9

22.8 | 17.7
17.7
17.7
22.3
20.5 | 19.8 | 19.8 | | | | 279 #### ARKANSAS RIVER BASIN 07126485 PURGATOIRE RIVER AT ROCK CROSSING NEAR TIMPAS, CO 280 ARKANSAS RIVER BASIN #### 07126500 PURGATOIRE RIVER AT NINEMILE DAM, NEAR HIGBEE, CO LOCATION.--Lat 37°42'53", long 103°30'38", in NW1/4 sec.7, T.27 S., R.54 W., Otero County, Hydrologic Unit 11020010, on left bank at Ninemile Dam, 4 mi southwest of Higbee, and 5.5 mi upstream from Smith Canyon. Prior to Apr. 21, 1978 gage located 850 ft, upstream. DRAINAGE AREA. -- 2,752 mi2. PERIOD OF RECORD. -- October 1924 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1977 to current year. REVISED RECORDS.--WSP 1311: 1934 (M), 1936 (M), 1941-42 (M), 1948-49 (M). WSP 1731: 1929 (M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,240.59 ft above National Geodetic Vertical Datum of 1929, supplementary adjustment of 1960. See WSP 1711 or 1731 for history of changes prior to Dec. 6, 1956. Dec. 6, 1956 to Apr. 20, 1978, at site 850 ft, upstream. REMARKs.--Estimated daily discharges: Nov. 1 and 4. Records good except for estimated daily discharges, and those for flows over 1,000 ft³/s, which are poor. Diversions for irrigation of about 32,000 acres above station. Discharge computed by combining discharge of river below Ninemile Dam and Ninemile canal. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBI | ER 1991 1 | TO SEPTEM | MBER 1992 | | | |---------------|------------------------|---------------|--------------|--------------|------------------|-----------------------|-----------------------|-----------------|----------------
-----------------------------------|-------------|-------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 7.9
7.8 | 17 | 36 | 28 | 28 | 24 | 36
29 | 15 | 9.1
9.8 | 37 | 151
224 | 180 | | 3 | 7.6 | 18
23 | 28
26 | 25
23 | 30
30 | 25
26 | 33 | 11
11 | 11 | 19
17 | 388 | 176
174 | | 4 | 17 | 25 | 27 | 27 | 28 | 28 | 46 | 10 | 12 | 16 | 310 | 153 | | 5 | 20 | 27 | 30 | 27 | 30 | 28 | 45 | 9.8 | 173 | 14 | 111 | 113 | | 6
7 | 18
16 | 30
33 | 32
33 | 27
25 | 32
31 | 27
26 | 42
42 | 11
11 | 39
46 | 11
11 | 61
64 | 8 1
57 | | ė | 18 | 34 | 33 | 26 | 28 | 26 | 39 | 14 | 138 | 43 | 97 | 34 | | 9 | 20 | 35 | 36 | 32 | 29 | 27 | 34 | 12 | 87 | 1750 | 76 | 26 | | 10 | 19 | 31 | 36 | 33 | 30 | 25 | 45 | 7.9 | 53 | 98 | 57 | 25 | | 11
12 | 18
18 | 30
30 | 32
35 | 29
33 | 30
30 | 23
23 | 46
44 | 7.7
7.3 | 33
32 | 67
55 | 52
175 | 24
18 | | 13 | 22 | 33 | 35 | 32 | 29 | 22 | 42 | 7.5 | 25 | 53 | 116 | 16 | | 14 | 21 | 35 | 28 | 21 | 25 | 22 | 38 | 7.0 | 25 | 52 | 324 | 13 | | 15 | 19 | 28 | 30 | 23 | 25 | 22 | 34 | 6.3 | 29 | 67 | 144 | 12 | | 16
17 | 17
16 | 28
30 | 24
31 | 26
34 | 25
2 4 | 18
20 | 32
36 | 8.0
6.4 | 31
30 | 117
77 | 185
122 | 13
13 | | 18 | 16 | 34 | 34 | 25 | 24 | 21 | 28 | 5.3 | 28 | 327 | 103 | 12 | | 19 | 16 | 41 | 34 | 23 | 24 | 23 | 42 | 14 | 29 | 172 | 303 | 14 | | 20 | 17 | 45 | 31 | 32 | 25 | 27 | 40 | 14 | 24 | 96 | 146 | 14 | | 21
22 | 17
17 | 46
40 | 28
30 | 32
36 | 23
24 | 28
30 | 36
35 | 6.7
4.5 | 44
51 | 232
480 | 236
298 | 11
11 | | 23 | 18 | 35 | 32 | 28 | 24
25 | 29 | 32 | 5.1 | 28 | 270 | 154 | 11 | | 24 | 18 | 38 | 32 | 37 | 24 | 26 | 28 | 5.6 | 24 | 165 | 111 | 11 | | 25 | 18 | 36 | 36 | 31 | 24 | 29 | 26 | 4.9 | 68 | 310 | 618 | 8.9 | | 26
27 | 17
18 | 30
32 | 30
28 | 28
31 | 25
26 | 31
29 | 25
2 4 | 4.3
4.7 | 67
20 | 751
2 8 1 | 672
194 | 9.5
11 | | 28 | 13 | 32 | 26 | 32 | 26
25 | 26 | 21 | 4.9 | 20
19 | 131 | 172 | 10 | | 29 | 13 | 32 | 27 | 30 | 25 | 25 | 19 | 5.7 | 24 | 99 | 158 | 11 | | 30 | 15 | 32 | 24 | 33 | | 34 | 17 | 5.9 | 31 | 105 | 125 | 11 | | 31 | 16 | | 25 | 30 | | 42 | | 7.8 | | 74 | 120 | | | TOTAL
MEAN | 511.3
16.5 | 961
32.0 | 949
30.6 | 899
29.0 | 778
26.8 | 812
26.2 | 1036
3 4. 5 | 256.3
8.27 | 1239.9
41.3 | 5997
193 | 6067
196 | 1273.4
42.4 | | MAX | 22 | 46 | 36 | 37 | 32 | 42 | 46 | 15 | 173 | 1750 | 672 | 180 | | MIN | 7.6 | 17 | 24 | 21 | 23 | 18 | 17 | 4.3 | 9.1 | 11 | 52 | 8.9 | | AC-FT | 1010 | | 1880 | 1780 | 1540 | 1610 | 2050 | 508 | 2460 | 11900 | 12030 | 2530 | | | | ONTHLY MEAN I | | | | | • | | | | | | | MEAN
MAX | 32.1
79.9 | | 24.0
40.0 | 24.7 | 27.7 | 31.8 | 72.5 | 125 | 122
640 | 121
448 | 181
829 | 58.7
268 | | MAX
(WY) | 1986 | | 40.0
1987 | 35.6
1988 | 65.7
1988 | 93.4
1 98 7 | 333
1983 | 489
1987 | 1983 | 1981 | 1981 | 1981 | | MIN | .000 | | 4.45 | 5.82 | 11.7 | 6.06 | 1.19 | 5.87 | 4.35 | 29.9 | 32.6 | .90 | | (WY) | 1978 | 1977 | 1979 | 1977 | 1977 | 1977 | 1978 | 1991 | 1977 | 1989 | 1980 | 1978 | | SUMMARY | STATIST | ics | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1977 | - 1992 | | ANNUAL | | | | 10950.20 | | | 20779.9 | | | a | | | | ANNUAL | MEAN
'ANNUAL N | AP AN | | 30.0 | | | 56.8 | | | ^a 70.9
1 6 1 | | 1981 | | | ANNUAL ME | | | | | | | | | 26 6 | | 1991 | | | DAILY ME | | | 640 | Aug 5 | | 1750 | Jul 9 | | ^D 728g | Jul | 4 1981 | | | DAILY MEA | | | ٠.00 | Jun 2 | | 4.3 | May 26 | | .00 | | 23 1976 | | | SEVEN-DAY
ANEOUS PE | MINIMUM | | .13 | Jun 2 | | e ₁₀₀₀₀ | May 22
Sep 9 | | f ₂₂₇₀₀ .00 | Oct
Jul | 23 1976
4 1981 | | | ANEOUS PE | | | | | | 10000 | Jep J | | 9.26 | | | | ANNUAL | RUNOFF (# | AC-FT) | | 21720 | | | 41220 | | | 51330 | | | | | ENT EXCER | | | 45
19 | | | 123
28 | | | 129
28 | | | | | ENT EXCE | | | 4.4 | | | 11 | | | 5.1 | | | | | rage d | lacharge for | E2 *** | / | | 25 751 | 04 5 6+3/- | . 60470 - | | ! + | o comple | tion of | a-Average discharge for 52 years (water years 1925-76), 94.5 ft³/s; 68470 acre-ft/yr, prior to completion of Trinidad Dam. b-Maximum daily discharge for period of record, 27000 $\rm ft^3/s$, Aug 7, 1929. c-Also occurred Jun 3-6 and Jun 7-10. d-No flow at times most years. e-Approximately, gage height not determined. f-Maximum discharge and stage for period of record, 105000 ft³/s, estimated, Jun 18, 1965, gage height, 19.6 ft, from floodmarks. #### 07128500 PURGATOIRE RIVER NEAR LAS ANIMAS. CO LOCATION.--Lat 38°02'02", long 103°12'00", in NE¹/4SW¹/4 sec.23, T.23 S., R.52 W., Bent County, Hydrologic Unit 11020010, on right bank at downstream side of bridge on State Highway 101, 2.3 mi southeast of courthouse in Las Animas, and 4.5 mi upstream from mouth. DRAINAGE AREA. -- 3,318 mi2. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May to September 1889, July to October 1909 (gage heights and discharge measurements only), January 1922 to September 1931, July 1948 to current year. Monthly discharge only for some periods, published in WSP 1311. Published as Purgatoire Creek at Las Animas in 1889 and as Purgatory River near Las Animas in 1909. Statistical summary computed for 1978 to current year, subsequent to completion of Trinidad Reservoir. REVISED RECORDS.--WSP 1241: 1927(M); WDR CO-84-1: Drainage area GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 3,871.84 ft above National Geodetic Vertical Datum of 1929. See WSP 1731 for history of changes prior to Oct. 1, 1955. Oct. 1, 1955 to July 11, 1966, at datum 3.00 ft, higher. Supplementary water-stage recorder at site 1.6 mi downstream at different datum July 12 to Nov. 17, 1966. Nov. 18, 1966 to May 4, 1982 at datum 3.1 ft, higher. REMARKS.--Estimated daily discharges: Oct. 31 to Nov. 4, June 2-9, and Aug. 4. Records fair except for estimated daily discharges which are poor. Flow regulated to some extent since January 1975 by Trinidad Lake near Trinidad, upstream. Diversions for irrigation of about 36,000 acres upstream from station. EXTREMES OUTSIDE PERIOD OF RECORD.--Greatest flood since at least 1860 occurred Oct. 1, 1904. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER
MEAN | YEAR OCTOBE | R 1991 7 | O SEPTE | MBER 1992 | | | |--|----------------------------------|---|----------------------------|---|----------------------------|----------------------------------|--|--|----------------------------|--|---------------------------------------|---| | DAY · | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2.4 | 9.0 | 32 | 32 | 34 | 20 | 8.9 | 6.7 | 15 | 11 | 47 | 76 | | 2 | 2.4 | 8.5 | 22 | 29 | 33 | 24 | 21 | 6.3 | 16 | 12 | 58 | 108 | | 3 | 2.8 | 8.0 | 27 | 28 | 39 | 21 | 16 | 6.3 | 18 | 11 | 104 | 113 | | 4 | 4.0 | 11 | 28 | 32 | 43 | 19 | 12 | 7.1 | 18 | 8.8 | 420 | 109 | | 5 | 4.6 | 29 | 32 | 30 | 42 | 17 | 15 | 8.1 | 16 | 6.5 | 221 | 94 | | 6 | 3.2 | 32 | 32 | 31 | 40 | 18 | 25 | 6.9 | 100 | 6.2 | 77 | 66 | | 7 | 2.4 | 25 | 31 | 34 | 40 | 15 | 21 | 6.7 | 30 | 4.1 | 46 | 43 | | 8 | 2.3 | 29 | 33 | 32 | 40 | 10 | 22 | 6.8 | 28 | 3.5 | 41 | 30 | | 9 | 2.5 | 35 | 31 | 29 | 37 | 19 | 20 | 5.7 | 70 | 963 | 48 | 24 | | 10 | 2.4 | 45 | 31 | 30 | 35 | 27 | 17 | 5.2 | 89 | 346 | 52 | 20 | | 11 | 2.6 | 41 | 35 | 42 | 35 | 29 | 19 | 5.3 | 59 | 52 | 41 | 16 | | 12 | 2.6 | 33 | 39 | 41 | 34 | 27 | 20 | 4.7 | 39 | 25 | 87 | 18 | | 13 | 2.9 | 32 | 36 | 34 | 34 | 24 | 22 | 4.7 | 35 | 24 | 189 | 16 | | 14 | 3.4 | 31 | 33 | 24 | 34 | 22 | 26 | 8.5 | 26 | 49 | 87 | 12 | | 15 | 3.6 | 26 | 28 | 20 | 33 | 18 | 24 | 5.3 | 15 | 23 | 152 | 7.4 | | 16 | 3.8 | 31 | 27 | 25 | 31 | 16 | 17 | 6.3 | 7.2 | 39 | 78 | 6.4 | | 17 | 3.8 | 28 | 31 | 30 | 32 | 41 | 20 | 4.2 | 14 | 46 | 93 | 8.9 | | 18 | 4.2 | 31 | 31 | 38 | 31 | 37 | 16 | 6.0 | 7.3 | 30 | 67 | 7.6 | | 19 | 5.4 | 34 | 35 | 30 | 31 | 44 | 12 | 4.7 | 7.7 | 107 | 65 | 4.9 | | 20 | 5.5 | 42 | 41 | 27 | 31 | 35 | 13 | 4.1 | 4.8 | 54 | 163 | 6.1 | | 21
22
23
24
25 | 5.0
6.2
4.5
3.9
9.5 | 45
46
42
37
38 | 38
37
37
37
37 | 27
36
32
34
37 | 28
26
25
28
28 | 38
39
33
32
29 | 26
15
12
11
12 | 4.5
4.0
2.7
2.6
2.4 | 6.1
8.7
21
9.2 | 103
183
210
114
72 | 100
134
189
117
97 | 4.8
6.5
6.1
4.4
4.1 | | 26
27
28
29
30
31 | 12
17
25
29
32
25 | 41
36
32
33
34 | 40
39
35
35
33 | 40
35
36
36
35
33 | 30
31
30
21 | 21
22
31
53
24
11 | 9.8
8.8
8.2
8.2
8.6 | 3.9
5.2
4.0
4.2
5.3
9.6 | 59
58
23
20
16 | 343
341
184
124
115
81 | 376
350
212
157
113
88 | 6.3
11
14
11
15 | | TOTAL MEAN MAX MIN AC-FT | 235.9 | 944.5 | 1034 | 999 | 956 | 816 | 486.5 | 168.0 | 848.0 | 3691.1 | 4069 | 869.5 | | | 7.61 | 31.5 | 33.4 | 32.2 | 33.0 | 26.3 | 16.2 | 5.42 | 28.3 | 119 | 131 | 29.0 | | | 32 | 46 | 41 | 42 | 43 | 53 | 26 | 9.6 | 100 | 963 | 420 | 113 | | | 2.3 | 8.0 | 22 | 20 | 21 | 10 | 8.2 | 2.4 | 4.8 | 3.5 | 41 | 4.1 | | | 468 | 1870 | 2050 | 1980 | 1900 | 1620 | 965 | 333 | 1680 | 7320 | 8070 | 1720 | | MEAN | 29.6 | 30.6 | 25.4 | 28.7 | 30.5 | 37.0 | 77.3 |
130 | 118 | 75.4 | 133 | 45.2 | | MAX | 82.6 | 59.1 | 38.0 | 46.3 | 56.2 | 125 | 418 | 614 | 724 | 263 | 761 | 224 | | (WY) | 1986 | 1987 | 1987 | 1983 | 1988 | 1987 | 1983 | 1987 | 1983 | 1981 | 1981 | 1981 | | MIN | 1.58 | 1.90 | 2.38 | 4.72 | 5.65 | 5.26 | 3.53 | 5.41 | 8.76 | 10.7 | 3.76 | 3.14 | | (WY) | 1978 | 1979 | 1979 | 1979 | 1979 | 1978 | 1978 | 1991 | 1990 | 1980 | 1980 | 1978 | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY ME DAILY ME | MEAN EAN EAN AN (MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | FOR 19 | 991 CALEND 10241.7 28.1 357 1.5 2.5 20310 43 21 3.6 | Aug 10
May 18
Oct 7 | | FOR 1992 WA' 15117.5 41.3 963 2.3 2.5 2560 9.43 29990 87 28 4.7 | Jul 9
Oct 8
Oct 7
Jul 9 | | #ATER YE a 63.6 166 22.7 b 3610 c 1.2 1.3 6680 10.09 46080 119 24 3.9 | Oct 1
Oct 1
Jul | - 1992
1983
1989
18 1981
12 1977
10 1977
5 1981
5 1981 | a-Average discharge for 37 years (water years 1923-31, 1949-76), 116 ft³/s; 84040 acre-ft/yr, prior to completion of Trinidad Reservoir. b-Maximum daily discharge for period of record, 46300 ft³/s, May 20, 1955. c-No flow at times in 1924-25, 1927, 1949, and 1974. d-Maximum discharge and stage for period of record, 70000 ft³/s, May 20, 1955, gage height, 20.00 ft, from rating curve extended above 38000 ft³/s, at different datum. ARKANSAS RIVER BASIN 07128500 PURGATOIRE RIVER NEAR LAS ANIMAS, CO #### 07130000 JOHN MARTIN RESERVOIR AT CADDOA, CO LOCATION.--Lat 38°04'05", long 102°56'13", in NE¹/4NW¹/4 sec.8, T.23 S., R.49 W., Bent County, Hydrologic Unit 11020009, at dam on Arkansas River at Caddoa, 3.2 mi southeast of Hasty, and 58 mi upstream from Colorado-Kansas State line. DRAINAGE AREA.--18,915 mi², of which 785 mi² is probably noncontributing. PERIOD OF RECORD.--January 1943 to current year. Month-end contents only prior to November 1943, published in WSP 1311. GAGE.--Water-stage recorder with satellite telemetry for elevations above 3,784 ft, and nonrecording gage read once daily for those below. Datum of gage is 3,760.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Corps of Engineers); gage readings have been reduced to elevations above National Geodetic Vertical Datum of 1929. REMARKS.--No estimated contents. Records good. Reservoir is formed by concrete and earthfill dam. Storage began while dam was under construction prior to 1943, and record of contents began Jan. 1, 1943. Capacity (based on 1986 resurvey used from Feb. 1, 1988) 608,200 acre-ft, at elevation 3,870.00 ft, top of spillway gates, of which 345,300 acre-ft between elevations 3778.22 ft, elevation of no contents, and 3851.58 ft, is reserved for flood control. Contents table shown is from the latest survey of 1986. No dead storage. Figures given represent total contents. COOPERATION .-- Capacity tables provided by U.S. Army, Corps of Engineers. EXTREMES (AT 2400) FOR PERIOD OF RECORD.--Maximum contents, 429,600 acre-ft, Aug. 25, 1965, elevation, 3,856.16 ft; no contents at times many years. EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, 70,800 acre-ft, Apr. 3-4, elevation, 3,815.99 ft; minimum contents, 8,540 acre-ft, Oct. 29, elevation, 3,795.02 ft. Capacity table (elevation, in feet, and contents, in acre-feet) | 3,785.0 | 196 | 3.820.0 | 88,900 | |---------|--------|---------|---------| | 3,790.0 | 2,400 | 3,830.0 | 148,000 | | 3,795.0 | 8.510 | 3,840.0 | 227,000 | | | | | | | 3,800.0 | 18,500 | 3,850.0 | 327,000 | | 3.810.0 | 47.600 | 3.860.0 | 453.000 | # RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY OBSERVATION AT 24:00 VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | 9330 | 9090 | 21800 | 33000 | 45700 | 63500 | 70600 | 48500 | 34600 | 34300 | 18700 | 16800 | | 2 | 9250 | 9490 | 22200 | 33300 | 46100 | 63900 | 70700 | 47500 | 34600 | 34200 | 18700 | 16900 | | 3 | 9 150 | 9560 | 22500 | 33600 | 46700 | 64300 | 70800 | 46600 | 34500 | 34100 | 18800 | 16800 | | 4 | 9130 | 9660 | 22900 | 34000 | 47300 | 64700 | 70800 | 45700 | 34300 | 34300 | 19600 | 16700 | | 5 | 9090 | 10000 | 23300 | 34300 | 47800 | 65100 | 70800 | 44600 | 34100 | 34600 | 20000 | 16500 | | 6 | 9080 | 10900 | 23900 | 34700 | 48400 | 65500 | 70600 | 43600 | 33800 | 35000 | 19300 | 16400 | | 7 | 9080 | 11900 | 24200 | 35100 | 48800 | 65500 | 69800 | 42700 | 33700 | 34100 | 18700 | 16100 | | 8 | 9080 | 12500 | 24600 | 35400 | 49400 | 66300 | 68800 | 41800 | 33500 | 32600 | 18200 | 15800 | | 9 | 9080 | 13000 | 25000 | 35900 | 49900 | 66500 | 67800 | 40800 | 33700 | 31200 | 17600 | 15700 | | 10 | 9060 | 13400 | 25300 | 36400 | 50300 | 66800 | 66700 | 39900 | 34200 | 30900 | 17300 | 15700 | | 11 | 9030 | 13800 | 25800 | 36800 | 50900 | 67100 | 65700 | 39100 | 34400 | 29400 | 16800 | 15600 | | 12 | 8990 | 14000 | 26100 | 37400 | 51300 | 67500 | 64500 | 38500 | 34500 | 28000 | 16400 | 15500 | | 13 | 8940 | 14300 | 26500 | 38000 | 52100 | 67800 | 63500 | 38200 | 34700 | 26800 | 16300 | 15300 | | 14 | 8960 | 14500 | 26800 | 38300 | 52900 | 68000 | 62300 | 38000 | 34600 | 25700 | 16100 | 14900 | | 15 | 8960 | 14700 | 27200 | 38500 | 53600 | 68300 | 61000 | 37700 | 34400 | 24800 | 15800 | 14700 | | 16 | 8960 | 15300 | 27500 | 38700 | 54500 | 68600 | 59700 | 37200 | 33900 | 24000 | 15700 | 14500 | | 17 | 8910 | 15800 | 27700 | 39200 | 55300 | 68800 | 58500 | 36600 | 33400 | 23300 | 15600 | 14500 | | 18 | 8880 | 16300 | 28100 | 39800 | 56000 | 69000 | 57400 | 36000 | 33200 | 22300 | 15400 | 14500 | | 19 | 8830 | 16900 | 28500 | 40500 | 56800 | 69100 | 56300 | 35300 | 33300 | 21300 | 15100 | 14500 | | 20 | 8880 | 17400 | 28900 | 41100 | 57500 | 69300 | 55600 | 34800 | 33500 | 20100 | 15100 | 14400 | | 21 | 8930 | 17800 | 29200 | 41800 | 58400 | 69400 | 55000 | 34400 | 33900 | 20100 | 15100 | 14400 | | 22 | 8890 | 18300 | 29600 | 42300 | 59100 | 69500 | 54600 | 34200 | 33800 | 20100 | 15300 | 14300 | | 23 | 8890 | 18700 | 29900 | 42700 | 59900 | 69700 | 53800 | 34400 | 33700 | 20300 | 15400 | 14300 | | 24 | 8860 | 19100 | 30300 | 43000 | 60700 | 69800 | 53000 | 34500 | 33500 | 20000 | 15700 | 14300 | | 25 | 8790 | 19500 | 30600 | 43300 | 61400 | 69900 | 52400 | 34400 | 33400 | 19800 | 15600 | 14300 | | 26 | 8710 | 19900 | 31000 | 43700 | 61800 | 69900 | 51700 | 34300 | 33500 | 20100 | 15900 | 14200 | | 27 | 8620 | 20300 | 31300 | 44000 | 62300 | 70000 | 51100 | 34500 | 34200 | 20500 | 16500 | 14000 | | 28 | 8640 | 20700 | 31700 | 44400 | 62700 | 70300 | 50600 | 34600 | 34400 | 20400 | 16500 | 13900 | | 29 | 8540 | 21100 | 32000 | 44700 | 63100 | 70400 | 49900 | 34600 | 34100 | 20100 | 16300 | 14000 | | 30 | 8620 | 21500 | 32300 | 45100 | | 70500 | 49300 | 34700 | 34400 | 19500 | 16400 | 14000 | | 31 | 8670 | | 32700 | 45400 | | 70600 | | 34700 | | 19100 | 16700 | | | MEAN | 8930 | 15300 | 27400 | 39200 | 54200 | 67900 | 60800 | 38500 | 34000 | 25800 | 16800 | 15100 | | MAX | 9330 | 21500 | 32700 | 45400 | 63100 | 70600 | 70800 | 48500 | 34700 | 35000 | 20000 | 16900 | | MIN | 8540 | 9090 | 21800 | 33000 | 45700 | 63500 | 49300 | 34200 | 33200 | 19100 | 15100 | 13900 | CAL YR 1991 MEAN 31400 MAX 70300 MIN 8540 WTR YR 1992 MEAN 33600 MAX 70800 MIN 8540 ## ARKANSAS RIVER BASIN 07130500 ARKANSAS RIVER BELOW JOHN MARTIN RESERVOIR, CO #### 07133000 ARKANSAS RIVER AT LAMAR, CO LOCATION.--Lat $38^{\circ}06^{\circ}21^{\circ}$, long $102^{\circ}37^{\circ}05^{\circ}$, in NE $^{1}/4$ Sec.30, T.22 S., R.46 W., Prowers County, Hydrologic Unit 11020009, on left bank at left upstream end of upstream bridge on U.S. Highways 50 and 287, and 1.3 mi north of courthouse in Lamar. DRAINAGE AREA. -- 19,780 mi², of which 950 mi² is probably non-contributing. PERIOD OF RECORD.—Streamflow records, May 1913 to September 1955, April 1959 to current year. Monthly discharge only for some periods, published in WSP 1311. Statistical summary computed for 1949 to current year. Water-quality data available, November 1963 to September 1965, September 1969 to August 1972. REVISED RECORDS. -- WSP 1341: 1921 (M), 1945-46 (M), drainage area; WDR CO-86-1: GAGE.--Water-stage recorder. Datum of gage is 3,602.23 ft above National Geodetic Vertical Datum of 1929. See WSP 1731 for history of changes prior to Apr. 4, 1959. Apr. 4, 1959 to Mar. 26, 1968, at site 450 ft upstream at datum 2.42 ft, higher. Mar. 27, 1968 to Nov. 17, 1982 at datum 4.00 ft lower. Prior to Mar. 18, 1987, at site 75 ft downstream at same datum. ARKS.--Estimated daily discharges: Nov. 1-4, Dec. 2, 26, 27, Jan. 2, 3, 6-8, Feb. 20-25, Sept. 9, 10, and Sept. 25-27. Records good except for Oct. 2-10, Jan. 18-22, Jan. 24 to Feb. 19, Sept. 17-24, and daily discharges above 600 ft³/s, which are fair; and for Mar. 13 to Apr. 8, and estimated daily discharges, which are poor. Flow regulated by John Martin Reservoir (station 07130000) 21 mi upstream since Oct. 1948. Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 487,000 acres, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. REMARKS. -- Estimated daily discharges: DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY AUG SEP JAN 7.9 7.2 7.7 9.7 5.2 5.2 9.8 5.0 8.0 7.4 8.6 23 7.4 9.6 7.2 7.9 7.2 4.9 9.4 4.9 7.4 6.5 9.4 4.9 6.7 7.1 5.4 5.0 9.5 9.7 5.0 8.5 4.8 8.1 8.3 27 6.8 8.1 6.3 8.5 5.5 8.4 4.6 8.0 7.6 9.0 4.0 7.4 6.5 8.1 6.6 8.1 5.6 7.8 8.0 7.4 8.9 7.7 6.7 6.2 5.2 23 5.2 6.1 9.0 7.0 8.3 4.6 9.3 6.2 7.6 5.0 5.1 7.9 7.1 9.4 4.6 22 4.9 4.8 8.0 5.1 7.4 5.1 5.9 ---5.9 5.7 6.0 1319.9 8545.4 265.5 TOTAL 365.3 406.2 913.5 782.5 474.3 MEAN 11.8 29.7 41 25.7 31 19.3 19.9 25 13.1
30.4 57 42.6 810 15.3 8.85 26.1 MAX AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 1992, BY WATER YEAR (WY) MEAN 39.2 15.9 20.9 23.6 31.3 29.0 2087 1547 96.0 MAX 52.2 71.5 (WY) MTN 1.81 10.9 6.41 3.80 10.2 10.9 1.37 (WY) SUMMARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 1949 - 1992 15933.6 ANNUAL TOTAL 18928.8 ^a106 ANNUAL MEAN 51.9 43.5 HIGHEST ANNUAL MEAN b₂₅₀₀₀ LOWEST ANNUAL MEAN Jun 18 1965 Jul 21 HIGHEST DAILY MEAN Jun 30 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 4.4 Mar 26 4.0 Jun 19 Dec May 25 Jan 10 1965 4.8 4.9 Apr . 21 d₇₃₈₀₀ INSTANTANEOUS PEAK FLOW Jun 18 1965 Jul 21 ĕ16.48 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 8.95 Jul 21 Jun 18 1965 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 6.0 6.0 90 PERCENT EXCEEDS a-Average discharge for 30 years (water years 1914-43), 298 ft³/s; 215900 acre-ft/yr, prior to and during construction of John Martin Dam. b-Maximum daily discharge for period of record, 87300 ft³/s, Jun 6, 1921. c-Minimum daily discharge for period of record, no flow at times in 1913-15. d-Maximum discharge and stage for period of record, 130000 ft³/s, Jun 5, 1921, gage height, 14.55 ft, datum then in use, from rating curve extended above 10000 ft³/s. e-Datum then in use, from floodmarks. 286 ARKANSAS RIVER BASIN #### 07134180 ARKANSAS RIVER NEAR GRANADA, CO LOCATION.--Lat $38^{\circ}05^{\circ}44^{\circ}$, long $102^{\circ}18^{\circ}37^{\circ}$, in $SE^{1}/4NE^{1}/4$ sec.36, T.22 S., R.44 W., Prowers County, Hydrologic Unit 11020009, on left bank at upstream side at end of bridge on U.S. Highway 385, 1.2 mi downstream from headgate of Buffalo Canal, and 2.3 mi north of Granada. DRAINAGE AREA. -- 23,707 mi2. PERIOD OF RECORD.--January 1899 to December 1901, gage heights only at different site and datum, August to October 1903, December 1980 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 3,480 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--No estimated daily discharges. Records good. Flow regulated by John Martin Reservoir (station 07130000) 38 mi upstream since October 1948. Natural flow of stream affected by transmountain diversion, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 500,000 acres, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBE VALUES | R 1991 | TO SEPTEM | BER 1992 | | | |---|-------------------------------------|--|------------------------------------|---|-------------------------------------|------------------------------------|---|---|-------------------------------------|---|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.5
6.2
5.0
5.0 | 23
29
30
46
85 | 95
90
95
100
101 | 90
89
85
88 | 80
75
83
90
90 | 79
83
84
87
90 | 17
10
4.9
4.5
4.7 | 4.4
4.0
4.2
3.8
3.9 | 4.5
4.2
4.0
3.9
4.2 | 22
27
44
38
33 | 38
25
14
6.9
6.8 | 17
14
9.6
9.6
9.8 | | 6
7
8
9
10 | 5.0
5.0
5.0
4.8 | 89
101
102
102
99 | 101
100
98
98
98 | 87
87
84
84
82 | 87
84
84
84
80 | 96
94
93
89
85 | 4.7
4.7
4.4
4.5
4.5 | 3.8
3.8
5.2
5.2
5.1 | 4.1
4.7
4.3
5.0
4.4 | 28
14
77
357
466 | 6.7
7.1
7.4
7.7
8.7 | 9.6
9.5
8.1
8.0
8.3 | | 11
12
13
14
15 | 4.8
4.8
4.8
4.8 | 98
98
94
84
81 | 99
106
106
101
101 | 82
85
84
81
78 | 80
78
79
79
75 | 84
84
82
70
64 | 4.5
5.8
4.9
5.7
6.1 | 5.6
4.0
4.1
4.4
4.3 | 4.9
5.4
5.7
5.0
5.0 | 507
527
543
468
407 | 14
9.8
10
11 | 8.3
8.5
7.7
7.2
7.4 | | 16
17
18
19
20 | 4.8
4.8
4.8
6.0
5.6 | 85
92
95
98
102 | 97
93
89
96
98 | 72
80
83
81
79 | 74
73
73
74
75 | 61
58
58
56
56 | 4.9
3.6
4.0
6.8
7.8 | 5.1
5.4
4.3
4.2
4.6 | 4.7
4.8
5.1
5.4
6.2 | 394
369
390
396
417 | 50
60
47
52
39 | 6.8
6.2
6.0
6.2
5.2 | | 21
22
23
24
25 | 6.0
5.6
5.6
5.1
4.8 | 102
98
94
94
95 | 97
96
95
93
93 | 81
82
78
78
78 | 75
75
75
75
75 | 54
49
48
37
26 | 7.8
6.6
4.3
4.4
3.7 | 4.4
4.4
4.5
4.2
4.1 | 6.8
5.5
5.6
5.5
6.2 | 436
565
231
143
80 | 29
19
17
13 | 5.3
5.5
4.9
4.9
5.8 | | 26
27
28
29
30
31 | 4.8
5.0
9.9
16
18
21 | 95
95
94
94
95 | 92
89
92
92
91
90 | 78
78
78
77
78
78 | 76
76
77
78
 | 26
27
25
24
21
17 | 3.7
5.3
6.1
5.3
5.3 | 5.0
5.6
4.4
4.3
5.4
4.2 | 9.1
13
161
56
35 | 139
210
129
87
69
55 | 19
19
15
14
14 | 4.6
4.7
4.9
4.9
5.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 205.3
6.62
21
4.8
407 | 86.3
102
23 | 2982
96.2
106
89
5910 | 2533
81.7
90
72
5020 | 2279
78.6
90
73
4520 | 1907
61.5
96
17
3780 | 170.5
5.68
17
3.6
338 | 139.9
4.51
5.6
3.8
277 | 399.2
13.3
161
3.9
792 | 7668
247
565
14
15210 | 621.1
20.0
60
6.7
1230 | 223.5
7.45
17
4.6
443 | | STATIST | rics of Mo | NTHLY MEAN | DATA FOR | WATER YE | ARS 1981 | - 1992 | , BY WATER Y | EAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 83.4
184
1984
5.43
1982 | 9.68 | 108
157
1988
35.4
1982 | 99.7
134
1988
51.6
1982 | 95.9
143
1988
55.9
1982 | 100
249
1987
33.3
1981 | 212
1138
1987
5.68
1992 | 276
2072
1987
4.51
1992 | 381
2196
1987
9.39
1981 | 324
529
1983
130
1990 | 249
607
1983
4.39
1990 | 119
430
1984
4.13
1990 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1981 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | 23111.3
63.3
678
3.7
4.0
45840
100
24
4.8 | Jul 1
Jun 11
May 27 | | 21717.5
59.3
565
3.6
4.0
910
8.30
43080
98
27
4.5 | Jul 22
Apr 17
May 1
Jul 22
Jul 22 | | 187
597
59.3
3330
22.7
3.00
3460
11.78
135400
466
90
6.4 | Aug 1
Aug 1
May 2 | 1987
1992
26 1987
17 1990
14 1990
26 1987
26 1987 | a-Also occurred Aug 18 and 19, 1990. b-From rating curve extended above 2700 ${\rm ft}^3/{\rm s}$. #### 07137000 FRONTIER DITCH NEAR COOLIDGE, KS LOCATION.--Lat 38°02'18", long 102°02'19", in SW¹/4SE¹/4NE¹/4 sec.21, T.23 S., R.43 W., Hamilton County, Hydrologic Unit 11030001, on left bank 0.3 mi east of Colorado-Kansas State line, 0.5 midownstream from Holly drain diversion, 1.5 mi west of Coolidge, and 2.3 mi downstream from diversion of the Arkansas River. PERIOD OF RECORD. -- October 1950 to current year. REVISED RECORDS .-- WSP 1731: 1951. GAGE.--Water-stage recorders and Parshall flume. Datum of gage is 3,343.14 ft above sea level. REMARKS.--Records good. This ditch diverts water from the Arkansas River in Colorado for use in Kansas. These records and records for the Arkansas River near Coolidge represent total flow of the Arkansas River at the Colorado-Kansas State line. Satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD. -- Maximum daily discharge, 84 ft³/s, Aug. 1, 1975; no flow many days each year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 19 .00 .09 ΩΩ .00 .00 .00 38 24 .00 26 33 .00 18 24 .00 .00 .00 .00 .00 49 .00 26 36 17 .00 .00 .00 .00 .00 .00 29 24 .00 26 29 18 .00 .00 .00 .00 .00 .00 33 .00 26 25 5 .00 18 .00 .00 .00 .00 .00 26 22 3.2 25 25 .00 .00 .00 .00 .00 .00 24 22 25 30 22 25 24 17 18 .00 .00 .00 .00 .00 .00 21 19 18 19 24 25 28 8 .00 .00 .00 . 00 24 20 .00 .00 .00 23 -00 .00 .00 10 10 18 .00 .00 .00 .00 .00 .00 21 .00 25 16 11 18 .00 .00 .00 .00 .00 .00 33 25 .00 15 6.4 12 .00 .00 .00 .00 30 .00 40 .40 .00 .00 13 18 .00 .00 .00 .00 .00 .00 30 .00 30 .03 14 14 .00 18 .00 .00 .00 31 .00 .00 15 17 .00 .00 .00 .00 .00 29 .00 .00 .00 . 63 17 .00 .00 .00 .00 .00 .00 16 .00 28 .03 11 2.5 17 24 .00 .00 .00 .00 .00 20 .00 5.6 15 .00 33 .35 18 21 17 .00 .00 .00 .00 .00 .00 30 20 .00 33 19 .00 -00 . 00 . 00 - 00 .00 27 25 . 00 33 26 32 20 16 .00 .00 .00 .00 .00 .00 25 .00 .00 .00 16 .00 21 _ 00 .00 .00 .00 .00 26 26 .00 30 22 .00 .00 13 29 13 .00 .00 -00 26 27 26 25 .00 23 13 .00 .00 .00 .00 29 10 .00 29 .00 13 12 . 00 .00 .00 .00 .00 33 26 26 26 26 9.5 29 29 25 24 .00 21 .00 -00 .00 .00 37 13 .00 26 13 .00 .00 .00 .00 36 26 .00 19 29 .00 27 25 25 .04 28 25 1.3 .00 .00 .00 .00 38 .00 **4** N 14 .00 .00 35 .00 28 .00 .00 .00 .00 36 29 7.2 4.3 .00 .00 .00 39 26 .00 11 33 21 .00 .00 21
25 30 .00 . 00 .00 .00 43 25 .00 32 17 25 31 .47 -00 ---.00 -00 32 507.29 TOTAL. 493.97 09 nη nn - 00 nη 303.00 863 397.50 365.90 726 24.2 .003 .000 .000 .000 16.4 MEAN 15.6 .000 10.1 27.8 13.2 11.8 .09 XAM 24 .00 .00 .00 .00 49 26 40 40 36 MIN 47 .00 .00 .00 .00 .00 .00 21 .00 .00 ດດ 11 AC-FT 960 1710 788 726 1010 1440 .2 - 00 . 00 .00 - 00 601 CAL YR TOTAL 3815.98 MEAN 10.4 MAX 63 MIN .00 AC-FT 7570 WTR YR TOTAL 3646.75 MEAN 9.96 MAX 49 MIN .00 AC-FT 7230 # 07137500 ARKANSAS RIVER NEAR COOLIDGE, KS (National stream-quality accounting network station) LOCATION.—Lat $38^{\circ}01^{\circ}34^{\circ}$, long $102^{\circ}00^{\circ}41^{\circ}$, in NW $^{1}/4$ NE $^{1}/4$ NW $^{1}/4$ sec.26, T.23 S., R.43 W., Hamilton County, Hydrologic Unit 11030001, on right bank at downstream side of bridge, 1.0 mi south of Coolidge, 1.9 mi downstream from Colorado-Kansas State line, and at mile 1,099.3. DRAINAGE AREA.--25,410 mi², of which 1,708 mi² is probably noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May to October 1903, March to May 1921, October 1950 to current year. Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS. -- WSP 1341: 1903, drainage area. GAGE.--Water-stage recorder. Datum of gage is 3,330.84 ft above sea level. May 5 to Oct. 31, 1903, nonrecording gage, and Mar. 1 to May 31, 1921, water-stage recorder at present site at different datum. Oct. 1, 1950, to Mar. 31, 1966, water-stage recorder at site 0.3 mi upstream at datum 3.00 ft, higher. REMARKS.—Records excellent. Combined flow of river and Frontier Ditch (station 07137000) represents entire flow that enters Kansas. Flow regulated since 1943 by John Martin Reservoir (station 07130000). Natural flow of stream affected by transmountain diversions, storage reservoirs, power developments, ground-water withdrawals and diversions for irrigation of about 500,000 acres, and return flow from irrigated areas. Satellite telemeter at station. | at | station. | | - | | • | • | | | - | | | | |---|--|-------------------------------------|--|--|------------------------------------|------------------------------------|------------------------------------|--|-------------------------------------|---|---------------------------------------|---| | | | DISCHA | RGE, CUBI | C FEET ! | PER SECOND,
DAII | WATER
Y MEAN | YEAR OCTOBE VALUES | R 1991 | TO SEPTE | MBER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 25
31
27
28
38 | e50
e55
e60
63
80 | 101
102
100
105
106 | 109
108
108
106
108 | 105
104
110
112
112 | 96
95
97
102
100 | 69
70
77
77
77 | 27
27
58
56
52 | 63
75
62
59
58 | 160
149
183
167
129 | 147
119
97
91
87 | 101
100
86
83
75 | | 6
7
8
9
10 | 46
43
28
26
20 | 90
91
95
98
97 | 107
107
107
106
107 | 108
110
106
106
104 | 111
109
107
107
106 | 103
105
104
100
94 | 67
54
57
63
92 | 49
50
41
48
47 | 51
54
55
92
101 | 78
67
56
136
291 | 86
85
87
76
113 | 74
71
67
70
64 | | 11
12
13
14
15 | 17
20
20
29
27 | 97
96
96
96
90 | 107
112
114
112
110 | 106
108
106
106
102 | 105
104
104
105
99 | 95
94
94
93
92 | 70
5 8
67
66
65 | 43
33
24
18
21 | 92
75
73
90
96 | 374
407
664
604
489 | 149
135
109
95
99 | 56
58
59
61
56 | | 16
17
18
19
20 | 27
22
17
20
29 | 97
99
100
102
102 | 109
106
105
107
110 | 101
102
105
105
104 | 98
98
95
95
96 | 91
89
90
88
88 | 64
69
72
106
120 | 21
23
31
32
26 | 60
37
26
18
18 | 449
422
419
433
429 | 103
1050
464
268
246 | 53
49
36
41
38 | | 21
22
23
24
25 | 32
24
23
25
23 | 104
99
98
100
101 | 109
112
109
108
108 | 105
106
104
104
107 | 96
95
95
94
95 | 88
86
84
84
77 | 112
77
44
25
18 | 23
17
15
15
15 | 44
40
33
28
110 | 510
623
374
239
193 | 205
172
145
124
111 | 36
32
38
31
32 | | 26
27
28
29
30
31 | 24
26
37
39
42
46 | 103
102
102
104
103 | 108
107
107
109
108
111 | 106
105
104
105
104
104 | 96
95
96
96 | 72
71
72
70
68
67 | 15
16
22
28
25 | 18
33
51
50
42
45 | 110
158
332
246
194 | 1020
561
378
246
193
173 | 109
121
116
111
102
99 | 31
37
37
33
35 | | MEAN
MAX
MIN
AC-FT | 28.4
46
17
1750 | 92.3
104
50
5490 | 108
114
100
6620 | 106
110
101
6490 | 101
112
94
5830 | 88.7
105
67
5450 | 61.4
120
15
3650 | 33.9
58
15
2080 | 85.0
332
18
5060 | 342
1020
56
21060 | 165
1050
76
10160 | 54.7
101
31
3250 | | | timated | THT.Y MEA | N DATA FO | R WATER | YEARS 1951 | - 1992. | BY WATER YE | AR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 119
331
1985
1.97 | 102
256
1988
1.53
1979 | 107
270
1966
3.94
1979 | 106
274
1966
3.14
1979 | 120
602
1966
5.52
1978 | 110
331
1960
5.63
1978 | 198
1221
1987
9.43 | 285
2106
1987
6.61
1963 | 473
8221
1965
4.20
1954 | 274
741
1965
3.59
1974 | 300
1979
1965
1.94
1964 | 173
1079
1965
.90
1960 | | SUMMARY | STATISTIC | :s | FOR 1 | 991 CALE | NDAR YEAR | F | OR 1992 WATE | R YEAR | | WATER YE | ARS 1951 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME ANNUAL MEA DAILY MEAN DAILY MEAN SEVEN-DAY ANEOUS PEA ANEOUS LOW RUNOFF (AC ENT EXCEED ENT EXCEED | MINIMUM K FLOW K STAGE FLOW FT) | | 102
594
17
23
74190
139
96
27 | Jul 1
Oct 11
Oct 9 | | 15
18
2290 | Aug 17
Apr 26
May 20
Aug 17
Aug 17
Jun 20 | | 197
1012
19.8
101000
.00
158000
14.80
.00
143000
419
110
8.0 | Jul
Jul
Jun 1
Jun 1 | 1965
1979
8 1965
9 1954
9 1954
7 1965
7 1965
years | # 07137500 ARKANSAS RIVER NEAR COOLIDGE, KS--Continued (National stream-quality accounting network station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1964-68, 1970-73, 1975 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1963 to September 1968, January 1976 to September 1981. WATER TEMPERATURES: November 1963 to September 1968, January 1976 to September 1981. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | WATE | R-QUALI: | ry DATA, | WAT | ER YEA | AR O | CTOBER | ₹ 19 | 91 TO SE | EPTEMBE | R 19 | 92 | | | | |-----------|-------------|--|--|--|--|---|--|------------------------------------|--|-----------|--|--|-----------------------------|---|---|---|---| | | Е | OATE | TIME | DIS
CHARG
INST
CUBI
FEE
PER
SECO | E, SPI C CON T DUC ANG | FIC
N-
CT- | PH
WATE
WHOI
FIEI
(STAN
ARD
UNIT | LE
ND-
NE- | TEMPE
ATUR
WATE
(DEG | E
R | OXYGEN,
DIS-
SOLVED
(MG/L) | | RIC
S-
RE
M | COLI-
FORM,
FECAL
0.7
UM-MF
(COLS.
100 ML | TOC
, FE
KF
(CC | TREP-
COCCI
ECAL,
AGAR
OLS.
PER
D ML) | | | | NOV | | | | | | | | | | | | | | | | | | | 26.
MAR | •• | 1055 | 90 | - | | 8 | 3.2 | 4 | .0 | 12.2 | • | 73 | 3: | 3 | 61 | | | | 23. | ••• | 1120 | 84 | | 5360 | 8 | 3.2 | 12 | .0 | 10.2 | 6 | 80 | <3 | 8 | 75 | | | | JUN
16. | | 1300 | 61 | 3 | 3880 | 8 | 3.1 | 26 | .0 | 6.4 | 6 | 70 | 15 | 0 | 700 | | | | JUL
20. | | 1155 | 414 | 2 | 2160 | 8 | 3.2 | 22 | .0 | 7.3 | 6 | 80 | 36 | 0 | 1300 | DATE | | TUR-
BID-
ITY
(NTU) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALCII
DIS-
SOLVI
(MG/I
AS C | UM SI
DI
ED SOI
L (MC | GNE-
IUM,
IS-
LVED
G/L
MG) | SODIU
DIS-
SOLVE
(MG/
AS N | ED
'L | SODI
AD
SORP
TIO
RATI | -
N | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K) | WAT D | Y
IS
T
D
AS | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L A:
HCO3 | BON
WA
DIS
FI
S MG/ | AR- NATE ATER S IT ELD 'L AS | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | | NOV
26 | |
41 | 1700 | 360 | 200 | ` | 530 | | 6 | | 11 | • | 10 | 37 | | 0 | 2300 | | MAR | | | | | | | | | | | | | | | | | | | 23
JUN | | 17 | 1800 | 390 | 210 | | 560 | | 6 | | 10 | | 82 | 34 | 4 | 0 | 2300 | | 16
JUL | 1 | .00 | 1300 | 280 | 140 |) | 440 | | 5 | | 11 | 2 | 39 | 29: | 2 | 0 | 1800 | | 20 | | 37 | 880 | 200 | 91 | l | 220 | | 3 | | 7.6 | 1 | 90 | 23 | 2 | 0 | 950 | | DATE | R
D
S | HLO-
LIDE,
LIS-
COLVED
MG/L
S CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA
DIS-
SOLVA
(MG/1
AS
SIO2) | AT 1
ED DEC
L D1
SOI | DUE | SOLID
DIS
SOLV
(TON
PER
AC-F | ED
IS | SOLID
DIS
SOLV
(TON
PER
DAY | ED
S | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N) | NO2+N | ,
103
:-
'ED
'L | NITROGEN,
AMMONIA
TOTAL
(MG/L
AS NH4) | - G
AMM
A D
SO
(M | TRO-
GEN,
MONIA
DIS-
DLVED
MG/L
NH4) | NITRO-
GEN,
TOTAL
(MG/L
AS NO3) | | NOV
26 | 1 | 40 | 1.0 | 17 | 3 | 3740 | 5 | 09 | 913 | | 2.20 | 22.0 | | 0.0 | 4 | 0.05 | 13 | | MAR 23 | | 80 | 0.80 | 13 | | | | | 957 | | | | | 0.0 | | 0.04 | 11 | | JUN | | | | | | 1220 | | 74 | | | 2.00 | 2.0 | | | | | | | 16
JUL | | 30 | 0.90 | 12 | | 350 | | 56 | 552 | | 1.10 | 1.2 | | 0.0 | | 0.08 | 6.6 | | 20 | | 81 | 1.0 | 8.5 | 5 1 | .820 | 2. | 48 | 2030 | | 0.920 | 0.9 | 00 | 0.0 | 4 | 0.03 | 7.6 | | | DATE | NIT
GE
NITR
DI
SOL
(MG
AS N | N,
ATE NI
S- I
VED S | OLVED
MG/L | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N) | AMM(
D)
SO) | ONIA
IS-
LVED
G/L | GEN,
MON:
ORGA
TO:
(MC | TRO-
,AM-
IA +
ANIC
TAL
G/L
N) | GE
TOI | TRO- (
EN, NI
TAL TO | ITRO-
GEN,
TRATE
OTAL
MG/L
S N) | GE
NITR
DI | ATE
S- NI
VED I | NITRO-
GEN,
ITRITE
IOTAL
(MG/L
AS N) | G
NIT
D
SO
(M | TRO-
EN,
RITE
IS-
LVED
G/L
N) | | | 6 | 97 | | 0.07 | 0.030 | ٥. | 041 | (| 0.80 | 3 | 3.0 | 2.18 | 22. | 0 | 0.021 | . 0 | .021 | | MAR
2 | 3 | 8 | .8 | 0.07 | 0.050 | ٥. | .030 | (| 0.50 | 2 | 2.5 | 1.98 | 1. | 98 | 0.020 | 0 | .020 | | JUN
1 | 6 | 5 | . 2 | 0.07 | 0.050 | ٥. | .060 | (| 0.40 | 1 | .5 | 1.07 | 1. | 18 | 0.030 | 0 | .020 | | JUL
2 | 0 | _ | | | 0.030 | 0. | .020 | | 0.80 | | | 0.890 | | - | 0.030 | | .010 | 290 ARKANSAS RIVER BASIN # 07137500 ARKANSAS RIVER NEAR COOLIDGE, Ks--Continued (National stream-quality accounting network station) # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | DATE | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHATE,
TOTAL
(MG/L
AS PO4) | PHOS-
PHATE,
ORTHO,
DIS-
SOLVED
(MG/L
AS PO4) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-PHORUS ORTHO TOTAL (MG/L AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM | | |------------------|---|--|--|---|--|--|---|---|---|--|---|--| | | NOV
26
MAR | 0.77 | | 0.03 | 0.080 | 0.010 | | 0.010 | 201 | 49 | 82 | | | | 23
JUN | 0.45 | | | 0.020 | 0.030 | <0.010 | <0.010 | 82 | 19 | 86 | | | | 16 | 0.35 | 0.09 | 0.03 | 0.040 | 0.020 | 0.030 | 0.010 | 342 | 56 | 96 | | | | JUL
20 | 0.77 | 0.15 | | 0.140 | <0.010 | 0.050 | <0.010 | 311 | 348 | 61 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | IRON,
DIS-
SOLVED
(UG/L
AS FE) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V) | | NOV
26
MAR | . 10 | 100 | <1 | <10 | 170 | 20 | 6 | <1 | 24 | <1.0 | 6100 | 6 | | 23
JUN | . <10 | <100 | <1 | <10 | 170 | 20 | 5 | <1 | 24 | <1.0 | 6500 | 5 | | 16
JUL | . 10 | <100 | <1 | <10 | 130 | 30 | 7 | 4 | 14 | <1.0 | 4700 | 7 | | 20 | . <10 | <100 | <1 | <10 | 80 | <10 | 8 | 2 | 11 | <1.0 | 3200 | 3 | #### 08213500 RIO GRANDE AT THIRTYMILE BRIDGE, NEAR CREEDE, CO LOCATION.--Lat 37°43'29", long 107°15'18", in NE¹/4 sec.13, T.40 N., R.4 W., Hinsdale County, Hydrologic Unit 13010001, on right bank 70 ft downstream from bridge, 500 ft upstream from Squaw Creek, 0.8 mi downstream from Rio Grande Reservoir, and 20 mi southwest of Creede. DRAINAGE AREA. -- 163 mi2. PERIOD OF RECORD.--June 1909 to September 1923, May 1925 to current year. No winter records 1910, 1926. Monthly discharge only for some periods, published in WSP 1312. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,300 ft above National Geodetic Vertical Datum of 1929, from topographic map. See WSP 1712 or 1732 for history of changes prior to Oct. 1, 1934. REMARKS.--Estimated daily discharges: Oct. 30 to Apr. 20. Records good except for estimated daily discharges, which are fair. Flow regulated by Rio Grande Reservoir, capacity, 51,110 acre-ft, since 1912. Natural flow of stream affected by transmountain diversions from Colorado River basin to drainage area upstream from station through Weminuche Pass and Pine River-Weminuche Pass ditches. No known diversions upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | 1 . | | | | | | | | | | | | |--|---|--|------------------------------------|---|-------------------------------------|-------------------------------------|---|---|--------------------------------------|--|--|--| | | | DISCHARG | E, CUBI | C FEET PER | | | YEAR OCTOBE VALUES | R 19 9 1 T | O SEPTEMB | ER 1 9 92 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 99
99
98
97
9 5 | .63
.63
.63
.63 | 1.0
1.0
1.0
1.0 | 1.6
1.6
1.6
1.7 | 2.2
2.2
2.2
2.3
2.3 | 2.8
2.8
2.8
2.8
2.9 | 3.4
3.4
3.5
3.5 | 578
585
596
467
355 | 496
562
771
766
1010 | 833
468
441
460
447 | 125
118
109
108
115 | 172
163
148
135
124 | | 6
7
8
9 | 95
90
39
39
39 | .63
.63
.63
.63 | 1.1
1.1
1.1
1.1 | 1.7
1.7
1.7
1.7 | 2.3
2.3
2.4
2.4 | 2.9
2.9
2.9
2.9
3.0 | 3.5
3.5
3.6
3.6 | 3 94
460
476
478
385 | 915
726
755
673
818 | 440
449
460
443
414 | 117
143
134
117
111 | 117
111
104
99
94 | | 11
12
13
14
15 | 40
41
41
41 | .63
.63
.63
.63 | 1.2
1.2
1.2
1.2 | 1.8
1.8
1.8
1.8 | 2.4
2.4
2.5
2.5 | 3.0
3.0
3.0
3.0
3.1 | 3.6
3.6
3.7
3.7 | 263
298
389
425
550 | 1040
1080
1030
1040
927 | 331
239
292
237
208 | 134
130
112
102
93 | 90
87
84
80
91 | | 16
17
18
19
20 | 40
42
41
42
42 | .70
.70
.70
.70 | 1.3
1.3
1.3
1.3 | 1.9
1.9
1.9
1.9 | 2.5
2.5
2.5
2.6
2.6 | 3.1
3.1
3.1
3.2 | 3.7
3.8
3.8
3.8 | 582
514
514
579
682 | 872
848
843
1050
970 | 263
233
187
174
171 | 89
92
83
77
73 | 93
80
67
66
70 | | 21
22
23
24
25 | 42
42
42
42
42 | .80
.80
.80
.80 | 1.4
1.4
1.4
1.4 | 2.0
2.0
2.0
2.0
2.1 | 2.6
2.6
2.6
2.7
2.7 | 3.2
3.2
3.2
3.2
3.3 | 127
89
78
83
95 | 793
700
514
574
670 | 896
917
961
903
643 | 170
130
131
192
226 | 71
78
96
136
187 | 71
71
73
73
94 | | 26
27
28
29
30
31 | 42
42
70
88
35 | .90
.90
.90
.90 | 1.5
1.5
1.5
1.5
1.5 | 2.1
2.1
2.1
2.1
2.2
2.2 | 2.7
2.7
2.7
2.8 | 3.3
3.3
3.3
3.4
3.4 | 120
152
177
250
536 | 737
826
826
554
572
571 | 499
425
339
417
741 | 295
313
259
166
158
135 | 221
230
222
212
200
182 | 143
99
49
57
69 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1688.63
54.5
99
.63
3350 |
21.45
.71
.90
.63
43 | 39.1
1.26
1.6
1.0
78 | 58.3
1.88
2.2
1.6
116 | 71.9
2.48
2.8
2.2
143 | 95.5
3.08
3.4
2.8
189 | 1830.3
61.0
536
3.4
3630 | 16907
545
826
263
33540 | 23933
798
1080
339
47470 | 9365
302
833
130
18580 | 4017
130
230
71
7970 | 2874
95.8
172
49
5700 | | STATIS | TICS OF M | ONTHLY MEAN | DATA FO | OR WATER YE | ARS 1909 | - 1992 | , BY WATER Y | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 98.5
648
1912
2.00
1937 | 30.6
280
1917
.54
1990 | 9.49
116
1912
.40
1952 | 9.39
89.0
1912
.40
1952 | 9.25
81.0
1912
.40
1952 | 11.9
88.6
1916
.40
1952 | 103
368
1950
5.63
1983 | 490
907
1958
75.0
1938 | 910
1842
1917
139
1934 | 531
1246
1986
54.2
1934 | 250
612
1957
40.4
1940 | 105
467
1909
25.8
1956 | | SUMMAR | RY STATIST | ICS | FOR 1 | .991 CALEND | AR YEAR | | FOR 1992 WAT | TER YEAR | | WATER YEA | RS 1909 | - 1992 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER | T ANNUAL ME ANNUAL ME DAILY ME SEVEN-DAILY PAILY BE TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 70200.88
192
1950
.63
.63
139200
726
42
1.1 | Jun 9
Oct 31
Oct 31 | | 1080
1080
.63
.63
.1110
.63
.51
120800
578
41
1.1 | Oct 31 | , | 212
362
77.7
5720
10
10
10
10
10
10
10
10
10
10
10
10
10 | Nov
Nov
Jun 2 | 1986
1977
9 1927
2 1960
2 1960
8 1927
8 1927 | a-Also occurred Nov 1-15. b-Also occurred Nov 3, 4, 1960. c-Present site and datum, from rating curve extended above 1200 $\rm ft^3/s.$ d-Maximum gage height, 3.53 ft, Jun 5. ## 08214500 NORTH CLEAR CREEK BELOW CONTINENTAL RESERVOIR, CO LOCATION.--Lat 37°53'18", long 107°12'10", in NE¹/4SW¹/4 sec.21, T.42 N., R.3 W., Hinsdale County, Hydrologic Unit 13010001, on left bank 100 ft downstream from bridge, 1,000 ft downstream from Continental Reservoir, and 15 mi west of Creede. DRAINAGE AREA.--51.7 mi² PERIOD OF RECORD.--May 1929 to current year. Monthly discharge only for some periods, published in WSP 1312. Prior to October 1960, published as Clear Creek below Continental Reservoir. REVISED RECORDS.--WSP 1008: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 10,200 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Oct. 2, 1951, at site 150 ft upstream, at different datum. REMARKS.--Estimated daily discharges: Nov. 11 to Apr. 23. Records good except for estimated daily discharges, which are fair. Flow regulated by Continental Reservoir, capacity, 26,720 acre-ft. No diversion upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARG | E, CUBIC | FEET PER | | | YEAR OCTOBER | 1991 T | О ЅЕРТЕІ | MBER 1992 | | | |--|---|--|-------------------------------------|---|-------------------------------------|-------------------------------------|---|---|-------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 191
23
15
14
13 | .25
.25
.05
.05 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | 85
88
44
59
68 | 59
68
70
58
54 | 20
20
20
20
20 | 23
23
20
17
74 | 14
14
14
17
19 | | 6
7
8
9
10 | 13
13
13
13 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | 68
58
53
62
58 | 53
53
53
52
53 | 20
9.6
1.2
1.2 | 108
109
111
110
157 | 19
15
11
10 | | 11
12
13
14
15 | 13
13
12
6.4
.15 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | 49
41
36
42
50 | 53
53
53
49
45 | 1.2
4.2
11
15 | 195
201
203
201
201 | 10
10
9.9
7.7 | | 16
17
18
19
20 | .15
.15
.15
.15 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | . 25
. 25
. 25
. 25
. 25 | 53
54
51
48
54 | 42
32
27
35
40 | 12
15
17
23
20 | 198
66
4.2
4.2
4.0 | .35
.38
.50
.50 | | 21
22
23
24
25 | .15
.15
.15
.15 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | 70
71
58
46
42 | 40
38
36
32
30 | 14
10
3.0
.65
7.7 | 3.8
4.0
4.2
4.2
8.6 | .35
17
33
36
19 | | 26
27
28
29
30
31 | .15
.15
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
.25
.25
.25 | .25
.25
.25
.25
.25 | .25
19
44
52
62 | 67
92
99
77
61
59 | 30
30
28
26
24 | 19
23
28
30
30 | 13
13
13
17
25
20 | 3.0
9.8
16
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 368.35
11.9
191
.15
731 | 7.00
.23
.25
.05 | 7.75
.25
.25
.25
.25 | 7.75
.25
.25
.25 | 7.25
.25
.25
.25 | 7.75
.25
.25
.25
.25 | 183.50
6.12
62
.25
364 | 1863
60.1
99
36
3700 | 1316
43.9
70
24
2610 | 457.95
14.8
30
.65
908 | 2155.2
69.5
203
3.8
4270 | 345.42
11.5
36
.35
685 | | STATIS | TICS OF MC | NTHLY MEAN | DATA FO | R WATER YE | ARS 1929 | - 1992 | , BY WATER Y | EAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.0
72.4
1979
.20
1989 | 7.92
100
1985
.10
1989 | 3.72
20.0
1942
.11
1989 | 3.85
20.0
1939
.12
1989 | 4.02
20.0
1939
.13
1989 | 4.60
20.0
1939
.14
1989 | 22.2
80.9
1985
.19
1984 | 87.7
209
1987
14.8
1980 | 83.4
166
1987
13.0
1977 | 68.0
234
1958
11.6
1963 | 46.9
216
1948
2.78
1978 | 18.8
88.1
1986
4.59
1946 | | SUMMAR | Y STATISTI | c s | FOR 1 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | | WATER Y | EARS 1929 | 9 - 1992 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL 10 PER | TOTAL MEAN T ANNUAL ME ANNUAL ME T DAILY MEA SEVEN-DAY TANEOUS PE TANEOUS PE TANEOUS LC RUNOFF (A CENT EXCEE CENT EXCEE | AN A | | 10154.67
27.8
257
a.05
.15
20140
86
.25
.16 | Jun 8
Nov 3
Jan 1 | | 6726.92
18.4
203
.05
.15
227
2.27
13340
55
.25 | Aug 13
Nov 3
Oct 15
Oct 1
Oct 1 | | 30.4
54.5
8.5
412
0.0
362
3.6
220000
94
11 | 5
May
0 Jun
5 Apr
May
6 May
0 Jun | 1948
1977
18 1987
22 1935
23 1984
8 1952
8 1952
22 1935 | a-Also occurred Nov 4. b-Also occurred Jan 23, 1935, and Sep 25-27, 1990. #### 08217500 RIO GRANDE AT WAGON WHEEL GAP, CO LOCATION.--Lat $37^{\circ}46^{\circ}01^{\circ}$, long $106^{\circ}49^{\circ}51^{\circ}$, in $NW^{1}/4NE^{1}/4$ sec.35, T.41 N., R.1 E., Mineral County, Hydrologic Unit 13010001, on right bank 250 ft upstream from private bridge, 0.4 mi upstream from Goose Creek, and 0.4 mi west of town of Wagon Wheel Gap. DRAINAGE AREA. -- 780 mi2. PERIOD OF RECORD .-- May 1951 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,431 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKs.--Estimated daily discharges: Nov. 15 to Apr. 3. Records good except for estimated daily discharges and those below 150 ft³/s, which are poor. Flow regulated by Santa Maria, Rio Grande, and Continental Reservoirs, combined capacity, 121,400 acre-ft. Diversions upstream from station for irrigation. Transmountain diversions to drainage area upstream from station from Colorado River basin (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published elsewhere in this report. | | | DISCHAR | GE, CUBIC | FEET PE | | WATER
Y MEAN | YEAR OCTOBE
VALUES | ER 1991 T | O SEPTE | 4BER 1992 | | | |------------------|--------------------------|--------------|--------------|---------------|------------|-----------------|-----------------------|----------------|---------------|--------------------|-------------|----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 340
339 | 126
137 | 120
118 | 106
98 | 113
119 | 127
139 | 127
127 | 1360
1380 | 1370
1290 |
1360
1170 | 386
354 | 550
521 | | 3 | 323 | 113 | 115 | 94 | 140 | 146 | 130 | 1350 | 1450 | 976 | 333 | 489 | | 4 | 307 | 126 | 118 | 110 | 124 | 160 | 132 | 1290 | 15 9 0 | 973 | 332 | 464 | | 5 | 298 | 130 | 117 | 123 | 117 | 156 | 136 | 1150 | 1730 | 936 | 359 | 429 | | 6
7 | 290
282 | 131
142 | 113
114 | 122
132 | 112
110 | 137
140 | 147
181 | 1150
1190 | 1900
1620 | 905
850 | 393
407 | 407
388 | | 8 | 265 | 122 | 117 | 121 | 123 | 150 | 198 | 1190 | 1520 | 850 | 432 | 366 | | وَ | 203 | 129 | 119 | 110 | 127 | 142 | 241 | 1240 | 1520 | 823 | 409 | 344 | | 10 | 199 | 134 | 122 | 115 | 130 | 120 | 267 | 1190 | 1430 | 784 | 366 | 328 | | 11 | 197 | 129 | 126 | 123 | 125 | 110 | 309 | 977 | 1740 | 766 | 378 | 314 | | 12 | 194 | 116 | 120 | 119 | 133 | 116 | 308 | 968 | 1790 | 673 | 384 | 300 | | 13
14 | 191
188 | 112
115 | 111
100 | 116
123 | 136
136 | 120
124 | 315
3 4 7 | 1020
1150 | 1870
1800 | 689
693 | 372
346 | 293
285 | | 15 | 196 | 120 | 104 | 126 | 120 | 126 | 360 | 1210 | 1700 | 582 | 330 | 300 | | 16 | 198 | 111 | 108 | 117 | 127 | 128 | 320 | 1320 | 1520 | 590 | 310 | 317 | | 17 | 193 | 127 | 112 | 116 | 113 | 130 | 304 | 1290 | 1440 | 593 | 316 | 293 | | 18 | 188 | 120 | 113 | 120 | 104 | 120 | 324 | 1300 | 1380 | 524 | 296 | 268 | | 19 | 185 | 114 | 120 | 99 | 108 | 116 | 300 | 1340 | 1540 | 496 | 270 | 328 | | 20 | 184 | 114 | 123 | 105 | 106 | 113 | 272 | 1600 | 1670 | 495 | 253 | 388 | | 21 | 182 | 120 | 118 | 112 | 130 | 121 | 354 | 1840 | 1500 | 459 | 245 | 328 | | 22 | 182 | 120 | 113 | 114 | 125 | 130 | 398 | 1730 | 1520 | 428 | 246 | 297 | | 23 | 175 | 115 | 108 | 117 | 130 | 130 | 373 | 1440 | 1580 | 378 | 289 | 284 | | 24
25 | 175
178 | 114
115 | 107 | 120 | 120 | 127
128 | 405 | 1500
1530 | 1560 | 49 7
652 | 488
656 | 285
272 | | | | | 110 | 117 | 133 | | 396 | | 1430 | | | | | 26 | 173 | 120 | 107 | 111 | 128 | 130 | 416 | 1660 | 1160 | 730 | 731 | 301 | | 27 | 173
179 | 120 | 104 | 103 | 124 | 130 | 497 | 1850 | 1120 | 658 | 723 | 314 | | 28
29 | 183 | 120
117 | 103
105 | 102
100 | 127
127 | 129
128 | 635
805 | 1890
1550 | 1010
988 | 616
511 | 676
624 | 266
215 | | 30 | 167 | 120 | 110 | 104 | 127 | 130 | 1050 | 1500 | 1160 | 445 | 582 | 246 | | 31 | 140 | | 112 | 110 | | 128 | | 1430 | | 420 | 574 | | | TOTAL | 66 6 7 | 3649 | 3507 | 3505 | 3567 | 4031 | 10174 | 42585 | 44898 | 21522 | 12860 | 10180 | | MEAN | 215 | 122 | 113 | 113 | 123 | 130 | 339 | 1374 | 1497 | 694 | 415 | 339 | | MAX | 340 | 142 | 126 | 132 | 140 | 160 | 1050 | 1890 | 1900 | 1360 | 731 | 550 | | MIN | 140 | 111 | 100 | 94 | 104 | 110 | 127 | 968 | 988 | 378 | 245 | 215 | | AC-FT | 13220 | 7240 | 6960 | 6950 | 7080 | 8000 | 20180 | 84470 | 89060 | 42690 | 25510 | 20190 | | STATIST | rics of Mo | NTHLY MEA | N DATA FO | R WATER Y | EARS 1951 | - 1992 | , BY WATER | YEAR (WY) | | | | | | MEAN | 262 | 151 | 108 | 99.4 | 104 | 128 | 368 | 1387 | 1904 | 1004 | 526 | 324 | | MAX | 542 | 482 | 228 | 178 | 175 | 251 | 677 | 2384 | 3259 | 2248 | 1405 | 841 | | (WY) | 1986 | 1986 | 1987 | 1986 | 1986 | 1972 | 1987 | 1987 | 1979 | 1957 | 1957 | 1970 | | MIN | 109
1957 | 76.6
1957 | 51.8
1957 | 55.6
1957 | 65.9 | 87.6
1977 | 169
1968 | 502
1977 | 549
1977 | 201
1977 | 159
1956 | 107
1 9 56 | | (WY) | | | | | 1978 | | | | 19// | | | | | SUMMARY | STATISTI | .CS | FOR 1 | 991 CALEN | IDAR YEAR | | FOR 1992 WA | TER YEAR | | WATER YE | ARS 1951 | - 1992 | | ANNUAL
ANNUAL | | | | 199349
546 | | | 167145
457 | | | 537 | | | | | ANNUAL M | EAN | | 340 | | | 45, | | | 906 | | 1987 | | | ANNUAL ME | | | | | | | | | 219 | | 1977 | | | DAILY ME | | | 2940 | Jun 9 | | 1900 | Jun 6 | | 4970 | Jun | 9 1985 | | | DAILY MEA | | | 100 | Dec 14 | | 94 | Jan 3 | | 46 | Dec | 9 1956 | | | SEVEN-DAY | | | 104 | Jan 27 | | 104 | Dec 28 | | 49 | Dec | 9 1956 | | | PANEOUS PE
PANEOUS PE | | | | | | 2040
3.61 | Jun 6
Jun 6 | | 5190
6.10 | Jun
Jun | 9 1985
9 1985 | | | RUNOFF (A | | | 395400 | | | 331500 | Juli 0 | | 388800 | Juli | , 1303 | | | CENT EXCEE | | | 1670 | | | 1370 | | | 1620 | | | | 50 PERC | CENT EXCEE | :DS | | 278 | | | 209 | | | 212 | | | | 90 PERC | ENT EXCEE | DS | | 110 | | | 113 | | | 90 | | | #### 08219500 SOUTH FORK RIO GRANDE AT SOUTH FORK, CO LOCATION.--Lat 37°39'25", long 106°38'55", in SW¹/4SE¹/4 sec.3, T.39 N., R.3 E., Rio Grande County, Hydrologic Unit 13010001, on left bank near U.S. Highway 160, 0.1 mi downstream from Church Creek, 0.9 mi southwest of village of South Fork, and 1.5 mi upstream from mouth. PERIOD OF RECORD. -- August 1910 to September 1922, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1312. REVISED RECORDS.--WSP 898: 1911 (M). WSP 1312: 1912, 1944 (M). WSP 1632: 1956-58 (P). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,221.79 ft above National Geodetic Vertical Datum of 1929. Aug. 9, 1910 to Mar. 28, 1915, nonrecording gage, and Mar. 29, 1915 to Sept. 30, 1922, water-stage recorder, at bridges 1 mi downstream at different datums. REMARKS.—Estimated daily discharges: Oct. 31 to Nov. 9, and Nov. 19 to Apr. 8. Records good except for estimated daily discharges, which are fair. Transmountain diversions from Colorado River basin to drainage area upstream from station through Treasure Pass ditch. Natural flow of stream affected by a few small diversions for irrigation, slight regulation by Beaver Creek Reservoir, capacity, 4,760 acre-ft, and several smaller storage reservoirs. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, exceeded all other observed floods at this location since at least 1873. Flood of June 29, 1927, reached a stage about 1 ft lower than that of Oct. 5, 1911, from information by local residents. | 111101 | imacion by | | | FEET PER | SECOND, | WATER | YEAR OCTOBE | R 1991 T | O SEPTEMBI | ER 1992 | | | |------------------|--------------------------|-----------------|-------------|-------------------------|------------------|---------------|---------------------|-----------------|---------------------|--------------------------------------|------------------|------------------| | | | | | | DAILY | MEAN | VALUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 86
81 | 50
48 | 48
44 | 52
48 | 52
54 | 54
56 | 100
100 | 697
690 | 538
467 | 174
161 | 86
80 | 137
142 | | 3 | 78 | 40 | 46 | 48 | 58 | 60 | 110 | 670 | 461 | 149 | 79 | 123 | | 4
5 | 76
73 | 42
45 | 50
50 | 58
52 | 56
52 | 64
60 | 120
120 | 580
548 | 473
555 | 138
130 | 83
82 | 108
100 | | 6 | 72 | 48 | 52 | 54 | 52 | 56 | 130 | 572 | 551 | 120 | 78 | 93 | | 7 | 70 | 48 | 50 | 58 | 52
52 | 56 | 140 | 639 | 5 3 7 | 107 | 80 | 87 | | 8 | 68 | 46 | 54 | 52 | 54 | 64 | 160 | 619 | 52 9 | 104
101 | 77 | 83
79 | | 9
10 | 67
66 | 48
50 | 52
52 | 48
50 | 54
54 | 56
54 | 183
207 | 651
588 | 4 8 9
447 | 90 | 76
69 | 75 | | 11 | 64 | 51 | 64 | 54 | 54 | 54 | 237 | 506 | 425 | 90 | 70 | 72 | | 12 | 64 | 45 | 58 | 54 | 54 | 58 | 255 | 533 | 443 | 103
109 | 61
72 | 70
68 | | 13
14 | 64
62 | 43
48 | 52
50 | 50
50 | 56
58 | 60
62 | 305
3 6 5 | 597
682 | 466
444 | 104 | 66 | 71 | | 15 | 60 | 50 | 50 | 52 | 52 | 64 | 354 | 718 | 406 | 88 | 61 | 99 | | 16
17 | 59 | 58 | 52 | 52 | 54 | 64 | 302 | 732 | 362 | 81 | 62
7 6 | 92
80 | | 18 | 5 8
57 | 56
53 | 56
56 | 54
50 | 56
50 | 68
66 | 289
302 | 762
800 | 323
311 | 7 6
77 | 64 | 73 | | 19 | 54 | 48 | 60 | 48 | 50 | 64 | 253 | 819 | 317 | 83 | 5 7 | 292 | | 20 | 50 | 44 | 56 | 50 | 52 | 64 | 220 | 921 | 316 | 81 | 54 | 227 | | 21
22 | 50
50 | 52
48 | 54
58 | 52
56 | 56
54 | 70
78 | 203
205 | 979
873 | 317
306 | 85
84 | 51
53 | 178
154 | | 23 | 51 | 44 | 54 | 58 | 56 | 74 | 200 | 814 | 277 | 81 | 129 | 143 | | 24
25 | 52
54 | 46 | 52
52 | 56
56 | 52 | 72
72 | 219
264 | 796
747 | 258
246 | 144
143 | 476
422 | 136
121 | | 26 | 54
55 | 54
56 | 52 | 54 | 56
52 | 78 | 303 | 787 | 234 | 177 | 309 | 107 | | 27 | 58 | 56 | 50 | 54 | 54 | 90 | 346 | 893 | 225 | 137 | 245 | 105 | | 28 | 66 | 62 | 50 | 52 | 54 | 90 | 448 | 829 | 212 | 123 | 195 | 101 | | 29
30 | 70
71 | 60
54 | 52
52 | 52
54 | 54
 | 90
90 | 559
635 | 743
688 | 199
187 | 106
98 | 166
150 | 93
90 | | 31 | 54 | | 54 | 54 | | 94 | | 616 | | 90 | 147 | | | TOTAL | 1960 | 1493 | 1632 | 1632 | 1562 | 2102 | 7634 | 22089 | 11321 | 3434 | 3776 | 3399 | | MEAN
MAX | 63.2
86 | 49.8
62 | 52.6
64 | 52.6
58 | 53.9
58 | 67.8
94 | 254
635 | 713
979 | 377
555 | 111
177 | 122
476 | 113
292 | | MIN | 50 | 40 | 44 | 48 | 50 | 54 | 100 | 506 | 187 | 76 | 51 | 68 | | AC-FT | 3890 | 2960 | 3240 | 3240 | 3100 | 4170 | 15140 | 43810 | 22460 | 6810 | 7490 | 6740 | | | | | | | ARS 1910 | - 1992 | , BY WATER Y | | | | | | | MEAN
MAX | 92.7
569 | 58.7
152 | 44.0
106 | 37.4
88.6 | 40.5
78.3 | 63.0 | 218
479 | 691
1282 | 836
1746 | 260
794 | 111
264 | 84.9
357 | | (WY) | 1912 | 1987 | 1912 | 1986 | 1986 | 131
1989 | 1962 | 1984 | 1979 | 1957 | 1957 | 1970 | | MIN | 32.1 | 23.9 | 18.0 | 13.6 | 18.2 | 21.5 | 85.2 | 211 | 113 | 58.5 | 43.1 | 23.6 | | (WY) | 1956 | 1961 | 1977 | 1977 | 1955 | 1 9 55 | 1955 | 1977 | 1977 | 1940 | 1978 | 1956 | | | STATISTIC | S | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE. | ARS
1910 | - 1992 | | ANNUAL
ANNUAL | | | | 79254
217 | | | 62034
169 | | | 212 | | | | HIGHEST | ANNUAL ME | | | 217 | | | 107 | | | 359 | | 1985 | | | ANNUAL MEA | | | 1 4 4 0 | | | 020 | M 21 | | 68.9 | M 2 | 1977 | | | DAILY MEA
DAILY MEAN | | | 1440
^a 36 | May 27
Jan 24 | | 979
40 | May 21
Nov 3 | | 298 0
10 | | 4 1984
6 1977 | | ANNUAL | SEVEN-DAY | MINIMUM | | 37 | Jan 30 | | 45 | Nov 2 | | 11 | Dec 3 | 1 1976 | | INSTANT. | ANEOUS PEA | K FLOW | | | | | 1040 | Aug 24 | | b8000 | | 5 1911 | | | ANEOUS PEA
RUNOFF (AC | | 1 | 57200 | | | 4.38
123000 | Aug 24 | | ^C 9.70
153 90 0 | Oct | 5 1911 | | 10 PERC | ENT EXCÉED | S | | 773 | | | 530 | | | 615 | | | | | ENT EXCEED
ENT EXCEED | | | 73
45 | | | 72
50 | | | 71
33 | | | | DO PERC | ENI EXCEED | 3 | | 43 | | | 30 | | | <i>_</i> 3 | | | a-Also occurred Jan 30, 31, and Feb 5. b-Present site and datum, from rating curve extended above 1500 $\rm ft^3/s.$ c-From floodmarks. #### 08220000 RIO GRANDE NEAR DEL NORTE, CO LOCATION.--Lat 37°41'22", long 106°27'38", in NW¹/4 sec.29, T.40 N., R.5 E., Rio Grande County, Hydrologic Unit 13010001, on right bank 20 ft downstream from county highway bridge, 5.0 mi upstream from Pinos Creek, and 6.0 mi west of Del Norte. DRAINAGE AREA. -- 1,320 mi², approximately. PERIOD OF RECORD.--June 1889 to current year. Monthly discharge only for some periods, published in WSP 1312. REVISED RECORDS.--WSP 763: Drainage area. WSP 1312: 1889, 1901, 1913-14. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,980.25 ft above National Geodetic Vertical Datum of 1929. Prior to May 16, 1908, nonrecording gage at site 4 mi downstream at different datum. May 16, 1908 to Nov. 8, 1910, nonrecording gages on bridge at present site and datum. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 2, Nov. 4, 5, 23, 24, and Dec. 2 to Mar. 21. Records good except for estimated daily discharges, which are fair. Small diversions upstream from station for irrigation. Flow regulated by Beaver Creek Reservoir since 1910, Santa Maria Reservoir since 1912, Rio Grande Reservoir since 1912, and Continental Reservoir since 1925, combined capacity, 126,100 acre-ft, and by several smaller reservoirs. Transmountain diversions to drainage area upstream from station from Colorado River basin (see elsewhere in this report). COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1873, that of Oct. 5, 1911, from information by local residents. | | | DISCHA | RGE, CUBI | C FEET P | ER SECOND,
DAIL | | YEAR OCTO | BER 1991 | TO SEPTEM | 1BER 1992 | | | |---|--|--|--|--|---|--|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 410
398
373
351
342 | 270
260
208
240
270 | 176
160
160
160
170 | 160
150
150
190
170 | 120
130
140
140
120 | 170
180
200
240
230 | 297
297
302
328
338 | 2140
2140
2130
1960
1790 | 2190
1950
2060
2320
2430 | 1580
1430
1140
1120
1070 | 522
473
445
444
451 | 748
713
664
611
563 | | 6
7
8
9 | 340
335
339
298
278 | 305
294
264
258
269 | 170
170
170
170
170 | 170
200
150
130
130 | 110
110
140
140
130 | 190
190
220
190
180 | 336
389
440
513
562 | 1770
1900
1870
1960
1900 | 2810
2510
2310
2340
2140 | 1020
974
952
940
890 | 490
516
522
527
463 | 533
505
471
436
411 | | 11
12
13
14
15 | 272
270
270
267
262 | 276
252
219
226
272 | 200
180
170
160
160 | 140
140
140
120
120 | 130
130
140
160
150 | 190
210
230
240
250 | 650
671
745
830
872 | 1590
1580
1670
1910
1990 | 2430
2510
2650
2530
2430 | 862
812
811
823
689 | 459
462
468
431
406 | 394
371
356
347
386 | | 16
17
18
19
20 | 274
270
280
277
257 | 252
242
251
227
164 | 160
180
180
200
190 | 120
130
120
110
120 | 140
160
140
130
150 | 240
270
260
250
240 | 773
722
753
683
596 | 2150
2170
2230
2290
2680 | 2140
1960
1870
1970
2190 | 671
668
610
594
590 | 379
393
370
334
309 | 414
381
340
569
697 | | 21
22
23
24
25 | 249
249
248
255
265 | 169
223
158
146
209 | 190
200
180
170
170 | 120
130
130
130
140 | 170
170
170
160
170 | 255
260
277
248
255 | 587
662
633
658
729 | 3000
2860
2520
2540
2520 | 2010
1970
2000
1970
1840 | 569
544
489
633
773 | 292
293
382
862
1260 | 554
494
460
453
427 | | 26
27
28
29
30
31 | 265
268
290
295
290
280 | 221
219
220
233
191 | 180
160
150
150
160
170 | 120
120
120
130
140
120 | 170
170
170
170 | 268
280
263
268
289
299 | 796
884
1110
1400
1660 | 2680
3020
3030
2620
2480
2360 | 1520
1440
1320
1220
1330 | 983
845
790
688
594
558 | 1130
1060
948
860
789
764 | 406
446
407
339
331 | | TOTAL
MEAN
MAX
MIN
AC-FT | 9117
294
410
248
18080 | 7008
234
305
146
13900 | 5336
172
200
150
10580 | 4260
137
200
110
8450 | 4230
146
170
110
8390 | 7332
237
299
170
14540 | 20216
674
1660
297
40100 | 69450
2240
3030
1580
137800 | 62360
2079
2810
1220
123700 | 25712
829
1580
489
51000 | 17504
565
1260
292
34720 | 14227
474
748
331
28220 | | MEAN
MAX
(WY)
MIN
(WY) | 485
2451
1912
134
1957 | 287
804
1917
114
1957 | 207
420
1926
105
1957 | 190
340
1912
89.8
1977 | YEARS 1890
198
300
1928
111
1977 | 271
646
1910
153
1965 | 779
1999
1895
317
1951 | R YEAR (W
2509
4449
1922
747
1977 | 3162
6240
1921
475
1934 | 1432
3451
1957
239
1934 | 797
1745
1957
190
1956 | 508
2001
1927
135
1956 | | ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL 10 PERC | | IEAN AN AN AN MINIMUM AK FLOW AK STAGE C-FT) DDS | | 991 CALE 306256 839 4540 146 157 607500 2850 339 170 | May 21
Nov 24
Jan 20 | | FOR 1992
246752
674
3030
110
120
3140
2000
332
140 | MATER YEA
May 2
Jan 1
Jan 1
May 2
40 May 2 | 8
9
4 | 907
1482
311
14000
69
76
518000 | | 1987
1977
6 1911
21 1902
29 1976
5 1911
5 1911 | a-Also occurred Feb 6 and 7. b-From rating curve extended above 12900 ft³/s. #### 08223000 RIO GRANDE AT ALAMOSA, CO LOCATION.—Lat 37°28'53", long 105°52'46", in SE¹/4NE¹/4 sec.4, T.37 N., R.10 E., Alamosa County, Hydrologic Unit 13010002, on right bank 0.2 mi northwest of city limits of Alamosa and 9 mi upstream from Alamosa Creek. DRAINAGE AREA. -- 1,710 mi2, approximately. PERIOD OF RECORD.--May 1912 to current year. Monthly discharge only for some periods, published in WSP 1312. REVISED RECORDS. -- WSP 928: Drainage area. WSP 1312: 1936(M). WSP 1732: 1951. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,532.66 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 7, 1915, nonrecording gages, and Apr. 7, 1915 to Nov. 5, 1935, water-stage recorder, at railroad and highway bridges in **Llamosa 1.0 to 2.5 mi downstream at different datums. Nov. 6, 1935 to June 30, 1942, water-stage recorder at present site at datum 1.00 ft, higher. REMARKS.—Estimated daily discharges: Oct. 30 to Nov. 2, Nov. 7, Nov. 23 to Mar. 23, May 10-12, Aug. 24-26, and Sept. 20, 21. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. COOPERATION. -- Records collected and computed by Colorado division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.——Flood in October 1911 with a stage of 0.2 ft lower than that of July 1, 1927, from floodmarks, probably exceeded that of July 1, 1927; and is probably the greatest since at least 1884, from information by local residents. | | | DISCHAR | GE, CUBIC | FEET PE | R SECOND, | WATER
Y MEAN | YEAR OCTOBE
VALUES | R 1991 T | SEPTEM | MBER 1992 | | | |---|----------------------------------|--|--|--|--------------------------|--
---|--|----------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 63 | 77 | 100 | 175 | 125 | 190 | 455 | 100 | 82 | 43 | 54 | 54 | | 2 | 58 | 84 | 90 | 180 | 130 | 185 | 443 | 78 | 60 | 74 | 98 | 48 | | 3 | 55 | 128 | 100 | 180 | 135 | 180 | 435 | 59 | 34 | 80 | 106 | 54 | | 4 | 52 | 142 | 100 | 175 | 155 | 190 | 433 | 57 | 39 | 47 | 81 | 72 | | 5 | 51 | 150 | 115 | 180 | 165 | 210 | 443 | 69 | 129 | 38 | 72 | 82 | | 6 | 45 | 198 | 130 | 190 | 160 | 240 | 443 | 53 | 119 | 36 | 59 | 84 | | 7 | 42 | 191 | 130 | 185 | 150 | 250 | 433 | 38 | 211 | 32 | 63 | 69 | | 8 | 41 | 198 | 140 | 185 | 145 | 235 | 460 | 73 | 77 | 25 | 76 | 54 | | 9 | 38 | 170 | 145 | 205 | 150 | 240 | 492 | 73 | 40 | 25 | 78 | 44 | | 10 | 37 | 159 | 140 | 180 | 165 | 255 | 543 | 59 | 90 | 27 | 89 | 40 | | 11 | 36 | 166 | 150 | 165 | 170 | 240 | 601 | 40 | 130 | 29 | 70 | 39 | | 12 | 29 | 157 | 150 | 165 | 165 | 240 | 673 | 23 | 276 | 25 | 54 | 41 | | 13 | 27 | 118 | 160 | 170 | 160 | 260 | 698 | 17 | 137 | 26 | 62 | 46 | | 14 | 26 | 87 | 150 | 175 | 165 | 295 | 760 | 16 | 109 | 28 | 64 | 48 | | 15 | 26 | 79 | 165 | 165 | 170 | 345 | 487 | 19 | 60 | 33 | 75 | 47 | | 16 | 26 | 88 | 170 | 150 | 180 | 345 | 477 | 25 | 39 | 51 | 57 | 39 | | 17 | 26 | 112 | 175 | 150 | 175 | 330 | 355 | 25 | 33 | 52 | 51 | 56 | | 18 | 28 | 114 | 175 | 150 | 170 | 325 | 196 | 22 | 37 | 53 | 44 | 57 | | 19 | 27 | 114 | 190 | 155 | 180 | 345 | 115 | 21 | 60 | 55 | 40 | 56 | | 20 | 28 | 112 | 190 | 140 | 165 | 380 | 103 | 23 | 100 | 5 6 | 37 | 9 3 | | 21 | 28 | 97 | 210 | 140 | 165 | 420 | 87 | 34 | 200 | 56 | 33 | 380 | | 22 | 29 | 90 | 205 | 145 | 175 | 495 | 78 | 43 | 125 | 58 | 30 | 181 | | 23 | 31 | 115 | 205 | 140 | 190 | 490 | 110 | 22 | 83 | 84 | 31 | 77 | | 24 | 35 | 140 | 205 | 145 | 185 | 430 | 97 | 28 | 85 | 94 | 52 | 79 | | 25 | 38 | 130 | 190 | 140 | 185 | 404 | 77 | 73 | 99 | 136 | 235 | 66 | | 26
27
28
29
30
31 | 41
43
45
43
45
55 | 140
160
170
150
150 | 185
180
185
185
165
170 | 140
145
135
140
140
130 | 180
185
185
190 | 404
424
443
411
431
439 | 86
83
82
122
128 | 71
62
118
77
65
77 | 77
63
61
52
43 | 232
211
88
66
48
49 | 650
307
159
88
71
66 | 58
47
42
43
41 | | TOTAL | 1194 | 3986 | 4950 | 4960 | 4820 | 10071 | 9995 | 1560 | 2750 | 1957 | 3052 | 2137 | | MEAN | 38.5 | 133 | 160 | 160 | 166 | 325 | 333 | 50.3 | 91.7 | 63.1 | 98.5 | 71.2 | | MAX | 63 | 198 | 210 | 205 | 190 | 495 | 760 | 118 | 276 | 232 | 650 | 380 | | MIN | 26 | 77 | 90 | 130 | 125 | 180 | 77 | 16 | 33 | 25 | 30 | 39 | | AC-FT | 2370 | 7910 | 9820 | 9840 | 9560 | 19980 | 19830 | 3090 | 5450 | 3880 | 6050 | 4240 | | | | | | | | | , BY WATER Y | | | | | | | MEAN | 155 | 220 | 209 | 186 | 211 | 243 | 229 | 441 | 775 | 235 | 112 | 121 | | MAX | 1207 | 908 | 483 | 335 | 360 | 522 | 1198 | 3027 | 5598 | 1514 | 973 | 1457 | | (WY) | 1917 | 1917 | 1987 | 1922 | 1986 | 1987 | 1987 | 1987 | 1921 | 1917 | 1916 | 1927 | | MIN | 7.26 | 14.7 | 23.5 | 24.8 | 24.1 | 13.0 | 11.9 | 27.4 | 36.7 | 18.6 | 6.58 | 9.57 | | (WY) | 1957 | 1935 | 1957 | 1957 | 1957 | 1957 | 1933 | 1931 | 1977 | 1977 | 1913 | 1959 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALEN | DAR YEAR | | FOR 1992 WAT | ER YEAR | | WATER YE | ARS 1912 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | | 70429
193
1160
16
21
139700
366
165
42 | Apr 9
Sep 7
Sep 1 | | 760
16
21
832
94.02
102000
312
104
34 | Apr 14
May 14
May 13
Aug 26
Aug 26 | | 258
873
54.4
10600
1.0
2.4
a14000
8.37
187000
465
150
21 | May 1
Oct 2
Jul | 1921
1964
1 1927
19 1950
24 1933
1 1927
1 1927 | a-Site and datum then in use. b-Maximum gage height, 4.25 ft, backwater from ice. c-Maximum gage height, 10.62 ft, Jun 20, 1949. #### CLOSED BASIN IN SAN LUIS VALLEY, CO #### 08227000 SAGUACHE CREEK NEAR SAGUACHE, CO LOCATION.--Lat 38°09'48", long 106°17'24", in SE¹/4SE¹/4 sec.10, T.45 N., R.6 E., Saguache County, Hydrologic Unit 13010004, on left bank 0.2 mi downstream from Middle Creek and 10 mi northwest of Saguache. PERIOD OF RECORD.--August 1910 to September 1912, June 1914 to current year. Monthly discharge only for some periods, published in WSP 1312 REVISED RECORDS.--WSP 1242: 1948-49. WSP 1312: 1912, 1934 (M), 1942 (M). WSP 1923: 1951. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is about 8,030 ft above National Geodetic Vertical datum of 1929, from topographic map. Prior to Apr. 9, 1934, at sites 0.8 mi downstream at different datums. Apr. 10, 1934 to Nov. 20, 1966, at present site at datum 1.00 ft, higher. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 10, Nov. 14, Nov. 20 to Mar. 10, Mar. 12, 13, and Mar. 17. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions from Colorado River basin to drainage area above station through Tarbell ditch (see elsewhere in this report), and diversions above station for irrigation. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCURDED CHARLEST BED SECOND WATER VERD OCTOBER 1881 TO SERTEMBER 1882 | | | DISCHARG | GE, CUBI | C FEET PE | | WATER YE
MEAN VA | AR OCTOBER
LUES | 1991 TO | SEPTEMBE | R 1992 | | | |----------|-----------|------------|------------|------------|-----------|---------------------|--------------------|------------|----------|---|------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 37 | 22 | 18 | 25 | 25 | 22 | 42 | 82 | 126 | 56 | 50 | 82 | | 2 | 35 | 23 | 18 | 20 | 25 | 24 | 41 | 84 | 118 | 52 | 48 | 76 | | 3 | 32 | 22 | 20 | 19 | 30 | 24 | 42 | 86 | 103 | 48 | 48 | 69 | | 4 | 30 | 28 | 21 | 27 | 26 | 29 | 47 | 88 | 100 | 41 | 50 | 67 | | 5 | 29 | 31 | 24 | 24 | 23 | 24 | 48 | 87 | 103 | 38 | 52 | 64 | | • | | 31 | 2.1 | | 23 | | | 0, | 103 | 30 | | • | | 6 | 29 | 31 | 24 | 25 | 22 | 24 | 49 | 85 | 112 | 36 | 60 | 63 | | 7 | 30 | 34 | 23 | 32 | 22 | 22 | 53 | 88 | 113 | 40 | 75 | 66 | | 8 | 30 | 31 | 24 | 23 | 24 | 23 | 55 | 88 | 114 | 50 | 63 | 62 | | 9 | 29 | 32 | 25 | 24 | 25 | 27 | 61 | 89 | 134 | 54 | 62 | 59 | | 10 | 29 | 40 | 23 | 20 | 26 | 22 | 66 | 8 6 | 134 | 46 | 56 | 55 | | 1.1 | 29 | 40 | 20 | 2.2 | 2.4 | 2.3 | 67 | 79 | 244 | 4.0 | 58 | 53 | | 11 | | 40 | 30 | 23 | 24 | 21 | 67 | | 144 | 46 | | | | 12 | 29 | 33 | 24 | 23 | 24 | 26 | 63 | 77 | 148 | 56 | 59 | 53 | | 13 | 29 | 24 | 23 | 23 | 24 | 31 | 68 | 79 | 123 | 72 | 57 | 49 | | 14 | 30 | 25 | 21 | 20 | 29 | 34 | 71 | 78 | 107 | 67 | 53 | 52 | | 15 | 30 | 45 | 22 | 20 | 24 | 33 | 73 | 84 | 99 | 56 | 53 | 57 | | 16 | 30 | 41 | 22 | 20 | 24 | 33 | 67 | 82 | 90 | 52 | 50 | 60 | | 17 | 30 | 37 | 2 6 | 22 | 27 | 31 | 61 | 83 | 86 | 46 | 49 | 56 | | 18 | 28 | 36 | 26 | 21 | 22 | 28 | 61 | 88 | 88 | 43 | 47 | 54 | | 19 | 29 | 23 | 31 | 18 | 19 | 28 | 56 | 88 | 93 | 48 | 40 | 58 | | 20 | 29 | 21 | 28 | 20 | 22 | 27 | 48 | 101 | 91 | 51 | 37 | 68 | | | | | | | | | | | | | | | | 21 | 29 | 22 | 26 | 22 | 25 | 31 | 44 | 120 | 91 | 54 | 36 | 60 | | 22 | 29 | 21 | 28 | 24 | 24 | 31 | 45 | 105 | 88 | 56 | 40 | 53 | | 23 | 30 | 20 | 24 | 26 | 25 | 32 | 46 | 100 | 85 | 58 | 48 | 48 | | 24 | 31 | 20 | 23 | 24 | 24 | 31 | 45 | 100 | 82 | 92 | 92 | 45 | | 25 | 31 | 25 | 23 | 24 | 25 | 31 | 49 | 101 | 89 | 111 | 142 | 45 | | 26 | 29 | 25 | 23 | 23 | 21 | 38 | 55 | 120 | 89 | 136 | 118 | 44 | | 27 | 28 | 24 | 21 | 24 | 24 | 38 | 57 | 141 | 73 | 89 | 104 | 42 | | | | 24 | | | 24
24 | | | 141 | 73
65 | 80 | 87 | 46 | | 28 | 32 | 28 | 20 | 24
24 | | 38 | 62 | | | 68 | 79 | 48 | | 29
30 | 25 | 24 | 21 | | 22 | 41 | 64
74 | 130
123 | 61
61 | 64 | 77 | 35 | | 31 | 22
24 | | 22
26 | 25
25 | | 46
46 | | 136 | | 56 | 78 | | | 31 | 24 | | 26 | 25 | | 40 | | 130 | | 36 | 76 | | | TOTAL | 913 | 852 | 730 | 714 | 701 | 936 | 1680 | 3022 | 3010 | 1862 | 1968 | 1689 | | MEAN | 29.5 | 28.4 | 23.5 | 23.0 | 24.2 | 30.2 | 56.0 | 97.5 | 100 | 60.1 | 63.5 | 56.3 | | MAX | 37 | 45 | 31 | 32 | 30 | 46 | 74 | 144 | 148 | 136 | 142 | 82 | | MIN | 22 | 20 | 18 | 18 | 19 | 21 | 41 | 77 | 61 | 36 | 36 | 35 | | AC-FT | 1810 | 1690 | 1450 | 1420 | 1390 | 1860 | 3330 | 5990 | 5970 | 3690 | 3900 | 3350 | | | | | | | | | | | | | | | | STATIST | ICS OF MC | NTHLY MEAN | DATA FO | OR WATER S | EARS 1910 | - 1992, | BY WATER Y | EAR (WY) | | | | | | MEAN | 44.5 | 35.9 | 25.7 | 23.0 | 26.6 | 38.5 | 70.0 | 159 | 176 | 94.9 | 73.9 | 51.1 | | MAX | 108 | 60.1 | 40.0 | 40.3 | 41.4 | 70.0 | 257 | 437 | 474 | 299 | 198 | 194 | | (WY) | 1912 | 1930 | 1928 | 1986 | 1986 | 1924 | 1924 | 1924 | 1957 | 1957 | 1929 | 1929 | | MIN | 20.6 | 16.4 | 13.9 | 12.2 | 13.4 | 21.5 | 34.2 | 34.8 | 19.4 | 20.5 | 23.3 | 15.0 | | (WY) | 1979 | 1978 | 1978 | 1978 | 1966 | 1964 | 1978 | 1981 | 1963 | 1940 | 1940 | 1956 | | | | | | | | | | | | | | | | SUMMARY | STATISTI | .CS | FOR | 1991 CALEN | IDAR YEAR | F | OR 1992 WAT | ER YEAR | | WATER YE | urs 1910 | - 1992 | | ANNUAL | TOTAL | | | 19158 | | | 18077 | | | | | | | ANNUAL | | | | 52.5 | | | 49.4 | | | 68.2 | | | | HIGHEST | ANNUAL M | EAN | | | | | | | | 122 | | 1924 | | LOWEST | ANNUAL ME | AN | | | | | | |
 28.0 | | 1940 | | | DAILY ME | | | 189 | May 21 | | 148 | Jun 12 | | 678 | Jun | 7 1957 | | | DAILY MEA | | | a
18 | Dec 1 | | a 18 | Dec 1 | | 7 0 | Tan | 7 1977 | | | SEVEN-DAY | | | 21 | Jan 20 | | 20 | Jan 14 | | 8.3
b ₇₉₀
d _{3.85}
49410 | Jan | 6 1977 | | | ANEOUS PE | | | | Jun 20 | | 160 | Jun 11 | | bzan | Aug | 3 1964 | | | | | | | | | 160 35 | | | 'ďy "₌ | Aug
Aug | | | | ANEOUS PE | | | 20000 | | | 2.35 | Jun 11 | | 3.85 | Aug | 3 1964 | | | RUNOFF (A | | | 38000 | | | 35860 | | | 49410 | | | | | ENT EXCEE | | | 119 | | | 91 | | | 150 | | | | | ENT EXCEE | | | 35 | | | 40 | | | 41 | | | | 90 PERC | ENT EXCEE | ເບຣ | | 23 | | | 22 | | | 21 | | | a-Also occurred Dec 2. b-Present datum, from rating curve extended above 83 ft³/s. c-Maximum gage height, 2.85 ft, Jan 24, backwater from ice. d-Maximum gage height, 3.94 ft, May 20, 1970. #### 08240000 RIO GRANDE ABOVE MOUTH OF TRINCHERA CREEK, NEAR LASAUSES, CO LOCATION.--Lat 37°18'58", long 105°44'32", in sec.35, T.36 N., R.11 E., Conejos County, Hydrologic Unit 13010002, on right bank 0.2 mi upstream from Trinchera Creek, 3.2 mi north of Lasauses, and 13 mi southeast of Alamosa. DRAINAGE AREA.--5,740 mi², approximately, includes 2,940 mi² in closed basin in northern part of San Luis Valley, CO. PERIOD OF RECORD.--May 1936 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,500 ft, estimated from nearby level lines. REMARKS.--Estimated daily discharges: Oct. 30 to Nov. 9, Nov. 23, 24, and Nov. 29 to Mar. 27. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals and diversions for irrigation, and return flow from irrigated areas. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. | | | DISCHARGE | c, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTO | BER 1991 | TO SEPTEM | MBER 1992 | | | |---------------|------------------------|-------------|------------|-----------------|------------|-----------------|-------------------|------------|------------|------------|------------|------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 61 | 115 | 215 | 230 | 165 | 235 | 818 | 210 | 354 | 117 | 92 | 86 | | 2 | 58 | 180 | 155 | 235 | 135 | 235 | 837 | 208 | 338 | 117 | 92 | 78 | | 3
4 | 54 | 195 | 165 | 235 | 170
175 | 225
220 | 845
856 | 204
205 | 320
286 | 127
115 | 111
105 | 75
78 | | 5 | 52
52 | 220
230 | 190
180 | 225
230 | 200 | 225 | 854 | 190 | 264 | 99 | 99 | 79 | | | _ | | | | | _ | | | | 91 | 95 | 83 | | 6
7 | 52
50 | 230
290 | 195
200 | 235
215 | 205
205 | 245
270 | 840
797 | 210
172 | 286
294 | 81 | 93
92 | 81 | | 8 | 50 | 295 | 200 | 220 | 205 | 300 | 762 | 162 | 344 | 82 | 94 | 76 | | 9 | 50 | 242 | 220 | 225 | 210 | 305 | 758 | 165 | 304 | 77 | 95 | 71 | | 10 | 50 | 228 | 225 | 235 | 215 | 315 | 764 | 165 | 327 | 72 | 95 | 63 | | 11 | 57 | 237 | 210 | 225 | 215 | 315 | 809 | 163 | 392 | 71 | 99
94 | 63 | | 12
13 | 63
62 | 247
235 | 210
220 | 215
225 | 220
225 | 315
325 | 845
889 | 156
139 | 432
522 | 72
71 | 94
86 | 61
5 6 | | 14 | 59 | 210 | 220 | 235 | 215 | 360 | 910 | 137 | 394 | 71 | 81 | 55 | | 15 | 58 | 192 | 215 | 235 | 225 | 405 | 884 | 135 | 368 | ว่า | 86 | 50 | | 16 | 56 | 196 | 220 | 210 | 220 | 480 | 688 | 131 | 314 | 75 | 90 | 43 | | 17 | 56 | 208 | 215 | 205 | 220 | 470 | 647 | 130 | 262 | 80 | 88 | 39 | | 18 | 66 | 226 | 230 | 205 | 220 | 435 | 527 | 131 | 234 | 79 | 87 | 45 | | 19 | 73 | 230 | 220 | 205 | 225 | 435 | 413 | 136 | 214 | 82 | 75 | 55 | | 20 | 68 | 225 | 230 | 205 | 225 | 450 | 357 | 137 | 239 | 82 | 71 | 61 | | 21 | 65 | 215 | 245 | 185 | 215 | 525 | 306 | 138 | 26 | 79 | 67 | 95 | | 22 | 65 | 205 | 245 | 195 | 225 | 620 | 298 | 138 | 301 | 79 | 68 | 159 | | 23
24 | 67
67 | 125
180 | 245
255 | 190
185 | 225
230 | 775
755 | 281
280 | 149
154 | 254
202 | 89
108 | 69
72 | 107
87 | | 25 | 79 | 206 | 250 | 185 | 230 | 745 | 251 | 165 | 196 | 119 | 86 | 86 | | | | | | | | | | | | | | | | 26
27 | 83
85 | 202
213 | 245
235 | 180
180 | 225
220 | 765
785 | 224
218 | 231
233 | 198
167 | 146
193 | 234
321 | 86
81 | | 28 | 84 | 232 | 235 | 185 | 225 | 748 | 207 | 256 | 149 | 154 | 192 | 76 | | 29 | 91 | 242 | 210 | 185 | 230 | 752 | 198 | 302 | 143 | 113 | 134 | 73 | | 30 | 79 | 210 | 240 | 185 | | 758 | 217 | 282 | 126 | 99 | 107 | 70 | | 31 | 95 | | 215 | 185 | | 792 | | 298 | | 87 | 95 | | | TOTAL | 2007 | 6461 | 6745 | 6490 | 6115 | 14585 | 17580 | 5632 | 8485 | 3004 | 3272 | 2218 | | MEAN | 64.7 | 215 | 218 | 209 | 211 | 470 | 586 | 182 | 283 | 96.9 | 106 | 73.9 | | XAM | 95 | 295 | 255 | 235 | 230 | 792 | 910 | 302 | 522 | 193 | 321 | 159 | | MIN | 50 | 115 | 155 | 180 | 135 | 220 | 198 | 130 | 126 | 71 | 67 | 39 | | AC-FT | 3980 | 12820 1 | 3380 | 12870 | 12130 | 28930 | 34870 | 11170 | 16830 | 5960 | 6490 | 4400 | | STATIST | ICS OF MO | ONTHLY MEAN | DATA FO | R WATER YE | ARS 1936 | - 1992 | , BY WATE | R YEAR (W | () | | | | | MEAN | 136 | 235 | 220 | 194 | 227 | 303 | 300 | 466 | 670 | 242 | 105 | 94.9 | | XAM | 1113 | 1017 | 687 | 351 | 421 | 697 | 1497 | 3407 | 2746 | 1461 | 561 | 566 | | (WY) | 1942 | | 1942 | 1987 | 1986 | 1987 | 1987 | 1987 | 1948 | 1986 | 1957 | 1970 | | MIN | 7.45 | | 36.4 | 36.5 | 62.3 | 38.2 | 28.0 | 7.39 | 4.41 | 1.42 | 1.68 | .85 | | (WY) | 1957 | | 1957 | 1957 | 1957 | 1957 | 1957 | 1963 | 1964 | 1940 | 1940 | 1956 | | SUMMARY | STATIST | CS | FOR 1 | 991 CALEND | AR YEAR | | FOR 1992 | WATER YEA | ₹ | WATER YEA | RS 1936 | - 1992 | | ANNUAL | | | | 87723 | | | 82594 | | | 200 | | | | ANNUAL | | (DAN | | 240 | | | 226 | | | 268
950 | | 1987 | | | ANNUAL M
ANNUAL ME | | | | | | | | | 49.0 | | 1964 | | | DAILY ME | | | 1060 | Apr 10 | | 910 | Apr 1 | 1 | 5380 | Jun 2 | 22 1949 | | | DAILY MEA | | | a ₅₀ | Oct 7 | | 39 | Sep 13 | | .40 | | 4 1940 | | | | MINIMUM | | 51 | Oct 4 | | 49 | Sep 13 | 3 | 6 0 | | 11 1956 | | INSTANT | ANEOUS PE | AK FLOW | | | , | | 945 | Apr 1 | 5 | ~5470 | Jun 2 | 1 1949 | | | | AK STAGE | | | | | | 51 Apr 1 | | 9.50 | Jun 2 | 21 1949 | | | RUNOFF (A | | | 174000 | | | 163800 | | | 193800 | | | | | ENT EXCER | | | 434 | | | 419 | | | 500 | | | | | ENT EXCEE
ENT EXCEE | | | 210
75 | | | 205
6 9 | | | 164
23 | | | | JU FERC | ENT EVCC | | | , , | | | 69 | | | 23 | | | a-Also occurred Oct 8-10. b-From rating curve extended above 3600 ft³/s. #### 08244500 PLATORO RESERVOIR AT PLATORO, CO LOCATION.--Lat 37°21'07", long 106°32'38", Conejos County, Hydrologic Unit 13010005, on right bank in valvehouse, 400 ft downstream from Platoro Dam on Conejos River and 0.7 mi west of Platoro. DRAINAGE AREA. -- 40 mi², approximately. PERIOD OF RECORD. -- November 1951 to current year. REVISED RECORDS. -- WDR CO-85-1: 1984. GAGE.--Nonrecording gage. Datum of gage is 9,911.5 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above NGVD. Prior to June 9, 1955, nonrecording gage at present site and datum. June 9, 1955 to Sept. 30, 1959, water-stage recorder in gate chamber at dam for elevations above 9,921.0 ft, at same datum. REMARKS.--Reservoir is formed by an earth and rockfill dam and dikes. Dam completed Dec. 9, 1951; storage began Nov. 7. 1951. Capacity of reservoir (based on revised capacity table put in use Jan. 1. 1975), 59,570 acre-ft, between elevations 9,911.5 ft, sill of trashrack at outlet, and 10,034.0 ft, crest of spillway. No dead storage. Reservoir is used for irrigation and flood control. Figures given are usable contents. COOPERATION .-- Records provided by State of Colorado, Division of Water Resources. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 61,420 acre-ft, June 9, 11, 1958, elevation, 10,035.5 ft; no contents for long periods in 1952-56. EXTREMES FOR CURRENT YEAR.--Maximum contents, about 44,950 acre-ft, June 27, elevation, 10,017.86 ft; minimum contents, about 18,000 acre-ft, Nov. 1, elevation, 9,979.36 ft. MONTHEND ELEVATION IN FEET NGVD AND CONTENTS, AT 0800, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | | | | | | | | | | | | Е | Dat | :e | | | | | | | | | | | | | | Elevation | Contents
(acre-feet) | Change in contents (acre-feet) | |------------------------------|--|---|-----|---|---|---|---|---|---|---|---|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|--| | Nov. | 30
31
30
31 | | • • | : | : | : | : | : | • | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | : | 9,981.6
9,979.4
9,980.6
* 9,981.2 | 19,260
18,000
18,690
19,000 | -1,260
+690
+310 | | CAL | YR | 1 | 991 | • | | | | | | | | | | | | | | | • | | • | | | | | • | | | +9,760 | | Feb. Mar. Apr. May June July | 31
29
31
30
31
30
31
31 | | • • | • | | • | : | | : | | | : | | : | | | : | : | : | | | | | | • | | * 9,982.8
* 9,983.0
* 9,983.3
9,988.5
10,004.3
10,017.2
10,005.4
10,002.5
9,998.5 | 19,900
20,010
20,210
23,330
34,080
44,430
34,890
32,790
29,900 | +900
+110
+200
+3,120
+10,750
+10,350
-9,540
-2,100
-2,890 | | WTR | YR | 1 | 992 | | | | | | | | | | |
| | | | | | | | | | | | | | | +10,640 | ^{*-}Elevation and contents for these months estimated. #### 08245000 CONEJOS RIVER BELOW PLATORO RESERVOIR, CO LOCATION.--Lat 37°21'18", long 106°32'37", Conejos County, Hydrologic Unit 13010005, on left bank 1,100 ft downstream from valvehouse for Platoro Reservoir and 0.7 mi northwest of Platoro. DRAINAGE AREA. -- 40 mi², approximately. PERIOD OF RECORD. -- May 1952 to current year. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is 9,866.60 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). REMARKS.--Estimated daily discharges: Oct. 30, 31, Nov. 3 to May 4, and July 21. Records good except for estimated daily discharges, which are fair. No diversion upstream from station. Flow completely regulated by Platoro Reservoir (station 08244500). COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER
Y MEAN | YEAR OCTOR | BER 1991 T | O SEPTEME | BER 1992 | | | |---|--|--|---|--------------------------------------|-------------------------------------|--------------------------------------|--|-------------------------------------|------------------------------------|--|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 21
27
42
55
47 | 3.8
4.1
3.8
3.6
3.8 | 3.8
3.8
3.8
3.8
3.8 | 3.8
3.8
3.9
3.9 | 4.2
4.2
4.2
4.2
4.3 | 4.6
4.6
4.6
4.6
4.6 | 4.9
4.9
5.0
5.0 | 5.3
5.3
5.3
44
177 | 47
47
47
84
112 | 339
272
228
228
228 | 78
78
91
87
88 | 122
101
75
81
89 | | 6
7
8
9
10 | 47
42
36
36
36 | 3.8
3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 3.9
3.9
3.9
3.9 | 4.3
4.3
4.3
4.3 | 4.6
4.6
4.6
4.7
4.7 | 5.0
5.0
5.0
5.0 | 210
234
167
105
105 | 113
114
114
114
90 | 303
408
410
388
333 | 101
101
101
101
83 | 89
89
79
69
65 | | 11
12
13
14
15 | 37
37
37
37
37 | 3.8
3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.0 | 4.3
4.3
4.4
4.4 | 4.7
4.7
4.7
4.7 | 5.0
5.1
5.1
5.1
5.1 | 168
172
144
144
178 | 72
73
73
73
73 | 297
297
317
352
340 | 81
101
111
124
124 | 60
60
60
74
96 | | 16
17
18
19
20 | 37
37
37
37
37 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 4.0
4.0
4.0
4.1
4.1 | 4.4
4.4
4.4
4.4 | 4.7
4.7
4.8
4.8
4.8 | 5.1
5.1
5.1
5.1
5.1 | 202
203
203
204
205 | 73
100
181
223
242 | 331
337
324
323
276 | 124
124
115
116
129 | 102
81
70
78
78 | | 21
22
23
24
25 | 20
5.9
3.8
3.8
5.3 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 4.1
4.1
4.1
4.1 | 4.4
4.5
4.5
4.5
4.5 | 4.8
4.8
4.8
4.8 | 5.2
5.2
5.2
5.2
5.2 | 202
202
205
205
205 | 243
242
254
202
173 | 220
191
177
164
148 | 124
124
124
174
231 | 69
48
45
68
68 | | 26
27
28
29
30
31 | 6.5
6.5
5.0
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8 | 3.8
3.8
3.8
3.8
3.8 | 4.1
4.2
4.2
4.2
4.2 | 4.5
4.5
4.5
 | 4.9
4.9
4.9
4.9
4.9 | 5.2
5.2
5.2
5.2
5.3 | 138
68
91
75
47
47 | 213
243
242
310
364 | 147
136
136
146
135
108 | 143
73
140
140
140
132 | 68
68
68
68 | | TOTAL
MEAN
MAX
MIN
AC-FT | 827.2
26.7
55
3.8
1640 | 114.3
3.81
4.1
3.8
227 | 117.8
3.80
3.8
3.8
3.8
234 | 124.5
4.02
4.2
3.8
247 | 126.8
4.37
4.5
4.2
252 | 146.9
4.74
4.9
4.6
291 | 152.8
5.09
5.3
4.9
303 | 4365.9
141
234
5.3
8660 | 4551
152
364
47
9030 | 8039
259
410
108
15950 | 3603
116
231
73
7150 | 2256
75.2
122
45
4470 | | STATIST | CICS OF MC | NTHLY MEAN | | R WATER YI | EARS 1952 | - 1992 | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 35.8
158
1958
1.92
1957 | 72.0
405
1966
2.00
1957 | 11.4
50.0
1986
2.00
1957 | 11.9
50.0
1986
3.20
1991 | 12.8
102
1983
3.00
1957 | 11.1
27.5
1986
3.00
1957 | 49.3
204
1980
3.00
1957 | 244
492
1974
16.9
1958 | 341
609
1982
87.0
1977 | 209
610
1952
24.9
1972 | 84.2
429
1952
9.19
1972 | 40.1
164
1982
3.34
1956 | | SUMMARY | STATISTI | cs | FOR 1 | 991 CALENI | OAR YEAR | | FOR 1992 W | ATER YEAR | | WATER YE | ARS 1952 | - 1992 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE RUNOFF (A | AN
AN
MINIMUM
AK FLOW
AK STAGE | | 31972.9
87.6
629
3.2
3.2 | May 16
Jan 1
Jan 1 | | 24425.2
66.7
410
33.8
3.8
416
2.7
48450 | Jul 8
Oct 23
Nov 3
Jul 7 | | 92.4
137
44.3
1150
.00
.16
1160
C4.02 | Oct 1
Nov | 1986
1977
28 1957
16 1955
15 1955
1 1957
1 1957 | | 50 PERC | ENT EXCES
ENT EXCES | DS | | 247
27
3.2 | | | 205
5.2
3.8 | | | 328
17
6. 0 | | | a-Many days. b-Also occurred Oct 17-20, 1955. c-Maximum gage height, 4.29 ft, Jun 15, 1958. #### 08246500 CONEJOS RIVER NEAR MOGOTE, CO LOCATION.--Lat 37°03'14", long 106°11'13", in SE¹/4SE¹/4 sec.34, T.33 N., R.7 E., Conejos County, Hydrologic Unit 13010005, on left bank 75 ft downstream from bridge on State Highway 174, 0.4 ml downstream from Fox Creek, 5.3 ml west of Mogote, and 10 ml west of Antonito. DRAINAGE AREA . -- 282 mi2. PERIOD OF RECORD.--April 1903 to October 1905, October 1911 to current year. Monthly discharge only for some periods, published in WSP 1312. Records for March 1900 at site 5.5 ml upstream and May 1905 to September 1911 (some missing periods most years) at site 3.2 ml upstream not equivalent to present site due to inflow. REVISED RECORDS.--WSP 898: 1911(M). WSP 1312: 1903-5, 1913. See also PERIOD OF RECORD. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,273.69 ft, Colorado State Highway datum. Apr. 17, 1903 to Oct. 31, 1905, nonrecording gage 400 ft downstream, at different datum. Oct. 5, 1911 to early 1915, nonrecording gage, and from early 1915 to Oct. 1, 1988, water-stage recorder at site 100 ft upstream, at datum 2.15 ft, lower. Since Oct. 1, 1988, at present site and datum. REMARKS.--Estimated daily discharges: Nov. 3, Dec. 1 to Mar. 3, and Aug. 24, 25. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 500 acres of hay meadows upstream from station. Some regulation by Platoro Reservoir (station 08244500). COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1854, that of Oct. 5, 1911, from information by local residents. | | | DISCHA | RGE, CUBIC | FEET | | | YEAR OCTOBER | 1991 | то ѕертемві | ER 1992 | | | |---------------|---------------------|----------------------|--------------------------|------------------|------------------|--------------|---------------|-----------------------|-------------------------------|-----------------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 185 | 72 | 52 | 47 | 52 | 54 | 79 | 604 | 560 | 589 | 198 | 270 | | 2 | 120 | 81 | 50 | 45 | 52 | 58 | 73 | 600 | 495 | 507 | 179 | 253 | | 3 | 113 | 64 | 50 | 45 | 58 | 56 | 81 | 608 | 530 | 418 | 173 | 216 | | 4
5 | 122
122 | 66
80 | 52
54 | 5 4
50 | 50
46 | 55
61 | 95
100 | 577
635 | 560
778 | 391
382 | 196
182 | 191
188 | | | | | | | | | | | | | | | | 6
7 | 118
112 | 78
81 | 54
58 | 56 | 44
42 | 61
56 | 102
123 | 735
78 7 | 934
900 | 371
506 | 189 | 184
178 | | 8 | 107 | 74 | 5 6 | 56
48 | 48 | 60 | 151 | 815 | 857 | 527 | 220
200 | 173 | | 9 | 100 | 79 | 54 | 46 | 48 | 57 | 178 | 693 | 771 | 522 | 187 | 154 | | 10 | 98 | 83 | 58 | 46 | 48 | 53 | 198 | 674 | 701 | 481 | 190 | 147 | | 11 | 98 | 90 | 64 | 50 | 52 | 56 | 224 | 588 | 641 | 459 | 192 | 140 | | 12 | 96 | 72 | 62 | 48 | 50 | 56 | 259 | 652 | 726 | 430 | 183 | 133 | | 13 | 94 | 68 | 59 | 45 | 52 | 60 | 301 | 668 | 780 | 435 | 203 | 129 | | 14
15 | 94
93 | 78
79 | 5 8
6 0 | 45
44 | 5 6
50 | 63
68 | 362
381 | 731
785 | 745
685 | 464
465 | 214
266 | 125
1 49 | | 16 | 92 | 73 | 60 | 45 | 48 | 71 | 330 | 864 | 601 | 406 | 232 | 167 | | 17 | 90 | 73
74 | 60 | 47 | 46 | 73 | 308 | 908 | 518 | 431 | 224 | 166 | | 18 | 90 | 27 | 60 | 44 | 44 | 72 | 332 | 951 | 574 | 419 | 223 | 140 | | 19 | 89 | 68 | 64 | 42 | 46 | 67 | 280 | 991 | 666 | 418 | 202 | 157 |
 20 | 89 | 55 | 62 | 45 | 46 | 62 | 236 | 1090 | 713 | 418 | 217 | 174 | | 21 | 89 | 67 | 60 | 45 | 50 | 65 | 215 | 1170 | 720 | 346 | 228 | 157 | | 22 | 79 | 74 | 56 | 47 | 50 | 69 | 222 | 1090 | 696 | 304 | 210 | 143 | | 23 | 66 | 41 | 52 | 47 | 52 | 68 | 221 | 1020 | 641 | 262 | 284 | 119 | | 24
25 | 62
62 | 43
70 | 52
52 | 50
48 | 48
48 | 64
64 | 245
300 | 1030
933 | 618
500 | 268
258 | 658
1170 | 118
128 | | | | | _ | | | - | | | | | | | | 26
27 | 60
62 | 63
61 | 54
49 | 48
50 | 48
50 | 72
79 | 347
386 | 871
819 | 518 | 313 | 664
380 | 127 | | 28 | 67 | 62 | 48 | 50 | 50
50 | 76 | 465 | 858 | 561
5 43 | 302
272 | 344 | 127
122 | | 29 | 60 | 61 | 48 | 50 | 52 | 74 | 547 | 811 | 522 | 263 | 328 | 123 | | 30 | 62 | 54 | 50 | 50 | | 75 | 597 | 677 | 605 | 247 | 301 | 123 | | 31 | 48 | | 48 | 52 | | 80 | | 603 | | 219 | 286 | | | TOTAL | 2839 | 2088 | 1716 | 1485 | 1426 | 2005 | | 4838 | 19659 | 12093 | 8923 | 4721 | | MEAN | 91.6 | 69.6 | 55.4 | 47.9 | 49.2 | 64.7 | 258 | 801 | 655 | 390 | 288 | 157 | | MAX | 185 | 90 | 64 | 56 | 58 | 80 | 597 | 1170 | 934 | 589 | 1170 | 270 | | MIN
AC-FT | 48
5630 | 41
4140 | 48
3400 | 42
2950 | 42
2830 | 53
3980 | 73
15350 4 | 577
1 9 270 | 49 5
389 9 0 | 219
239 9 0 | 173
17700 | 118
9360 | | | | | | | | | | | | 23770 | 17700 | 2300 | | | | | | | | | , BY WATER YE | | | | | | | MEAN | 116 | 97.2 | 51.7 | 47.9 | 51.7 | 78.7 | 322 | 1110 | 1302 | 474 | 204 | 128 | | MAX | 515 | 467 | 116 | 116 | 159 | 153 | 800 | 2053 | 3163 | 1502 | 626 | 484 | | (WY)
MIN | 1905
34.7 | 1966
29 .9 | 1987
26.9 | 1986
22.7 | 1983
30.0 | 1989
41.0 | 1936
138 | 1937
358 | 1920
11 8 | 1957
69.2 | 1952
44.2 | 1927
26.8 | | (WY) | 1957 | 1931 | 1977 | 1918 | 1904 | 1904 | 1970 | 1977 | 1934 | 1904 | 1972 | 1956 | | | STATISTI | | | | NDAR YEAR | | FOR 1992 WATE | | | | EARS 1903 | | | ANNUAL | TOTAL | | 1 | 20242 | | | 89531 | | | | | | | ANNUAL | | | | 329 | | | 245 | | | 330 | | | | | ANNUAL M | | | | | | | | | 592 | | 1920 | | | ANNUAL ME. | | | 1040 | Mari 01 | | 1170 | Mar- 01 | | 109 | 7 | 1977 | | | DAILY ME. DAILY MEA | | | 1840
39 | May 21
Jan 24 | | 1170
41 | May 21
Nov 23 | 1 | 4490
10 | | 5 1905
8 1904 | | | SEVEN-DAY | | | 40 | Jan 24
Jan 21 | | 45 | Jan 13 | , | 17 | | 6 1957 | | | ANEOUS PE | | | | J-11 L4 | | 2210 | Aug 24 | 1 | ^a 9000 | Oct | 5 1911 | | INSTANT | ANEOUS PE | AK STAGE | | | | | 5.44 | Aug 24 | | 8.50 | Oct | 5 1911 | | ANNUAL | RUNOFF (A | C-FT) | 2 | 38500 | | | 177600 | | | 39100 | | _ | | 10 PERC | ENT EXCEE | DS | | 864 | | | 67 0 | | | 1050 | | | | | ENT EXCEE | | | 122 | | | 112 | | | 94 | | | | 90 PERC | ENT EXCEE | DS | | 49 | | | 48 | | | 42 | | | a-Present site and datum, from rating curve extended above 3100 ft^3/s . b-From floodmarks. #### 08247500 SAN ANTONIO RIVER AT ORTIZ, CO LOCATION.--Lat 36°59'35", long 106°02'17", in NE¹/4SE¹/4 sec.24, T.32 N., R.8 E., Rio Arriba County, New Mexico, Hydrologic Unit 13010005, on left bank 800 ft south of Colorado-New Mexico State line, 0.4 mi southeast of Ortiz, and 0.4 mi upstream from Los Pinos River. DRAINAGE AREA.--110 mi², approximately. PERIOD OF RECORD.--April 1919 to October 1920, October 1924 to current year (no winter records prior to 1941). Monthly discharge only for some periods, published in WSP 1312. REVISED RECORDS.--WSP 1732: 1951. WSP 1923: 1927 (monthly runoff). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,970 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 7, 1926, nonrecording gage at various locations near present site, at different datums. Apr. 7, 1926 to June 24, 1954, water-stage recorder at site 200 ft downstream, at present datum. REMARKS.--Estimated daily discharges: Oct. 1, 9-21, 23-28, Nov. 1-3, 11, 12, 16-19, 30, Dec. 1 to Mar. 18, and Mar. 26-29. Records good except for estimated daily discharges, which are fair. A few small diversions upstream from station for irrigation. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD .-- Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents. | Dy I | ocal res | idents. | | | | | | | | | | | |---|--|---|--|--|--|--|---|---|-------------------------------------|--|---|---| | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBER VALUES | 1991 | TO SEPTEMB | ER 1992 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.2
3.1
2.4
1.6
1.6 | 2.5
5.0
7.5
8.0
9.9 | 3.1
3.0
3.1
3.7
3.7 | 3.1
3.0
3.0
3.7
3.5 | 3.7
3.7
4.1
3.8
3.5 | 5.0
5.8
6.6
7.0
7.0 | 21
18
20
22
29 | 158
139
117
99
85 | 24
20
17
15
13 | .78
.46
.29
.23
.05 | .75
.40
.20
.06 | 1.4
1.5
1.8
1.4 | | 6
7
8
9
10 | 1.6
1.8
2.0
1.9 | 11
12
10
10 | 3.9
3.9
3.7
3.3
3.7 | 3.8
3.8
3.3
3.3 | 3.4
3.3
3.8
3.8
3.8 | 6.6
7.0
7.0
6.6
6.6 | 37
53
55
52
69 | 76
70
70
64
74 | 11
11
11
17
17 | .00
.00
.00
.00 | .88
.64
.34
.71
.77 | .68
.41
.23
.10 | | 11
12
13
14
15 | 1.7
1.8
1.8
1.8 | 7.8
6.4
6.2
6.9
7.0 | 3.9
3.5
3.3
3.2
3.4 | 3.5
3.4
3.2
3.2
3.2 | 4.1
3.9
4.1
4.5
4.0 | 6.6
7.4
8.0
8.6
8.6 | 84
91
101
128
143 | 65
52
48
43
40 | 14
11
9.2
7.6
6.0 | .00
.00
.00
.00 | 1.0
.71
.35
.27 | .00
.00
.00 | | 16
17
18
19
20 | 1.9
1.9
1.9
1.9 | 5.8
4.5
4.4
3.6
2.8 | 3.4
3.4
3.4
4.0
3.8 | 3.2
3.3
3.2
3.1
3.3 | 3.9
3.8
3.7
3.8
3.7 | 8.2
8.8
8.4
8.4 | 115
115
135
109
77 | 34
31
27
26
24 | 4.7
4.0
3.7
3.7
3.3 | .00
.00
.00
.00 | 1.6
1.2
.66
4.0
2.3 | .00
.00
.00
.00 | | 21
22
23
24
25 | 2.0
2.0
2.0
2.1
2.1 | 5.0
4.6
3.2
3.6
3.9 | 3.7
3.6
3.4
3.4
3.5 | 3.3
3.4
3.4
3.6
3.5 | 4.6
4.6
4.7
4.4
4.5 | 9.4
11
11
11
13 | 67
78
89
103
134 | 23
20
20
30
24 | 2.4
2.3
2.0
1.6
1.1 | .00
.00
.00 | 1.1
.98
.63
4.4
16 | .00
.00
.16
.27 | | 26
27
28
29
30
31 | 2.2
2.2
2.2
2.3
2.3
2.3 | 4.2
4.3
4.1
4.1
3.2 | 3.7
3.2
3.2
3.2
3.4
3.3 | 3.5
3.6
3.6
3.6
3.6
3.7 | 4.5
4.7
4.7
4.9 | 14
16
18
18
18 | 156
162
191
198
180 | 19
18
20
20
25
28 | .93
1.1
.84
.55
.45 | .00
.00
.00
1.2
1.8
1.4 | 11
7.1
4.1
2.5
1.8
1.5 | .24
.16
.05
.19
.60 | | TOTAL
MEAN
MAX
MIN
AC-FT | 62.1
2.00
3.1
1.6
123 | 182.5
6.08
12
2.5
362 | 108.0
3.48
4.0
3.0
214 | 105.2
3.39
3.8
3.0
209 | 118.0
4.07
4.9
3.3
234 | 303.0
9.77
18
5.0
601 | 2832
94.4
198
18
5620 | 1589
51.3
158
18
3150 | 236.47
7.88
24
.45
469 | 6.21
.20
1.8
.00 | 68.50
2.21
16
.00
136 | 10.51
.35
1.8
.00
21 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.92
12.0
1987
.000
1952 | 3.85
13.8
1987
1.04
1956 | 2.65
8.12
1967
.48
1977 | 2.24
6.00
1965
.000
1977 | 3.56
13.0
1962
.25
1990 | 15.0
63.5
1960
2.50
1948 | 105
302
1962
22.2
1972 | 145
508
1941
4.05
1977 | 16.2
108
1957
.027
1977 | 2.00
12.0
1957
.000
1940 | 3.04
17.7
1957
.000
1951 | 1.25
4.42
1986
.000
1951 | | SUMMARY | STATIST | ICS | FOR 1 | 991 CALENI | DAR YEAR | | FOR 1992 WATE | ER YEAR | l | WATER YE | ARS 1940 | - 1992 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME SEVEN-DA ANEOUS PI | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS | | 11596.70
31.8
460
.00
.01
23000
120
3.4
1.4 | Apr 7
Jul 15
Jul 14 | |
198
15.4
198
00
.00
257
2.84
11150
49
3.6
.03 | Apr 29
Jul 6
Jul 6
Apr 29
Apr 29 | 5
5
) | 25.5
61.8
3.35
1050
.00
61750
5.38
18490
63
3.0 | May
Jun
Jun
Ápr
Apr | 1952
1977
13 1941
24 1940
24 1940
15 1937
15 1937 | | MEAN
MAX
(WY)
MIN
(WY)
SUMMARY
ANNUAL
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | 2.92 12.0 1987 .000 1952 STATIST TOTAL MEAN ANNUAL MANUAL MEAN DAILY ME DAILY ME DAILY ME ANEOUS PI ANEOUS PI RUNOFF (I) ENT EXCEI | ONTHLY MEAN 3.85 13.8 1987 1.04 1956 ICS MEAN EAN EAN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | I DATA FOI
2.65
8.12
1967
.48
1977
FOR 1 | R WATER YE
2.24
6.00
1965
.000
1977
991 CALENI
11596.70
31.8
460
.00
.01
23000
120
3.4 | 3.56
13.0
1962
.25
1990
DAR YEAR
Apr 7
Jul 15 | - 1992
15.0
63.5
1960
2.50
1948 | 105
302
1962
22.2
1972
FOR 1992 WATI
5621.49
15.4
198
00
00
257
d2.84
11150
49
3.6 | 145
508
1941
4.05
1977
ER YEAR
Apr 29
Jul 6
Jul 6
Apr 29 | 16.2
108
1957
.027
1977 | 2.00
12.0
1957
.000
1940
WATER YE
25.5
61.8
3.35
1050
.00
c ₁₇₅₀
5.38
18490
63
3.0 | 3.04
17.7
1957
.000
1951
ARS 1940
May
Jun
Jun
Apr
Apr | 1
1
1
1
1
1
1
1
1
1
2
4
1
1
2
4
1
1
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | a-Also occurred Jul 16-20. b-Also occurred Jul 7-28, and Sep 11-22. c-From rating curve extended above 1100 ft³/s. d-Maximum gage height, 3.03 ft, Mar 19, backwater from ice. #### 08248000 LOS PINOS RIVER NEAR ORTIZ, CO LOCATION.--Lat 36°58'56", long 106°04'23", on line between secs.26, and 27, T.32 N., R.8 E., Rio Arriba County, New Mexico, Hydrologic Unit 13010005, on left bank 0.9 mi south of Colorado-New Mexico State line, 2.1 mi southwest of Ortiz, and 2.9 mi upstream from mouth. DRAINAGE AREA. -- 167 mi2. PERIOD OF RECORD.--January 1915 to December 1920, October 1924 to current year. Monthly discharge only for some periods, published in WSP 1312. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,040 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Apr. 15, 1955, at site 350 ft upstream at datum 2.52 ft, higher. REMARKS.--Estimated daily discharges: Oct. 29 to Nov. 6, Nov. 8, 9, 12, 13, 17, 18, 20-25, and Nov. 30 to Mar. 28. Records good except for estimated daily discharges, which are fair. Diversions upstream from station for irrigation. COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents. | -, | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBE | R 1991 T | O SEPTEMI | BER 1992 | | | |---|-------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|-------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 27
25
22
21
20 | 16
18
17
18
20 | 18
17
18
22
23 | 19
18
18
23
22 | 24
24
26
24
22 | 23
24
26
28
27 | 35
35
37
42
45 | 674
671
640
568
558 | 252
221
218
215
243 | 59
53
49
46
43 | 29
25
23
25
26 | 43
39
36
32
29 | | 6
7
8
9
10 | 19
20
19
19 | 22
23
20
22
28 | 24
24
22
19
22 | 24
24
20
20
20 | 21
20
22
22
22 | 26
28
27
26
25 | 46
60
81
104
125 | 553
528
525
510
522 | 285
263
283
270
228 | 38
34
33
31
31 | 22
35
33
26
23 | 27
25
22
20
19 | | 11
12
13
14
15 | 18
17
16
17 | 31
18
18
26
27 | 24
21
19
18
20 | 22
21
19
19 | 24
22
23
25
23 | 25
27
29
30
31 | 152
187
256
366
370 | 397
397
435
457
456 | 199
213
215
204
186 | 33
35
38
36
33 | 24
23
21
23
39 | 18
17
16
15
15 | | 16
17
18
19
20 | 17
16
16
16
17 | 24
21
20
17
16 | 20
20
20
25
2 4 | 19
20
18
17
20 | 22
21
20
21
20 | 29
30
29
29
29 | 324
315
328
265
211 | 435
434
432
437
485 | 165
141
133
130
127 | 30
28
27
27
29 | 32
28
35
26
30 | 19
20
18
18
26 | | 21
22
23
24
25 | 16
16
16
17
18 | 18
16
16
19
26 | 23
22
20
20
21 | 20
21
21
23
22 | 23
23
23
21
21 | 30
31
29
27
28 | 191
213
222
275
352 | 501
451
425
432
352 | 124
116
109
103
99 | 28
25
24
28
32 | 29
29
58
220
229 | 22
21
19
18
17 | | 26
27
28
29
30
31 | 18
17
17
15
15 | 35
30
27
24
21 | 23
19
19
19
21
20 | 22
23
23
23
23
23
24 | 21
22
22
23 | 29
30
31
29
30
33 | 404
459
559
638
647 | 338
364
373
325
318
285 | 89
83
80
79
66 | 41
47
41
36
31
29 | 138
92
68
56
48
43 | 15
15
16
16 | | TOTAL
MEAN
MAX
MIN
AC-FT | 556
17.9
27
14
1100 | 654
21.8
35
16
1300 | 647
20.9
25
17
1280 | 647
20.9
24
17
1280 | 647
22.3
26
20
1280 | 875
28.2
33
23
1740 | 7344
245
647
35
14570 | 14278
461
674
285
28320 | 5139
171
285
66
10190 | 1095
35.3
59
24
2170 | 1558
50.3
229
21
3090 | 648
21.6
43
15
1290 | | MEAN
MAX
(WY)
MIN
(WY) | 27.9
109
1987
10.1
1957 | 21.8
70.1
1987
11.1
1957 | 15.9
34.4
1987
5.00
1918 | 14.4
26.0
1987
5.00
1918 | 16.9
30.0
1962
7.50
1964 | 33.3
84.7
1971
13.9
1977 | 231
610
1936
65.9
1968 | 611
1341
1952
96.8
1977 | 329
1022
1957
25.2
1977 | 73.6
258
1957
13.2
1934 | 35.4
112
1929
11.9
1977 | 24.8
101
1927
7.53
1956 | | ANNUAL T
ANNUAL M
HIGHEST LOWEST A
HIGHEST
LOWEST D
ANNUAL S
INSTANTA
INSTANTA
ANNUAL R
10 PERCE
50 PERCE | | EAN
AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT)
DS | FOR 19 | 991 CALENE 49075 134 1170 12 13 97340 449 28 16 | May 11
Jan 30
Jan 28 | | FOR 1992 WAT
34088
93.1
674
14
16
845
4.71
67610
331
26
18 | May 1
Oct 31
Oct 26
May 1
May 1 | | 120
230
28.7
2410
4.0
4.4
3160
5.77
86970
383
25 | May 1
Dec 1
Dec 1
May 1 | 1952
1977
13 1941
1 1989
1 1989
2 1941
12 1941 | a-Also occurred Feb 1 and 2. b-Minimum observed, 4.0 ft³/s, Dec 17, 1945 (discharge measurement); minimum daily discharge for period of record, also occurred Dec 12-14, 17, 22, 30-31, 1989, and Jan 4-6, 1990, but may have been less during periods of no gage-height record. c-Site and datum then in use, from rating curve extended above 1600 ft^3/s . #### 08249000 CONEJOS RIVER NEAR LASAUSES, CO LOCATION.--Lat $37^{\circ}18^{\circ}01^{\circ}$, long $105^{\circ}44^{\circ}47^{\circ}$, in $SW^1/4SW^1/4$ sec.2, and $SE^1/4NE^1/4$ sec.10 (two channels), T.35 N., R.11 E., Conejos County, Hydrologic Unit 13010005, on left bank of main channel 125 ft downstream from bridge on State Highway 158 and on left bank of secondary channel 230 ft upstream from bridge on State Highway 158, 1.0 mi upstream from mouth, 2.1 mi north of Lasauses, and 13 mi southeast of Alamosa. DRAINAGE AREA. -- 887 mi². PERIOD OF RECORD.--March 1921 to current year. Monthly discharge only for some periods, published in WSP 1312. Prior to Oct. 1, 1966, published as "near La Sauses." REVISED RECORDS .-- WSP 1312: 1934 (M) . GAGE.--Two water-stage recorders with satellite telemetry. Datum of gage on main (north) channel is 7,495.02 ft above National Geodetic Vertical Datum of 1929, and on secondary (south) channel is 7,496.89 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Bureau of Reclamation). Main channel: See WSP 1732 for history of changes prior to Oct. 1, 1937. South channel: Prior to Oct. 23, 1934, at bridge 230 ft downstream at datum 0.56 ft, lower; Oct. 23, 1934 to May 3, 1936, at site 250 ft downstream, and May 4, 1936 to Oct. 13, 1965, at site 280 ft downstream, at datum 1.00 ft, lower. REMARKS.--Estimated daily discharges: Oct. 31 to Nov. 5, Nov. 23-27, and Nov. 29 to Mar. 27. Records good except for estimated daily discharges, which are fair. Diversions for irrigation of about 75,000 acres upstream from station. COOPERATION.--Records collected and computed by Colorado Division of Water
Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 5, 1911, is the greatest since at least 1854, from information by local residents. | D1 1 | ocar resi | | | | | | | | | | | | |--------------|------------------------|--------------|-----------------|--------------|------------------|--------------------|---------------|----------------------|-------------|---------------|----------------|--------------------| | | | DISCHARG | SE, CUBIC | FEET PER | | | YEAR OCTOBER | 1991 | TO SEPTEM | BER 1992 | | | | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | | 1 | 45 | 27 | 57 | 57 | 47 | 77 | 231 | 697 | 91 | 5.0 | 2.5 | 26 | | 2
3 | 59
46 | 38
54 | 53
49 | 51
49 | 53
61 | 83
90 | 226
211 | 577
471 | 67
76 | 3.3
4.0 | 1.7
.82 | 31
30 | | 4 | 36 | 56 | 51 | 60 | 59 | 96 | 205 | 364 | 92 | 4.0 | .65 | 25 | | 5 | 32 | 53 | 53 | 56 | 55 | 96 | 217 | 262 | 95 | 3.9 | .73 | 21 | | 6
7 | 41
36 | 66 | 53 | 58 | 51 | 95 | 221 | 213
180 | 109 | 4.5 | 1.4
1.9 | 19
17 | | 8 | 33 | 71
76 | 53
55 | 66
53 | 50
59 | 95
97 | 220
253 | 182 | 109
106 | 4.3
10 | 3.7 | 16 | | 9 | 32 | 76 | 55 | 51 | 57 | 98 | 285 | 227 | 278 | 9.0 | 4.0 | 14 | | 10 | 31 | 81 | 55 | 47 | 57 | 97 | 316 | 216 | 305 | 13 | 2.7 | 12 | | 11
12 | 27
23 | 90
102 | 66
68 | 49
58 | 63
63 | 97
9 7 | 356
408 | 170
107 | 219
156 | 11
13 | 2.4
4.7 | 11
11 | | 13 | 22 | 90 | 55 | 51 | 63 | 101 | 473 | 82 | 134 | 11 | 4.0 | 10 | | 14
15 | 21
19 | 79
83 | 49
49 | 47
47 | 72
6 5 | 107
113 | 61 6
78 5 | 74
113 | 105
85 | 28
33 | 2.4 | 10
11 | | 16 | 16 | 96 | 49 | 43 | 68 | 120 | 825 | 92 | 60 | 29 | 2.7 | 11 | | 17 | 16 | 92 | 57 | 47 | 68 | 130 | 745 | 78 | 69 | 14 | 2.4 | 12 | | 18 | 16 | 86 | 57 | 45 | 59 | 143 | 730 | 81 | 64 | 8.7 | 1.4 | 12
14 | | 19
20 | 15
14 | 87
79 | 70
68 | 45
45 | 59
66 | 146
150 | 756
617 | 60
55 | 71
105 | 5.7
4.5 | 1.7
1.6 | 12 | | 21 | 14 | 71 | 64 | 45 | 77 | 159 | 480 | 68 | 116 | 4.0 | 1.2 | 14 | | 22 | 16 | 68 | 66 | 42 | 72 | 184 | 437 | 120 | 110 | 2.8 | 1.2 | 12 | | 23
24 | 19
18 | 65
62 | 57
57 | 40
47 | 77
73 | 214
224 | 453
437 | 123
120 | 82
72 | 2.7
2.5 | 1.6
2.6 | 9.3
8.8 | | 25 | 16 | 58 | 55 | 47 | 77 | 228 | 508 | 119 | 37 | 4.7 | 271 | 7.1 | | 26 | 17 | 59 | 57 | 49 | 75 | 234 | 628 | 89 | 19 | 14 | 512 | 5.2 | | 27
28 | 17
17 | 69
74 | 55
55 | 49
47 | 73
73 | 254
245 | 747
634 | 90
106 | 11
9.5 | 24
19 | 218
81 | 7.3
8.8 | | 29 | 18 | 79 | 53 | 47 | 77 | 243 | 697 | 131 | 11. | 12 | 45 | 12 | | 30
31 | 24
25 | 67 | 53
66 | 47
47 | | 257
235 | 780 | 117
114 | 8.8 | 6.4
4.4 | 34
28 | 7.2 | | TOTAL | 781 | 2154 | 1760 | 1532 | 1869 | 4605 | 14497 | 5498 | 2872.3 | 315.4 | 1241.30 | 416.7 | | MEAN | 25.2 | 71.8 | 56.8 | 49.4 | 64.4 | 149 | 483 | 177 | 95.7 | 10.2 | 40.0 | 13.9 | | MAX | 59 | 102 | 70 | 66 | 77 | 257 | 825 | 697 | 305 | 33 | 512 | 31 | | MIN
AC-FT | 14
1550 | 27
4270 | 49
3490 | 40
3040 | 47
3710 | 77
913 0 | 205
28750 | 55
10 9 10 | 8.8
5700 | 2.5
626 | .65
2460 | 5.2
827 | | STATIST | | | | | | | , BY WATER Y | | | | | | | MEAN | 50.5 | 87.3 | 59.5 | 61.1 | 77.7 | 99.1 | 252 | 728 | 567 | 143 | 51.3 | 38.0 | | MAX | 307 | 424 | 140 | 146 | 185 | 261 | 1177 | 2642 | 1850 | 1132 | 413 | 425 | | (WY)
MIN | 1942
.11 | 1976
8.92 | 1986
16.7 | 1986
24.0 | 1983
29,6 | 1989
24.9 | 1924
1.49 | 1924
1.39 | 1935
.13 | 1957
.027 | 1952
.000 | 1927
.000 | | (WY) | 1978 | 1978 | 1978 | 1964 | 1964 | 1957 | 1990 | 1972 | 1977 | 1972 | 1934 | 1976 | | SUMMARY | STATISTI | cs | FOR 19 | 91 CALEND | AR YEAR | | FOR 1992 WATE | ER YEAR | ₹ | WATER Y | EARS 1921 | - 1992 | | ANNUAL | | | | 71390 | | | 37541.70 | | | | | | | ANNUAL | MEAN
'ANNUAL M | DAN | | 196 | | | 103 | | | 184
451 | | 1941 | | | ANNUAL ME | | | | | | | | | 17.2 | 2 | 1977 | | HIGHEST | DAILY ME | AN | | 1540
14 | May 22 | | 825 | Apr 16 | | 3820 | May | 15 1941 | | | DAILY MEA
SEVEN-DAY | | | 15 | Oct 20
Oct 16 | | .65
h 1.4 | Aug 4 | | .0 | o Jun
0 Jul | 27 1934
21 1934 | | INSTANT | ANEOUS PE | AK FLOW | | | 500 10 | | 825 | Apr 16 | | ~3890 | May | 15 1941 | | | RUNOFF (A | | 1 | 41600
518 | | | 74460
237 | | | 133600
526 | | | | | ENT EXCEE | | | 96 | | | 57 | | | 56 | | | | | ENT EXCEE | | | 42 | | | 4.7 | | | 1.5 | 5 | | a-Also occurred Oct 21. b-Maximum daily discharge. c-Gage height not determined. #### 08251500 RIO GRANDE NEAR LOBATOS, CO LOCATION.--Lat 37°04'43", long 105°45'23", in NE¹/4NW¹/4 sec.27, T.33 N., R.11 E., Conejos County, Hydrologic Unit 13010002, on right bank at highway bridge, 5.7 mi north of Colorado-New Mexico State line, 8 mi downstream from Culebra Creek, 11 mi east of Lobatos, and 14 mi east of Antonito. DRAINAGE AREA. -- 7,700 mi², approximately, includes 2,940 mi² in closed basin in northern part of San Luis Valley, CO. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1899 to current year. Monthly discharge only for some periods, published in WSP 1312. Published as "at Cenicero" 1899-1901, and as "near Cenicero" 1902-4. Statistical summary computed for 1931 to current year REVISED RECORDS.--WSP 1312: 1919 (monthly runoff). WSP 210: Drainage area. WDR CO-78-1: 1976. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,427.63 ft above National Geodetic Vertical Datum of 1929. Prior to 1910, nonrecording gages at same site and datum. REMARKS.--Estimated daily discharges: Nov. 1-4, 7, 8, and Nov. 21 to Mar. 21. Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, ground-water withdrawals and diversion for irrigation, and return flow from irrigated areas DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 COOPERATION .-- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1828, that of June 8, 1905. | | | DISCHA | GE, COBIC | PEET | | | VALUES | ER 1991 TO |) SEPTEMB | EK 1992 | | | |---------------|-----------------------|-------------|-------------|-------------|-------------|---------------|-------------------|--------------|--------------|--------------------|-------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 96 | 92 | 275 | 280 | 230 | 305 | 1050 | 966 | 520 | 167 | 86 | 129 | | 2 | 102 | 140 | 270 | 285 | 210 | 310 | 1080 | 841 | 496 | 142 | 89 | 118 | | 3 | 114 | 220 | 210 | 285 | 190 | 320 | 1070 | 760 | 450 | 138 | 99 | 117 | | 4 | 90 | 250 | 215 | 285 | 230 | 315 | 1070 | 652 | 454 | 151 | 118 | 115 | | 5 | 80 | 278 | 240 | 285 | 235 | 315 | 1070 | 513 | 435 | 122 | 108 | 110 | | 6 | 76 | 282 | 235 | 285 | 255 | 320 | 1090 | 444 | 450 | 106 | 102 | 107 | | 7 | 82 | 294 | 250 | 295 | 255 | 340 | 1050 | 403 | 465 | 95 | 100 | 110 | | 8
9 | 77
7 3 | 370
371 | 255
255 | 280
275 | 255
265 | 365
395 | 1030
1070 | 338
378 | 520
643 | 90
97 | 92
98 | 104
97 | | 10 | 74 | 331 | 275 | 275 | 265 | 405 | 1100 | 392 | 824 | 91 | 110 | 87 | | 11 | 71 | 330 | 280 | 280 | 270 | 410 | 1160 | 381 | 774 | 92 | 115 | 72 | | 12 | 78 | 350 | 275 | 275 | 280 | 410 | 1240 | 299 | 720 | 8 7 | 130 | 67 | | 13 | 76 | 350 | 280 | 275 | 285 | 410 | 1370 | 255 | 760 | 92 | 108 | 63 | | 14 | 72 | 306 | 275 | 275 | 290 | 425 | 1490 | 224 | 685 | 87 | 98 | 59 | | 15 | 68 | 278 | 270 | 280 | 285 | 465 | 1670 | 250 | 5 68 | 105 | 85 | 60 | | 16 | 62 | 281 | 265 | 280 | 290 | 520 | 1590 | 266 | 506 | 110 | 90 | 58 | | 17 | 57 | 296 | 270 | 255 | 290 | 600 | 1480 | 231 | 435 | 101 | 100 | 54 | | 18 | 55 | 310 | 270 | 250 | 290 | 600 | 1340 | 239 | 385 | 88 | 96 | 50 | | 19
20 | 66
71 | 310
298 | 285
290 | 250
250 | 280
285 | 580
580 | 1240
1100 | 234
216 | 355
374 | 79
79 | 85
69 | 60
73 | | 21 | 64 | 298 | 300 | 250 | 290 | 600 | 911 | 216 | 425 | 80 | 60 | 78 | | 22 | 60 | 210 | 310 | 230 | 290
290 | 685 | 78 7 | 262 | 425
477 | 69 | 53 | 158 | | 23 | 62 | 145 | 310 | 235 | 295 | 806 | 769 | 315 | 457 | 72 | 57 | 190 | | 24 | 68 | 190 | 300 | 230 | 300 | 988 | 744 | 325 | 381 | 100 | 7í | 123 | | 25 | 62 | 240 | 310 | 230 | 305 | 979 | 740 | 350 | 326 | 121 | 95 | 114 | | 26 | 76 | 265 | 305 | 230 | 300 | 975 | 816 | 345 | 300 | 153 | 651 | 107 | | 27 | 79 | 280 | 300 | 230 | 300 | 997 | 916 | 390 | 260 | 208 | 744 | 104 | | 28 | 82 | 370 | 290 | 230 | 295 | 1040 | 893 | 390 | 222 | 261 | 455 | 99 | | 29 | 85 | 300 | 280 | 230 | 300 | 1040 | 840 | 478 | 209 | 179 | 267 | 94 | | 30
31 | 82
76 | 280 | 265
295 | 230
230 | | 1040
1050 | 961 | 508
490 | 193 | 134
110 | 189
152 | 93 | | | _ | | | | | | | | | | | | | TOTAL
MEAN | 2336
75.4 | 8315
277 | 8505
274 | 8055
260 | 7910
273 | 18590
600 | 32737
1091 | 12351
398 | 14069
469 | 3606
116 | 4772
154 | 2870
95.7 | | MAX | 114 | 371 | 310 | 295 | 305 | 1050 | 1670 | 966 | 824 | 261 | 744 | 190 | | MIN | 55 | 92 | 210 | 230 | 190 | 305 | 740 | 216 | 193 | 69 | 53 | 50 | | AC-FT | 4630 | 16490 | 16870 | 15980 | 15690 | 36870 | 64930 | 24500 | 27910 | 7150 | 9470 | 5690 | | STATIST | ICS OF M | ONTHLY MEA | N DATA FOR | WATER | YEARS 1931 | - 1992 | BY WATER | YEAR (WY) | | | | | | MEAN | 178 | 320 | 283 | 256 | 306 | 411 | 539 | 1135 | 1245 | 420 | 157 | 118 | | MAX | 1401 | 1199 | 763 | 521 | 595 | 884 | 2326 | 4958 | 4470 | 2156 | 842 | 779 | | (WY) | 1942 | 1942 | 1942 | 1986 | 1986 | 1987 | 1985 | 1987 | 1941 |
1986 | 1957 | 1982 | | MIN | 12.9 | 59.6 | 61.7 | 75.7 | 102 | 66.0 | 32.3 | 42.9 | 19.8 | 1.28 | 3.21 | 1.91 | | (WY) | 1957 | 1955 | 1964 | 1957 | 1957 | 1 9 57 | 1935 | 1963 | 1977 | 1951 | 1956 | 1956 | | SUMMARY | STATIST | ICS | FOR 19 | 91 CAL | ENDAR YEAR | | FOR 1992 WA | TER YEAR | | WATER YEA | RS 1931 | - 1992 | | ANNUAL ' | | | 1 | 57240 | | | 124116 | | | 2 | | | | ANNUAL I | | | | 431 | | | 339 | | | a 447 | | 1007 | | | ANNUAL M
ANNUAL MI | | | | | | | | | 1264
_ 70.9 | | 1987
1964 | | | DAILY M | | | 2010 | May 23 | | 1670 | Apr 15 | | b ₉₁₁₀ | Jun 3 | 22 1949 | | | DAILY ME | | | 53 | Sep 4 | | 50 | Sep 18 | | .00 | | 6 1950 | | | | Y MINIMUM | | 62 | Oct 16 | | 58 | Sep 13 | | . 00 | | 16 1950 | | | ANEOUS PI | | | | 222 20 | | 1700 | Apr 15 | | d ₁₁₆₀₀ | | 8 1905 | | | | EAK STAGE | | | | | e _{3.25} | | | 8.76 | | 8 1905 | | ANNUAL I | RUNOFF (1 | AC-FT) | 3 | 11900 | | | 246200 | - | | 324000 | | | | | ENT EXCE | | | 960 | | | 818 | | | 952 | | | | | ENT EXCE | | | 300 | | | 275 | | | 237 | | | | 90 PERCE | ENT EXCE | EDS | | 93 | | | 77 | | | 39 | | | a-Average discharge for 31 years (water years 1900-30), 846 ft³/s; 612900 acre-ft/yr, includes period of extensive development for irrigation. b-Maximum daily discharge for period of record, 13100 ft³/s, Jun 8, 1905. c-No flow at times in 1950-51, 1956. d-Maximum discharge and stage for period of record, 13200 ft³/s, Jun 8, 1905, gage height, 9.1 ft, from rating curve extended above 8000 ft³/s. e-Maximum gage height, 3.77 ft, Mar 18, backwater from ice. RIO GRANDE BASIN 08251500 RIO GRANDE NEAR LOBATOS, CO #### TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO There are 24 tunnels or ditches, all of which are equipped with water-stage recorders and Parshall flumes or sharp-crested weirs. Records provided by Colorado Division of Water Resources. The locations and diversions of 8 selected diversions are given in the following list. #### TO PLATTE RIVER BASIN 09010000 Grand River Ditch diverts water from tributaries of Colorado River to La Poudre Pass Creek (tributary to Cache la Poudre River) in NW¹/4 sec.21, T.6 N., R.75 W., in Platte River basin. Two collection ditches beginning at headgates located in sec.28, T.5 N., R.76 W., and sec.29, T.6 N., R.75 W., intercept all tributaries upstream | Diversion | Oct. | Nov. | Dec. |
Jan. | Feb. | Mar. | Apr. | May | June | Julv | Aug. | Sept. | |-------------------------------------|----------|----------------------|------------------------------------|-----------|---------------------|-------------------|-----------------------|----------------------|-----------|--------------------|---------|-------| | 09010000 | 0 | | | 0 | | | | | 9,070 | | | 425 | | | - | 992, 21, | 360 | | | | | | | | | | | 09013000
.75 W., in
asin. For | Colorado | River ba
scharge, | sin, to see else | Lake Este | s (Big 1
this re | Thompson
port. | River) i | n sec.30 | , T.5 N. | , R.72 | | | | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | Jul y | Aug. | Sept. | | 09013000 | 7,580 | 28,400 | 26,930 | 26,910 |
21,200 | 14,650 | 5,840 | 18,170 | 15,710 |
11,550 | 12,880 | 8,460 | | Water
09021500
, R.75 W. | Berthou | w., in | itch dive
ass, in (
Platte R | olorado H | from t
River ba | ributario | es of Fra
Hoop Cre | ser Rive
ek (trib | er betwee | en headd
West E | gate in | | | Diversion | Oct. | Nov. | Dec. | | | Mar. | | May | | | Aug. | Sept. | | | 0 | 0 | | 0 | - | - | 0 | 108 | 418 | 335 | 118 | 30 | | 09021500 | | 992, 1,0 | • • | | | | | | | | | | Reservoir and east portal of tunnel. | | | DIVERSI | ONS, IN | ACRE-FEET, | WATER | YEAR OCTO | DBER 1991 | TO SE | PTEMBER 1 | 1 9 92 | | | |-----------|---------|----------|---------|------------|-------|-----------|-----------|-------|-----------|---------------|--------|-------| | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 09050590 | 4,310 | 8,670 | 6,190 | 5,980 | 5,740 | 4,570 | 150 | 2,830 | 14,930 | 16,840 | 10,690 | 4,640 | | Water | year 19 | 992, 85, | 530 | | | | | | | | | | #### TRANSMOUNTAIN DIVERSIONS FROM COLORADO RIVER BASIN IN COLORADO--Continued #### TO ARKANSAS RIVER BASIN 09042000 Hoosier Pass Tunnel diverts water from tributaries of Blue River in Colorado River basin to Montgomery Reservoir (Middle Fork South Platte River) in sec.14, T.8 S., R.78 W., in Platte River basin; this water is again diverted to South Catamount Creek (tributary to Catamount Creek) in $SE^{1}/4$ sec.14, T.13 S., R.69 W., in the Arkansas River basin. Collection conduits extending from the right bank of Crystal Creek (tributary to Spruce Creek) in sec.14, T.7 S., R.78 W., right bank of Spruce Creek in sec.23, T.7 S., R.78 W., right bank of McCullough Gulch in sec.26, T.7 S., R.78 W., right bank of Monte Cristo Creek in SW1/4NE1/4 sec.2, T.8 S., R.78 W., left bank of Bemrose Creek in SW1/4SW1/4 sec.6, T.8 S., R.77 W., and intercepting intermediate tributaries, transport diversions to north portal of the tunnel. REVISIONS (WATER YEARS) .-- WDR CO-86-1, WDR CO-86-2: 1984, 1985. | | | DIVERSI | ONS, IN | ACRE-FEET, | WATER | YEAR OCTO | BER 1992 | TO SEP | TEMBER 1 | 992 | . . | | |-----------|---------|---------|---------|------------|-------|-----------|----------|--------|----------|-------|----------------|-------| | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау | June | July | Aug. | Sept. | | 09042000 | 14 | 0 | 0 | 0 | 0 | 0 | 7:6 | 2,330 | 3,690 | 3,410 | 1,970 | 165 | | Water y | ear 199 | 2, 11,6 | 50 | | | | | | | | | | 09063700 Homestake Tunnel diverts water from Homestake Lake (Middle Fork Homestake Creek), in sec.17, T.8 S., R.81 W., in Eagle River basin, to Lake Fork in sec.9, T.9 S., R.81 W., in Arkansas River basin. Water is imported to Homestake Lake from tributaries of Homestake Creek by collection conduits that extend from right bank of French Creek in sec.28, T.7 S., R.81 W., and left bank of East Fork Homestake Creek in sec.9, T.8 S., R.81 W., and intercept intermediate tributaries. | | | DIVERSI | ONS, IN | ACRE-FEET, | WATER | YEAR OCT | OBER 1991 | TO SEPT | EMBER 199 | 92 | | | |-----------|---------|----------|---------|------------|-------|----------|-----------|---------|-----------|------|-------|-------| | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | 09063700 | 2,970 | 4,580 | 0 | 0 | 0 | 5,900 | 4,930 | 0 | 0 | 0 | 2,680 | 5,840 | | Water | year 19 | 92, 26,9 | 10 | | | | | | | | | | 09077160 Charles H. Bousted Tunnel diverts water from the main stem and tributaries of Fryingpan River (tributary to Roaring Fork River), in Colorado River basin, to Lake Fork in sec.10, T.9 S., R.81 W., in Arkansas River basin. Water is transported to west portal of tunnel (at lat 39°14'44", long 106°31'47"), by a series of collection conduits extending between headgates on right bank of Sawyer Creek at lat 39°15'58", long 106°38'19" and right bank of Fryingpan River at lat 39°14'40", long 106°31'49", and intercepting intermediate tributaries. | | | DIVERSI | ONS, IN | ACRE-FEET, | WATER | YEAR OCTO | BER 199 | TO SEP | TEMBER 1 | 992 | | | | |-----------|---------|----------|---------|------------|-------|-----------|---------|--------|----------|-------|------|-------|--| | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | | | 09077160 | 196 | 160 | 160 | 160 | 172 | 174 | 378 | 21,670 | 23,840 | 8,990 | 910 | 262 | | | Water y | ear 199 | 92, 57,0 | 060 | | | | | | | | | | | 09077500 Busk-Ivanhoe Tunnel diverts water from Ivanhoe Lake (Ivanhoe Creek), tributary to Fryingpan River in s s., DIVERSIONS, IN ACRE-FEET, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | sec.13, | Т.9 | S., | R.82 | W., | in | Roaring | Fork | River | basin, | to | Busk | Creek | (tributary | to | Lake | Fork) | in | sec. | 20, | т.9 | |---------|------|-------|--------|-------|-----|---------|------|-------|--------|----|------|-------|------------|----|------|-------|----|------|-----|-----| | R.81 W | ., i | n Arl | kansas | s Riv | er, | basin. | Diversion | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sept. | |-----------|---------|--------|------|------|------|------|------|-------|-------|------|------|-------| | 09077500 | 39 | 0 | 0 | 0 | 0 | 0 | 0 | 2,160 | 1,930 | 889 | 170 | 24 | | Water y | ear 199 | 2, 5,2 | 10 | | | | | | | | | | # TRANSMOUNTAIN DIVERSIONS NO LONGER PUBLISHED Following is a list of Transmountain Diversions no longer being published in this report. Diversions, in acrefeet, for these sites are available from the State of Colorado, Division of Water Resources. | TO PLAT | TTE RIVER BASIN | TO ARKAN | SAS RIVER BASIN | TO RIO GR | ANDE BASIN | |----------|---------------------|----------|-------------------|-----------|----------------------------| | 09012000 | Eureka Ditch | 09061500 | Columbine Ditch | 09118200 | Tarbell Ditch | | 09022500 | Moffat Water Tunnel | 09062000 | Ewing Ditch | 09121000 | Tabor Ditch | | | | | - | 09341000 | Treasure Pass
Ditch | | 09046000 | Boreas Pass Ditch | 09062500 | Wurtz Ditch | 09347000 | Don LaFont | | | | | | | Ditches 162 | | 09047300 | Vidler Tunnel | 09073000 | Twin Lakes Tunnel | 09348000 | Williams Cr-
Squaw Pass | | | | 09115000 | Larkspur Ditch | | Ditch | | | | | - | 09351000 | Pine River-
Weminuche | | | | | | | Pass Ditch | | | | | | 09351500 | Weminuche Pass | | | | | | | Ditch | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are
collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables. #### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. Maximum discharge at crest-stage partial-record stations | | | | Water | year 1992 | | Period | of recor | d maximum | |---|--|------------------------|--------------------------|------------------------|--|-------------------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | PI | ATTE RIV | ER BASIN | | | | | | | at Unner Site | Lat 38°51'38", long 105°39'17",
in NW ¹ /4SE ¹ /4 sec.3, T.14 S.,
CO R.74 W., Park County. | 1991-92 | 5 ~27 - 92 | 10.07 | 14 | | | | | at Middle Site | Lat 38°54'03", long 105°38'33",
, in SE ¹ /4SW ¹ /4 sec.23, T.13 S.,
CO R.74 W., Park County. | 1991-92 | 8-20-91
7-26-92 | | 20
22 | | | | | | Lat 38°58'00", long 105°36'22",
in SE ¹ /4NW ¹ /4 sec.31, T.12 S.,
CO R.73 W., Park County. | 1991-92 | 5-27-92 | 14.58 | С | | | | | Deer Creek near
Littleton, CO
(06708500) | Lat 39°32'56", long 105°07'59",
in NE ¹ /4NE ¹ /4 sec.8, T.6 S.,
R.69 W., Jefferson County,
70 ft upstream from county
bridge over Deer Creek,
7.5 mi southwestof Littleton.
Drainage area is 26.2 mi ² . | 1942-46,
1978-92 | 3-28-92 | 5.13 | 72 | ^a 1980 | 6.22 | 320 | | Lee Gulch at
Littleton, CO
(06709740) | Lat 39°35'47", long 105°00'57", in SW ¹ /4SW ¹ /4 sec.21, T.5 S., R.68W., Arapahoe County, on right bank 30 ft upstream from culvert under Prince St. and 0.6 mi upstream from moutlin Littleton. Drainage area not determined. | , | 8-24-92 | 11.56 | 142 | ^a 1983 | 16.00 | 444 | | Dutch Creek at
Platte Canyon
Drive, near
Littleton, CO
(06709910) | Lat 39°36'01", long 105°02'28",
in NW ¹ 4SE ¹ /4 sec.19, T.5 S.,
R.69 W., Arapahoe County,
on left bank 150 ft down-
stream from bridge on Platte
Canyon Road. Drainage area
not determined. | 1985-92 | 8-24-92 | 9.93 | 374 € | 5- 1-91 | 11.51 | 1,090 | | Littles Creek
at Littleton,
CO
(06709995) | Lat 39°36'44", long 105°01'09", in SE ¹ /4SE ¹ /4 sec.17, T.5.S., R.68 W., Arapahoe County, 50 ft upstream from Rapp St., and 150 ft south of W. Alamo St. in Littleton. REVISED RECORDSWDR CO-89-1: 1988. Drainage area not determined. | 1985-92 | 8-24-921 | 10.94 | 94 7 | 2-29-90 | 13.01 | 503 | | Cub Creek at
Evergreen, CO
(06710400) | Lat 39°37'50", long 105°19'16",
in NW ¹ /4SE ¹ /4 sec.10, T.5 S.,
R.71 W., Jefferson County,
O.1 mi upstream from confluence
with Bear Creek. Drainage are
is 22.2 mi ² . | ce | 5-27-92 | 46.75 | 79 | ^a 1980 | b7.41 | 244 | | • | | | Water v | ear 1992 | | Period | of recor | | |--|---|----------------------|---|----------------------------------|--------------------------|-------------------|----------------|----------------------| | Station name
and | Location
and | Period
of | Date | Gage
height | Dis-
charge | Date | Gage
height | Dis-
charge | | number | drainage area | record | | (ft) | (ft ³ /s) | | (ft) | (ft ³ /s) | | | PLATTE : | RIVER BASI | NContinue | d | | | | | | t. Vernon Creek
near Morrison,
CO
(06710600) | Lat 39°40'49", long 105°11'50",
in NW'/4NW'/4 sec.26, T.4 S.,
R.70 W., Jefferson County,
1.9 mi north of Morrison,
Drainage area is 7.58 mi ² .
REVISED RECORDSWDR
CO-91-1: 1990. Drainage are
is 7.58 mi ² . | | 6-01-92 | 8.66 | 45 | 7-22-91 | 9.09 | 121 | | aramalee Gulch
at mouth at
Indian Hills,
CO
(06710990) | Lat 39°36'57", long 105°13'54",
in NW ¹ /4SE ¹ /4 sec.16, T.5 S.,
R.70 W., Jefferson County,
20 ft upstream from box type
culvert beneath U.S. Highway
Drainage area is 5.80 mi ² . | | e | e | e | ^a 1984 | 9.62 | 100 | | urkey Creek
near Morrison,
CO
(06711000) | Lat39°37'22", long 105°11'13",
in NE¹/4NE¹/4 sec.14, T.5 S.,
R.70 W., Jefferson County,
2.2 mi southwest of Morrison.
Drainage area is 48.0 mi². | | 4-17-92 | 39.57 | 125 | 5- 7-69 | С | 2,730 | | eaver Creek
near Lakewood,
CO
(06711305) | Lat 39°38'13", long 105°07'47",
in NE ¹ /4NE ¹ /4 sec.8, T.5 S.,
R.69 W., Jefferson County,
500 ft upstream from Simms St
and 700 ft south of West Quin
Drainage area not determined. | •, | 8-24-92 | f10.48 | [£] 30 (| 5- 2-91 | 12.50 | 305 | | ittle Dry Creek
near Arapahoe
Road, CO
(06711515) | Lat 39°35′38*, long 104°54′23*,
in NE¹/4NE¹/4 sec.29, T.5 S.,
R.67 W., Arapahoe County,
on right bank, 800 ft downstr
from Quebec St. (formerly
published as Inflow to
Holly Reservoir, 1985-86).
Drainage area not determined. | | 7-12-92 | 8.64 | 202 | ^a 1985 | 10.52 | 800 | | illow Creek at
Dry Creek Road,
near Englewood,
CO
(06711535) | | 1985-92 | 6-01-92 | 11.33 | 1810 | ^a 1985 | 14.28 | 3,470 | | | Lat 39°38′57", long 104°58′42",
i, in SE¹/4NE¹/4 sec.3, T.5 S.,
R.68 W., Arapahoe County,
on right bank 250 ft downstre
from bridge on Clarkson St.,
and 800 ft south of Hampton A
in Cherry Hills Village.
Drainage area not determined.
Prior to April 2, 1992,
gage was located at a site 30
upstream from the present loc | am
ve.,
O feet | 8-24-92 | 7.16 | С | ^a 1983 | 15.64 | 1,060 | | arvard Gulch at
Colorado Blvd.
at Denver, CO
(06711570) | Lat 39°40′08", long 104°56′32",
in SE¹/4SE¹/4 sec.25, T.4 S.,
R.67 W., Denver County, on
left bank, 100 ft upstream
from S. Jackson St., and
400 ft north of E. Yale Ave.'
Drainage area not determined. | 1979-92 | 7-20-92 | 13.50 | 750 E | 3- 4-88 | 14.02 | 597 | | | Lat 39°40'10", long 104°57'33",
y in SE'/4SE'/4 sec.26, T.4 S.,
R.68 W., Denver County, 200 f
downstream from University Bl
and 600 ft north of East Yale
Ave., in Denver. Drainage are
determined. | (1989
t
vd., | 7-20-92
-91 revised
5-15-89
7-10-90
7-20-91 | 14.46
12.56
13.09
13.67 | 907
162
323
549 | a1983 | 13.75 | 780 | | | | | Water | <u>vear 1992</u> | | Period | | | |---
---|------------------------|----------|------------------------|---------------------------------------|-------------------|------------------------|--| | Station name
and
number | and | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s | Date
) | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | PLATTE R | IVER BASI | NContinu | led | | | | | | Harvard Gulch
at Harvard Park
at Denver, CO
(06711575) | Lat 39°40'21", long 104°58'35",
in NW'/4SW'/4 sec.26, T.4 S.,
R.68 W., Denver County, on
left bank, 200 ft north of
E. Harvard Ave. and 300 ft
west of S. Ogden St., directly
north of Porter Hospital.
Drainage area not determined. | 1979-92 | 7-20-92 | 15.57 | 807 | a1981 | 15.61 | 785 | | Sanderson Gulch
tributary at
Lakewood, CO
(06711600) | Lat 39°41'19", long 105°04'54",
in NE ¹ /4NW ¹ /4 sec.23, T.4 S.,
R.68 W., Jefferson County,
300 ft upstream from
S. Wadsworth Blvd., 300 ft
south of W. Florida Ave. in
Lakewood. Drainage area is
0.38 mi ² . | 1969-92 | 7-12-92 | 13.01 | 68 | 6- 6-77 | 4.91 | 422 | | Sanderson Gulch
at Mouth at
Navajo St. at
Denver, CO
(06711609) | Lat. 39°41'33", long 105°00'12",
in SW ¹ /4NE ¹ /4 sec.21, T.4 S.,
R.68 W., Denver County,
200 ft south of Louisiana Ave.
at Navajo St. Drainage area
not determined. | | 8-24-92 | 10.95 | 310 | 6- 1-91 | 11.87 | 501 | | Weir Gulch upstream from 1st Avenue, at Denver, CO (06711618) | Lat 39°43'03", long 105°02'30",
in NW ¹ /4SE ¹ /4 sec.7, T.4 S.,
R.68 W., Denver County,
250 ft upstream from 1st Ave.,
in Denver. Drainage area not
determined. | 1985-92 | 8-24-92 | 10.06 | 120 | 8- 1-91 | 11.91 | 523 | | Ory Gulch at
Denver, CO
(06711770) | Lat 39°44′03", long 105°02′20",
in SW¹/4NE¹/4 sec.6, T.4 S.,
R.68 W., Denver County,
800 ft upstream from confluence
with Lakewood Gulch, north of
West 10th Ave., at Perry St.,
in Denver. Drainage area not
determined. | | 8-24-92 | 12.20 | 173 | ^a 1981 | 16.00 | 445 | | Lakewood Gulch
at Denver, CO
(06711700) | Lat 39°44′06", long 105°01′54",
in SW¹/4NW²/4 sec.5, T.4 S.,
R.68 W., Denver County,
2,000 ft downstream from
confluence with Dry Gulch,
near intersection of Knox Ct.,
and West 12th Ave., in Denver.
Drainage area not determined. | 1980-92 | 8-24-92 | 13.15 | 465 | ^a 1984 | 17.24 | 930 | | Sloans Lake,
south Tributary
at Denver, CO
(06711820) | Lat 39°44′44", long 105°03′28",
in NW¹/4SE¹/4 sec.36, T.3 S.,
R.69 W., Jefferson County,
50 ft south of 18th Ave.,
at Depew St. REVISED
RECORDSWDR CO-90-1:
1985-89. Drainage area
not determined. | 1985-92 | 8-24-92 | 2.62 | 40 | 6- 1-91 | 4.00 | 451 | | Westerly Creek
at Aurora, CO
(06714260) | Lat 39°44′43", long 104°52′48", in NW¹/4SW¹/4 sec.34, T.3 S., R.67 W., Adams County, 50 ft upstream from footbridge. 800 ft upstream from Montview Blvd., and 100 ft east of Boston St., in Aurora. REVISE RECORDSWDR CO-90-1: 1983-8: 1987-88. Drainage area not details and North Nor | D
5, | | 12.45 | 501 | ^a 1983 | 14.45 | 1,530 | | | | | Water | year 1992 | | Period | of recor | | |---|--|------------------------|----------|------------------------|---------------------------------------|-------------------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s | Date
) | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | PLATTE | RIVER BASI | NContinu | ied | | | | | | Sand Creek
tributary at
Denver, CO
(06714310) | Lat 39°47'07", long 104°50'31",
in SW ¹ /4SW ¹ /4 sec.13, T.3 S.,
R.67 W., Denver County, in
median of Andrews Drive
Parkway, 50 ft downstream
from Troy St. in Denver.
Drainage area is 0.29 mi ² . | 1971-92 | 7-15-92 | 13.93 | 462 | ^a 1985 | c | 800 | | Lena Gulch
at Upper Site,
at Golden, CO
(06719535) | Lat 39°43'21", long 105°11'46",
in NE¹/4NW¹/4 sec.11, T.4 S.,
R.70 W., Jefferson County,
60 ft north of US 40, and
2,200 ft southwest of US 6,
in Golden. Drainage area
not determined. | 1985-92 | 3-28-92 | 11.49 | b | ^a 1987 | 10.92 | 373 | | Lena Gulch
at Lakewood,
(06719560) | Lat 39°44'27", long 105°08'49", in SE¹/4SE¹/4 sec.31, T.3 S., R.69 W., Jefferson County on right bank 200 ft north of West 15th Drive at Arbutus Prior to July 6, 1988, at site approx. 500 ft downstrea (formerly published as Lena Gulch at Alkire at Golden, CO 1986-87). Drainage area is approximately 9.0 mi². | 1986-92
m, | 8-24-92 | 11.69 | 227 | 7-20-75 | 14.41 | 641 | | Hidden Lake Outflow at 65th Ave near Arvada, CO (06719775) | Lat 39°48'53", long 105°102'03"
in SE ¹ /4SE ¹ /4 sec.6, T.3 S.,
R.68 W., Adams County, 30 ft
downstream from 65th Ave. at
Lowell Blvd. May 1985 to
Aug. 1987 at site 200 ft
downstream. Drainage area
not determined. | , 1985-92 | 8-24-92 | ^f 2.16 | f2.8 | 7-22-91 | 2.50 | 22 | | Little Dry Creek
at Westminster,
CO
(06719840) | Lat 39°49'34", long 105°02'25",
in NW ¹ /4NE ¹ /4 sec.6, T.3 S.,
R.68 W., Adams County, 400 ft
downstream from 72nd Ave. in
Westminster. REVISED
RECORDSWDR CO-89-1: 1986.
Drainage area not determined. | 1982-92 | 8-24-92 | 11.41 | 1,280 | 6- 1-91 | 13.09 | 1,280 | | Middle Fork St.
Vrain Creek
near Allens
Park, CO
(06723000) | Lat 40°10'07", long 105°26'27",
in SW ¹ /4NW ¹ /4 sec.3, T.2 N.,
R.72 W., Boulder County,
1.4 mi northeast from Raymond
REVISED RECORDSWDR CO-89-1
1983-87, Drainage area is
28.0 mi ² . | 1978-92 | 5-09-92 | 96.63 | 717 | 6-12-90 | 97.31 | 892 | | Fourmile Creek
near Crisman,
CO
(06727400) | Lat 40°02'44", long 105°22'02",
in SE¹/4SW¹/4 sec.17, T.1 N.,
R.71 W., Boulder county, on
right bank 0.65 mile below
junction of Gold Run Road.
Drainage area not determined. | 1985-92 | 4-18-92 | 10.62 | 42 | 6- 3-91 | 11.45 | b145 | | Sunshine Creek
at Boulder, CO
(06728010) | Lat 40°01'15", long 104°17'47",
in NW¹/4SW¹/4 sec.25, T.1 N.,
R.71 W., Boulder County,
on right bank 0.2 mile past
Hospital at Open Space Park,
125 ft upstream from footbrid
REVISED RECORDSWDR CO-90-1
1989. Drainage area not
determined. | ge. | 4~18-92 | 1.50 | 5.4 | 6- 9-89 | 2.12 | 22 | | | | | Water | year 1992 | | Period | | d maximum | |--|---|------------------------|----------|------------------------|---------------------------------------|-------------------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s | Date
3) | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | PLATTE | RIVER BASI | NContinu | ıed | | | | | | Fall River at
Estes Park,
CO
(06732500) | Lat 40°22′40°, long 105°31′56°,
in NW¹/4NW¹/4 sec.25, T.5 N.,
R.73 W., Larimer County,
100 ft upstream from
State bridge 34 and 0.7 mi
upstream from
mouth. Destroy
by flood, 7-82. Drainage are
is 39.5 mi². | 1978-92
ved | 6-28-92 | 92.23 | 140 | 7-15-82 | ^b 11.10 | 6,550 | | Cedar Creek at
Cedar Cove, CO
(06736650) | Lat 40°25′08*, long 105°15′53*, NW¹/4NW¹/4 sec.8, T.5 N., R.70 W., Larimer County, 0.2 mi north of Cedar Cove and 4.1 mi south-east of Draw Drainage area is 18.9 mi². | | 4-16-92 | 84.95 | 6.6 | ^a 1980 | b13.80 | 1,590 | | | AR | KANSAS RIVE | R BASIN | | | | | | | Chalk Creek near
Nathrop, CO
(07091000) | Lat 38°44'01", long 106°09'34",
in SE1/4NW1/4 sec.19, T.15 s.
R.78 W., Chaffee County 4 mi
west of Nathrop, Drainage
area is 97.0 mi ² . | ,1949-56, | 4-28-92 | 2.85 | 725 | ^a 1986 | 3.55 | 1,400 | | Badger Creek
above Cals
Fork Gulch
near Howard,
CO
(07093705) | Lat 38°45′25″, long 105°50′52″
in NW1/4SW1/4 sec.12, T.15 S.
R.76 W., Park County, 1.0 mi
upstream from Cals Fork Gulch
and 21 mi north of Howard.
Drainage area is 18.0 mi ² . | • | no | peaks dur | ing year | ^a 1987 | 6.34 | 183 | | St. Charles River at Burnt Mill, CO (07107500) | Lat 38°03-06", long 104°47'35",
in NE1/4NE1/4 sec.17, T.23 S.
R.66 W., Pueblo County,
5.9 mi downstream from
North St. Charles River.
Drainage areais 166 mi ² . | | 7-14-92 | 6.34 | 3,530 | 7-22-25 | 22.13 | 21,800 | | Big Arroyo near
Thatcher, CO
(07120620) | Lat 37°33'17", long 104°01'15",
in NW1/4NW1/4 sec.4, T.29 S.,
R.59 W., Las Animas County,
2.4 mi from U.S. Route 350,
4.8 mi east of Thatcher, and
3.2 mi upstream from mouth.
Drainage area is 15.5 mi ² . | | 6- 7-92 | 4.54 | 1,070 | 7-28-85 | 4.86 | 1,500 | | Red Rock Canyon
Creek at mouth,
near Thatcher,
CO
(07126415) | Lat 37°30′54", long 103°43′25",
in NW1/45E1/4 sec.18, T.29 S.
R.56 W., Las Animas County,
200 ft downstream from
Welsh Canyon, 0.3 mi upstream
from mouth, and 21 mi east of
Thatcher. Drainage area is
48.8 mi². | ,1991-92 | a | 5.98 | 28 | 5-22-87 | 10.09 | 1,530 | | Bent Canyon
Creek at mouth
near Timpas, CO
(07126480) | Lat 37°35'19", long 103°38'51", in SE1/4SE1/4 sec.23, T.28 S. R.65 W., Las Animas County 0.5 mi upstream from mouth, 0.6 mi southwest of Rourke Ranch house, 0.9 mi upstream from Iron Canyon, and 17 mi southeast of Timpas. Drainage area is 56.2 mi². | | i no | o peaks du | ring yea | r 8-21-8 | 4 12.56 | 2,640 | a Month or day of occurrence is unknown or not exact. b At different datum. c Not determined. d Previously operated as a continuous-record gaging station. e Station out of operation for 1992, highway construction. f Maximum observed. #### MISCELLANEOUS STATION ANALYSES | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIN | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE | TEMPER | |----------------|--------------|--|---|--------------------------------------|------------------|--------------|---|--------------------------------|--------------| | 06614800 | м | ICHIGAN RIV | ER NEAR C | AMERON PASS | , CO (LAT 40 2 | 9 46N LO | NG 105 51 5 | 2W) | | | OCT 1991
07 | 1440 | 0.51 | 53 | 7.5 | APR 1992
13 | 1258 | 0.41 | 58 | 1.0 | | NOV
13 | 1330 | 0.36 | 54 | 3.5 | JUN
25 | 1015 | 13.2 | 36 | 4.0 | | JAN 1992
15 | 1400 | 0.22 | 54 | 1.0 | JUL
24 | 0950 | 3.64 | 43 | 7.5 | | FEB
27 | 1445 | 0.25 | 56 | 1.5 | SEP
10 | 1540 | 0.92 | 54 | 10.5 | | 06699005 | TARRYALL | CREEK BELO | W ROCK CE | REEK NEAR JE | FFERSON, CO (L | AT 39 17 | 13N LONG 1 | 05 41 43W | I) | | OCT 1991 | 1215 | 19.5 | 124 | 6.0 | JUN 1992
16 | 1145 | 53.2 | 170 | 11.0 | | NOV 19 | 1130 | 17.4 | 170 | 0.0 | JUL
14 | 1515 | 42.8 | 183 | 10.0 | | DEC 17 | 1030 | 7.49 | 148 | 0.0 | 31
AUG | 1445 | E42 | 103 | 19.0 | | JAN 1992
28 | 1000 | | 165 | 0.0 | 19
SEP | 1810 | 35.7 | 114 | 18.0 | | MAR
05 | 1000 | | 172 | 0.0 | 17 | 1530 | 17.9 | 140 | 14.5 | | MAY
01 | 0835 | 32.5 | 189 | 6.0 | | | | | | | 12
28 | 1130
1000 | 35.0
82.1 | 1 9 5
21 6 | 6.5
9.0 | | | | | | | 06 | 5709000 | PLUM C | REEK NEAR | SEDALIA, CO | (LAT 39 26 19N | LONG 104 | 1 58 56W) | | | | DEC 1991
13 | 1100 | 12.5 | 467 | 0.5 | MAY 1992
21 | 1455 | 19.2 | 289 | 22.0 | | JAN 1992
31 | 1100 | 13.6 | 376 | 2.0 | JUN
29 | 1030 | 40.9 | 258 | 20.5 | | MAR
11 | 1630 | 40.0 | 299 | 11.0 | AUG
03 | 1130 | 3.0 | 370 | 23.5 | | APR
13 | 1235 | 140 | 183 | 16.0 | 03
SEP | 1420 | 2.36 | 205 | 25.0 | | 15 | 1440 | 182 | 157 | 16.0 | 28 | 1420 | 4.97 | 293 | | | 06709530 | PLUM | CREEK AT | TITAN ROA | NEAR LOUVI | ERS, CO (LAT 39 | 30 27N | LONG 105 0 | l 23W) | | | DEC 1991
13 | 1230 | 23.4 | 424 | 0.5 | JUL 1992
15 | 0945 | 12.7 | 325 | 20.0 | | JAN 1992
31 | 1402 | 20.1 | 377 | 0.5 | 21
2 9 | 1150
1200 | 11.0
1.83 | 375
371 | 24.0
20.5 | | MAY
20 | 1415 | 16.4 | 290 | 24.5 | AUG
25 | 1245 | 51.1 | 330 | 20.5 | | JUL
06 | 1200 | 19.0 | 295 | 25.5 | SEP 23 | 1445 | 0.54 | 404 | 21.0 | | 06710245 | COLUMN DIA | mmp prupp | am distrosi | | IGLEWOOD, CO (LA | m 20 27 | FON TONG 1 | SE OO EOW | • | | DEC 1991 | SOUTH FLA | IIIE KIVER I | II UNION | AVENUE AI EN | JUN 1992 | .1 39 37 | 32N LONG 1 | 55 00 50 m , | , | | 02 | 1425
1400 | 27.2
19.5 | 824
1410 | 2.5
8.5 | 11
JUL | 1330 | 139 | 395 | 22.0 | | JAN 1992
23 | 1145 | 68.8 | 474 | 2.5 | 09
AUG | 1330 | 57.5 | 479 | 26.5 | | MAR
12 | 1400 | 127 | 456 | 11.5 | 07
SEP | 1100 | 45.6 | 493 | 21.0 | | APR 07 | 1155 | 116 | 432 | 11.0 | 08
25 | 1510
1130 | 30.1
27.4 |
683 | 23.0
17.5 | | MAY 26 | 1330 | 197 | 104 | 20.5 | | | | | | | 06710 | 385 | BEAR CREE | K ABOVE E | VERGREEN. C | O (LAT 39 37 58) | N LONG 1 | 05 19 59W) | | | | OCT 1991 | | | | | APR 1992 | | , | | | | 15
NOV | 1205 | 26.2 | 56 | 6.0 | 14
MAY | 1205 | 56.9 | 79 | 5.5 | | 13
DEC | 1150 | 30.0 | 63 | 2.0 | 18
JUN | 1100 | 67.4 | 55 | 9.5 | | 17
JAN 1992 | 1115 | 17.5 | 66 | 1.0 | 09
JUL | 1115 | 57.2 | 56 | 8.5 | | 31
FEB | 1055 | 14.0 | 72 | 0.0 | 07
AUG | 0930 | 41.7 | 51 | 13.0 | | 28
MAR | 1230 | 17.5 | 79 | 0.0 | 04
SEP | 0800 | 26.3 | 55 | 11.0 | | 17
20 | 1330
1330 | 25.8
32.0 | 90
93 | 2.0
1.5 | 21 | 1230 | 20.5 | 59 | 12.0 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIM | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER | |----------------|--------------|--|---|---------------------------------------|--------------------|--------------|---|---|--------------| | 06710605 | BEAR CREEK | ABOVE BE | EAR CREEK | LAKE NEAR | MORRISON. CO (LAT | 39 39 | OBN LONG 1 |)5 10 23W |) | | OCT 1991
21 | 1315 | 19.2 | 136 | 8.0 | MAY 1992
19 | 0945 | 48.5 | 117 | 12.5 | | NOV
13 | 0845 | 25.7 | 154 | 2.0 | JUN
12 | 1315 | 67.4 | 110 | 16.5 | | DEC 17 | 1225 | 19.2 | 214 | 1.0 | лиL
06 | 1105 | 27.8 | 120 | 17.0 | | JAN 1992 | | | | | AUG | | | | | | 17
MAR | 1400 | 15.6 | 223 | 1.0 | O4
SEP | 1015 | 7.89 | 163 | 16.0 | | 02
APR | 1055 | 16.6 | 230 | 4.5 | 22 | 1045 | 0.86 | 329 | 13.0 | | 13 | 1045 | 67.5 | 160 | 6.0 | | | | | | | 0671200 |)0 Ci | HERRY CRE | EK NEAR F | RANKTOWN, | CO (LAT 39 21 21N | LONG | 104 45 4 6W) | | | | DEC_1991 | 1000 | 4 22 | 224 | 0.0 | MAY 1992 | 1440 | 4 44 | 240 | 10 5 | | 26
JAN 1992 | 1230 | 4.23 | 224 | 0.0 | 26
JUN | 1440 | 4.44 | 240 | 19.5 | | 02
FEB | 1400 | 3.98 | | 0.0 | 29
JUL | 1305 | 6.08 | 219 | 22.5 | | 04
MAR | 1130 | 5.80 | 200 | 1.5 | 20
AU G | 1415 | 2.72 | | 23.5 | | 03
APR | 1230 | 22.9 | 200 | 4.5 | 20
SEP | 1220 | 2.09 | 203 | 22.0 | | 20 | 1430 | 11.3 | 244 | 10.5 | 28 | 1225 | 2.11 | 147 | | | 06713000 | CHERRY | CREEK B | ELOW CHER | RY CREEK L | AKE, CO (LAT 39 3 | 9 12N | LONG 104 51 | 41W) | | | MAR 1992 | | | | | AUG 1992 | | | | | | 24
APR | 1400 | 46.3 | 9 05 | 7.0 | 03
SEP | 1135 | 11.8 | 874 | 22.0 | | 22
MAY | 1040 | 10.8 | 832 | 11.5 | 03
22 | 1535
1145 | 0.13
0.01 | 863
912 | 27.5
22.5 | | 29
JUL | 1230 | 0.35 | 860 | 21.0 | | 11.15 | 0.01 | 712 | 22.5 | | 01 | 1340 | 0.25 | 844 | 24.5 | | | | | | | 15
17 | 1525
1300 | 10.7
10.9 | 885
900 | 21.0
22.5 | | | | | | | 39 | 31091044645 | 00 CHERRY | CREEK NEA | AR PARKER, | CO (LAT 39 31 09N | LONG 10 | 4 46 45W) | | | | DEC 1991 | | | | , | APR 1992 | | , | | | | 03
JAN 1992 | 1125 | 1.48 | 575 | 7.5 | | 1150 | 13.6 | 390 | 16.0 | | 21 | 1445 | 5.58 | 476 | 4.5 | 11 | 1125 | 8.53 | 389 | 21.5 | | FEB 25 | | 17.8 | 374 | 5.0 | | 1445 | 2.35 | 548 | 23.5 | | 27
MAR | | 13.6 | 377 | 7.0 | AUG
20 | 1455 | 1.66 | 548 | 20.5 | | 03
12 | | 24.3
26.9 | 294
305 | 10.5
10.0 | | | | | | | 26 | 1155 | 35.9 | 297 | 15.0 | | | | | | | 06713 | 300 | CHERRY C | REEK AT G | LENDALE, C | O (LAT 39 42 22N L | ONG 10 | 4 56 15W) | | | | OCT 1991 | | | | | MAY 1992 | | | | | | 23
DEC | 1415 | 6.17 | 1380 | 14.0 | 20
29 | 1400
1150 | 81. 5
17.7 | 944
897 | 21.0
17.0 | | 03
JAN 1992 | 1345 | 6.36 | 1600 | 6.0 | JUL
01 | 1150 | 15 .8 | 1040 | 18.0 | | 21
FEB | 1145 | 5.83 | 1700 | 5.5 | 27
AUG | 1500 | 31 | 981 | 24.5 | | 25
MAR | 1450 | 3.96 | 1560 | 9.0 | 17
SEP | 1150 | 8.09 | 1270 | 19.5 | |
25 | 1200 | 52.6 | 967 | 10.5 | 08 | 1525 | 13.8 | 1030 | 21.5 | | APR
22 | 1325 | 18.3 | 960 | 13.0 | 22 | 1320 | 7.16 | 1370 | 19.5 | | 0671 | 3500 | CHERRY (| CREEK AT | DENVER. CO. | (LAT 39 44 58N L | ONG 109 | 5 00 08W) | | | | OCT 1991 | 3000 | | | , , , , , , , , , , , , , , , , , , , | JUN 1992 | | | | | | 22 | 1000 | 15.4 | 1240 | 12.0 | 02 | 1130 | 69.5 | 584 | 16.0 | | DEC
09 | 1207 | 11.2 | 1310 | 9.5 | JUL
17 | 1055 | 40.7 | 570 | 19.0 | | JAN 1992
27 | 1015 | 11.5 | 1320 | 6.0 | 28
A ug | 0845 | 29 | 1070 | 17.5 | | FEB
26 | 1255 | 12.0 | 1160 | 11.5 | 27
SEP | 1635 | 19.8 | 1040 | 22.0 | | MAR 24 | 1115 | 50.0 | 1050 | 10.0 | 03 | 1650 | 20.1 | 1350 | 21.0 | | APR | 1200 | | | 15.0 | | | | | | | 23 | 1200 | 24.5 | 1070 | 13.0 | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIMI | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER
ATUR
WATE
(DEG C | |----------------|--------------|--|---|--------------------------------------|----------------|--------------|--|---|----------------------------------| | 06714215 S | OUTH PLAT | TTE RIVER A | AT 64TH A | VENUE COMMERCI | E CITY, CO (L | AT 39 48 | 44N LONG 1 | 04 57 28W |) | | OCT 1991
29 | 1240 | 18.9 | 1460 | 10.0 | JUN 1992
29 | 1110 | 25.0 | 871 | 21.0 | | DEC | 1135 | 10.2 | 1450 | 5.5 | JUL 14 | 1330 | 218 | 650 | 24.0 | | 10
MAR 1992 | | | | | AUG | | | | | | 30
MAY | 0900 | 250 | 851 | 9.5 | 07 | 1330 | 29.5 | 880 | 23.0 | | 14 | 1420 | 160 | 640 | 20.0 | | | | | | | 0672082 | 0 | BIG DRY CE | REEK AT W | ESTMINSTER, CO |) (LAT 39 54 2 | ON LONG | 05 02 04W) | | | | NOV 1991
01 | 1210 | 9.00 | 1460 | 1.5 | MAY 1992
29 | 1220 | 11.1 | 248 | 10.0 | | JAN 1992 | | | | | JUN | | | 366 | | | 30
FEB | 1200 | 2.13 | 1400 | 2.5 | 30
AUG | 0945 | 30.2 | | 19.0 | | 26
MAR | 1300 | 1.01 | 1800 | 7.5 | 11
SEP | 1115 | 27.6 | 354 | 19.0 | | 05
APR | 1215 | 16.6 | 831 | 8.0 | 28 | 1430 | 2.68 | 1170 | 19.0 | | 09 | 1030 | 2.33 | 1500 | 10.5 | | | | | | | 06720990 | BIG DR | Y CREEK AT | MOUTH NE | AR FORT LUPTO | N, CO (LAT 40 | 04 09N | LONG 104 49 | 52W) | | | NOV 1991 | 1515 | 23.3 | | 9.0 | APR 1992
15 | 1215 | 131 | 1140 | 15.0 | | 08
DEC | | | | | JUN | | | | | | 31
FEB 1992 | 1130 | 22.2 | 360 | 2.0 | 03 | 1225
1350 | 82.3
57.2 | 1010
780 | 18.0
22.0 | | 04
26 | 1030
1025 | 21.8
17.2 | 1560
1530 | 2.0
4.0 | AUG
03 | 1135 | 40.5 | 974 | 21.0 | | MAR
05 | 1350 | 80.0 | 1020 | 8.5 | SEP
04 | 1310 | 2.64 | 1330 | 19.5 | | 06
12 | 1300
1200 | 43.2
79.6 | 1330
1110 | 11.0
8.5 | | | | | | | 20 | 1250 | 41.0 | 1560 | 9.5 | | | | | | | 06721500 | NORTH | ST. VRAIN | CREEK NE | AR ALLENS PAR | K, CO (LAT 40 | 13 07N | LONG 105 31 | . 57 w) | | | OCT 1991 | | | | | MAY 1992 | | | | | | 01
07 | 1050
1052 | 20.0
16.0 | 26
22 | 7.5
5.0 | 12
JUN | 1045 | 70.2 | 19 | 4.5 | | NOV
20 | 0900 | 9.71 | 24 | 0.0 | 02
18 | 1300
0930 | 100
106 | 20
17 | 7.5
5.5 | | DEC 10 | 0830 | 7.96 | 26 | 0.0 | JUL
14 | 0945 | 86.4 | 16 | 9.5 | | JAN 1992 | | | | | 26 | 0945 | 45.3 | 19 | 7.5 | | 28
MAR | 0810 | 6.46 | 27 | 0.0 | SEP
16 | 1030 | 19 | 21 | 10.5 | | 06
APR | 1230 | 4.64 | 27 | 2.5 | | | | | | | 01 | 1000 | 9.36 | 28 | 0.5 | | | | | | | 06725450 | s | T. VRAIN C | REEK BELC | W LONGMONT, C | O (LAT 40 09 | 29N LONG | 105 00 53W | 1) | | | NOV 1991 | | | | | APR 1992 | | | | | | 06
DEC | 1430 | 53.9 | 1420 | 7.0 | 09
JUN | 1410 | 53.4 | 1640 | 11.0 | | 19
23 | 1230
1115 | 50.8
40.0 | 1410
1480 | 4.0
5.0 | 02
30 | 1050
1150 | 135
208 | 1050
750 | 19.0
19.0 | | JAN 1992 | | | | | AUG | | | | | | 23
FEB | 1020 | 31.6 | 1540 | 2.0 | 21
SEP | 1035 | 152 | 1390 | 22.5 | | 25
MAR | 1115 | 34.0 | 1400 | 6.5 | 22 | 0805 | 67.2 | 672 | 18.0 | | 17 | 1310 | 88.1 | 675 | 10.0 | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIM | DIS-
CHARGE
INST.
CUBIC
FEET
FEET
SECOND | , SPE-
CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURI
WATEI
(DEG C) | |----------------|--------------|--|---|--------------------------------------|-----------------|--------------|--|--|--------------------------------------| | 0672690 | 00 | BUMMERS O | GULCH NEAR | EL VADO, CO | (LAT 40 00 4: | 2N LONG | 105 20 53W) | | | | NOV_1991 | | | | | MAY 1992 | 1450 | 0.61 | 47.0 | 7.4.0 | | DEC | 0950 | 0.38 | 498 | 3.0 | 18
JUL | 1450 | 0.61 | 419 | 14.0 | | 11
JAN 1992 | 1445 | 0.45 | 462 | 2.0 | 23
AUG | 1130 | 31.0 | 467 | 14.0 | | 24
MAR | 1315 | 0.20 | 484 | 0.0 | 26
27 | 0940
0940 | 0.74
0.74 | 472
472 | 10.0
10.0 | | 16
APR | 1400 | 1.37 | 427 | 7.0 | SEP
04 | 1355 | 0.31 | 494 | 14.0 | | 07
20 | 1530
1515 | 2.11
1.41 | 367
388 | 8.0
9.0 | • | 1000 | 0.01 | | | | 067275 | 00 | FOURMILE | CREEK AT | ORODELL, CO | (LAT 40 01 06 | n Long 1 | 05 19 33W) | | | | NOV 1991 | 1130 | 1 40 | 207 | 1.0 | MAY 1992 | 1255 | 11.8 | 110 | 12.5 | | 05
DEC | | 1.48 | 297 | 1.0 | 18
JUN | | | | | | 11
JAN 1992 | 1315 | 2.16 | 345 | 0.5 | 24
JUL | 1030 | 4.22 | 139 | 15.0 | | 24
MAR | 1200 | 0.85 | 362 | 0.5 | 23
AUG | 0950 | 0.83 | 222 | 15.0 | | 16
APR | 1200 | 8.62 | 333 | 6.0 | 26
SEP | 1211 | 2.43 | 249 | 13.0 | | 07 | 1300 | 18.0 | 237 | 6.0 | 04 | 1150 | 0.73 | 282 | 14.5 | | 13
20 | 1135
1330 | 25.3
33.7 | 176
140 | 6.5
6.0 | | | | | | | 06730200 E | OULDER C | REEK AT NO | RTH 75TH | STREET NEAR E | BOULDER, CO (LA | AT 40 03 | 06N LONG 1 | 05 10 42 ₩ |) | | NOV 1991
05 | 1400 | 39.9 | 698 | 13.5 | MAY 1992
19 | 1205 | 142 | 372 | 17.0 | | DEC 11 | 1205 | 34.8 | 727 | | JUN
23 | 0930 | 143 | 545 | 19.0 | | JAN 1992 | | | | | AUG | | | | | | 24
MAR | 0930 | 37.4 | 876 | 9.5 | 20
SEP | 1250 | 114 | 391 | 21.0 | | 17
APR | 1440 | 91.6 | 564 | 9.5 | 01
10 | 1240
1320 | 56.8
51.6 | 743
517 | 20.5
20.0 | | 13 | 1445 | 60.0 | 496 | 15.0 | | | | | | | 06746095 | JOE WRIG | HT CREEK | ABOVE JOE | WRIGHT RESER | VOIR, CO (LAT | 40 32 24 | N LONG 105 | 52 56W) | | | OCT 1991
08 | 1200 | 2.33 | 63 | 4.5 | JUN 1992
25 | 1200 | 22.2 | 36 | 6.5 | | NOV
14 | 0940 | 1.45 | 75 | 0.0 | JUL
23 | 1125 | 16.4 | 48 | 9.0 | | JAN 1992
16 | 0950 | 0.35 | 76 | 0.0 | SEP | 0850 | 4.38 | 58 | 3.5 | | FEB | | | | | 11 | 0030 | 4.50 | 30 | 3.3 | | 27 | 1100 | 0.65 | 81 | 0.0 | | | | | | | 06746110 | JOE WRIG | HT CREEK | BELOW JOE | WRIGHT RESER | VOIR, CO (LAT | 40 33 43 | N LONG 105 | 52 09W) | | | OCT 1991
08 | 1020 | 0.91 | 44 | 2.0 | JUN 1992
25 | 1305 | 9.59 | 38 | 6.0 | | NOV | | | | | 25 | 1340 | 9.59 | 38 | 6.0 | | 14
JAN 1992 | 1000 | 0.55 | 45 | 0.5 | JUL
23 | 1335 | 28.2 | 42 | 6.0 | | 16
FEB | 1110 | 0.62 | 51 | 0.0 | 23
SEP | 1345 | 28.2 | 42 | 6.0 | | 28
APR | 1000 | 0.50 | 54 | 0.5 | 11 | 1045 | 13.1 | 46 | 9.5 | | 14 | 1024 | 0.64 | 57 | 1.0 | | | | | | | 07093740 | BADG | ER CREEK, | UPPER STA | TION, NEAR HO | WARD, CO (LAT 3 | 8 39 25N | LONG 105 4 | 8 45W | | | OCT 1991 | | | | | JUN 1992 | | | | | | 02
29 | 1240
1200 | 0.65
0.54 | 422
432 | 14.0
0.0 | 09
JUL | 1050 | 1.0 | 414 | 12.0 | | APR 1992
07 | 1145 | 15 | 256 | 3.5 | 22
AUG | 0955 | 0.26 | 409 | 13.0 | | 23
MAY | 1220 | 2.0 | 407 | 12.0 | 11
SEP | 1320 | 3.7 | 393 | 19.0 | | 05 | 1020 | 1.3 | 418 | 9.0 | 01 | 1145 | 1.8 | 396 | 10.5 | | 22 | 1135 | 0.53 | 400 | 13.5 | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | D A | те тім | DIS- CHARGE, INST. CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER
ATUR
WATE
(DEG C | |--|--|---|---|---|---|--|---|---|---|---------------------------------------| | 070 | 99060 | BEAVER CI | REEK ABOVE | : HIGHWAY | 115 NEAR | PENROSE, CO (I | LAT 38 29 2 | IN LONG 104 | 59 49W) | | | | NOV 1991
13 | 1002 | 9.1 | 152 | 3.0 | MAY 1992
20 | 1055 | 31 | 100 | 13.0 | | | MAR 1992
27 | 1240 | 6.9 | 146 | 7.5 | JUN
15 | 1305 | 94 | 89 | 15.0 | | | APR
14 | 1310 | 81 | 138 | 10.0 | SEP
10 | 1205 | 8.4 | 108 | 13.5 | | 07099230 | TUR | KEY CREEK A |
ABOVE TELI | ER RESERV | VOIR NEAR | STONE CITY, CO |). (LAT 38 2 | 27 37N LONG | 104 49 19 | 9 W) | | | JAN 1992 | | | | | JUN 1992 | | | | | | | 10
MAR | 1145 | 0.39 | | 6.5 | 29
AU G | 1220 | 4.8 | 630 | 19.0 | | | 02
APR | 1345 | 0.43 | 990 | 12.0 | 06
SEP | 0940 | 0.66 | 782 | 16.0 | | | 21
MAY | 1100 | 1.7 | 904 | 8. 5 | 03 | 0950 | 0.58 | 800 | 12.5 | | | 29 | 1030 | 3.6 | 715 | 10.5 | | | | | | | | 07103703 | CAM | P CREEK A | r garden | OF THE GOI | DS, CO (LAT 38 | 52 37N LON | G 104 52 20 | W) | | | | MAY 1992
20 | 1230 | 0.26 | 228 | 19.5 | AUG 1992
11 | 1435 | 0.02 | 325 | 23.0 | | | 27
JUN | 1315 | 0.23 | 252 | 8.0 | 24
SEP | 1525 | 0.20 | 197 | 14.0 | | | 02 | 1530
1150 | 0.63
2.0 | 257
215 | 20.0
13.0 | 04
16 | 1310
1200 | 0.14
0.24 | 350
345 | 19.5
17.5 | | | 18
24 | 1210
1335 | 0.80
0.63 | 242
249 | 17.5
20.0 | 28 | 1225 | 0.01 | 335 | 14.0 | | | JUL
01 | 1330 | 0.77 | 262 | 19.0 | | | | | | | | 09 | 1215
1310 | 0.33
0.12 | 290
315 | 20.0 | | | | | | | 07 | 103800 | WEST MO | NUMENT CRI | EEK AT AI | R FORCE AG | CADEMY, CO (LA | T 38 58 14N | LONG 104 5 | 4 08W) | | | | OCT 1991 | | | | | APR 1992 | <u>:</u> | | | | | | 01
NOV | 1115 | 0.27 | 99 | 9.5 | 02
30 | 1110
1 5 05 | 0.50
2.5 | 76
68 | 3.0
10.0 | | | 12
12 | 1115
1225 | 0.14
0.13 | 9 8
92 | 3.5
3.5 | JUN 02 | 1205 | 1.2 | 78 | 8.0 | | | DEC
17 | | | | | | | | | | | | | 1015 | 0.07 | | | JUL | 1305 | 0.08 | | | | | JAN 1992 | 1015 | 0.07 | 89 | 0.0 | | 1305 | 0.08 | 92 | 15.5 | | | 21 | 1015
1045 | 0.07 | | | JUL | 1305 | 0.08 | | | | 07103980 | COTTON | 1045 | 0.09 | 89
89 | 0.0 | JUL
06
ADO SPRINGS, C | O (LAT 38 5 | | 92 | 15.5 | | 07103980 | 21
COTTON
MAY 1992
20 | 1045 | 0.09 | 89
89 | 0.0 | JUL
06
ADO SPRINGS, C
AUG 1992 | O (LAT 38 5 | | 92 | 15.5 | | 07103980 | 21
COTTON
MAY 1992 | 1045 | 0.09 | 89
89
AN ROAD N | 0.0
0.0
EAR COLOR | JUL
06
ADO SPRINGS, C
AUG 1992
11
21 | O (LAT 38 5
!
1335
1330 | 6 22N LONG | 92
104 44 269
570
560 | 15.5
W)
28.0
28.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 | 1045
WOOD CREEK
1100
1020
1320 | 0.09
AT WOODMA
0.46
0.84
0.89 | 89
89
AN ROAD N
530
525
520 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 21 24 SEP | O (LAT 38 5
1335
1330
1405 | 0.22
0.18
34 | 92
104 44 26
570
560
108 | 15.5
W)
28.0
28.0
15.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 | 1045
WOOD CREEK
1100
1020
1320
1045
1055 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 | 89
89
AN ROAD N
530
525
520
514
562 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 21 24 SEP 04 16 | O (LAT 38 5
1335
1330
1405
1155
1110 | 6 22N LONG 0.22 0.18 34 0.46 0.26 | 92
104 44 26
570
560
108
590
600 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL | 1045
IWOOD CREEK
1100
1020
1320
1045
1055
1215 | 0.09
AT WOODMA
0.46
0.84
0.89
0.71
0.18
0.29 | 89
89
AN ROAD N
530
525
520
514
562
525 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5 | JUL 06 ADO SPRINGS, C 11 21 24 SEP 04 | O (LAT 38 5
1335
1330
1405
1155 | 6 22N LONG 0.22 0.18 34 0.46 | 92
104 44 26
570
560
108
590 | 15.5
W)
28.0
28.0
15.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 | 89
89
AN ROAD N
530
525
520
514
562
525
595
565 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0 | JUL 06 ADO SPRINGS, C AUG 1992 11 21 24 SEP 04 16 | O (LAT 38 5
1335
1330
1405
1155
1110 | 6 22N LONG 0.22 0.18 34 0.46 0.26 | 92
104 44 26
570
560
108
590
600 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 | 89
89
AN ROAD N
530
525
520
514
562
525
595 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 21 24 SEP 04 16 | O (LAT 38 5
1335
1330
1405
1155
1110 | 6 22N LONG 0.22 0.18 34 0.46 0.26 | 92
104 44 26
570
560
108
590
600 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | 07103980 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 20 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 | 89
89
AN ROAD N
530
525
520
514
562
525
595
565
540 | 0.0
0.0
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0 | JUL 06 ADO SPRINGS, C 11 21 24 SEP 04 28 | O (LAT 38 5
1335
1330
1405
1155
1110
1135 | 0.22
0.18
34
0.46
0.26
0.36 | 92
104 44 26
570
560
108
590
600
605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 20 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 | 89
89
AN ROAD N
530
525
520
514
562
525
595
565
540 | 0.0
0.0
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0 | JUL 06 ADO SPRINGS, C AUG 1992 11 21 24 SEP 04 16 28 | O (LAT 38 5
1335
1330
1405
1155
1110
1135 | 0.22
0.18
34
0.46
0.26
0.36 | 92
104 44 26
570
560
108
590
600
605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | MAY :
20 | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 20 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 DO Bi | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 EAR CREEK | 89
89
AN ROAD N
530
525
520
514
562
525
595
565
540
NEAR COLO | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0
16.5 | JUL 06 ADO SPRINGS, C 11 21 24 SEP 04 16 28 | O (LAT 38 5
1335
1330
1405
1155
1110
1135 | 6 22N LONG 0.22 0.18 34 0.46 0.26 0.36 | 92 104 44 26 570 560 108 590 600 605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | MAY :
20
27
JUN | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 20 0710500 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 00 Bi 65 0.24 55 3.8 | 0.09 AT WOODM 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 EAR CREEK 100 74 | 89
89
AN ROAD N
530
525
520
514
562
525
595
565
540
NEAR COLO | 0.0
0.0
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0
16.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 24 SEP 04 16 28 AUG 1992 12 121 124 124 124 124 124 124 124 124 124 124 | O (LAT 38 5
1335
1330
1405
1155
1110
1135 | 6 22N LONG 0.22 0.18 34 0.46 0.26 0.36 G 104 53 179 38 105 14 118 | 92 104 44 26 570 560 108 590 600 605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | MAY : 20 27 JUN 03 11 | 21 COTTON MAY 1992 20 28 JUN 02 11 24 JUL 01 09 20 0710500 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 00 Bi 05 0.2 3.8 15 0.3 | 0.09 AT WOODM 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 EAR CREEK 4 100 74 1 97 | 89
89
AN ROAD N
530
525
520
514
562
525
595
565
540
NEAR COLO
6.0
9.5 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0
16.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 24 SEP 04 16 28 IGS, CO (LAT 38 AUG 1992 12 1 21 21 21 21 21 22 1 24 1 SEP | O (LAT 38 5 1335 1330 1405 1155 1110 1135 49 21N LON 225 | 6 22N LONG 0.22 0.18 34 0.46 0.26 0.36 G 104 53 179 38 105 14 118 6 72 05 135 | 92 104 44 260 570 560 108 590 600 605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | MAY : 20 27 JUN 03 11 18 24 | 21 COTTON MAY 1992 20 28 JUN 02 11 24 JUL 01 09 20 0710500 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 00 Bi 65 0.24 65 3.88 65 0.33 60 0.33 | 0.09 AT WOODMA 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 EAR CREEK 4 100 74 1 97 1 103 5 104 | 89
89
89
AN ROAD N
530
525
525
525
540
NEAR COLO
12.0
6.0
9.5
9.5 | 0.0
0.0
20.5
7.5
23.5
22.5
24.5
25.0
22.0
16.5 | JUL 06 ADO SPRINGS, C AUG 1992 16 28 AUG 1992 12 121 21 28 | O (LAT 38 5) 1335 1330 1405 1155 1110 1135 449 21N LON 225 0. 520 0. 605 8. | 6 22N LONG 0.22 0.18 34 0.46 0.26 0.36 G 104 53 179 38 105 14 118 6 72 05 135 54 111 | 92 104 44 26 570 560 108 590 600 605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | MAY:
20
27
JUN
03
11
18
24
JUL | 21 COTTON MAY 1992 20 28 JUN 02 11 18 24 JUL 01 09 20 0710500 | 1045 WOOD CREEK 1100 1020 1320 1045 1055 1215 1210 1110 1210 00 Bi 05 0.24 15 0.33 16 0.33 16 0.33 | 0.09 AT WOODM 0.46 0.84 0.89 0.71 0.18 0.29 0.33 0.59 0.49 EAR CREEK 4 100 74 1 97 8 103 5 104 6 106 | 89
89
89
AN ROAD N
530
525
525
540
562
525
565
540
NEAR COLO
6.0
9.5
9.5
12.0 | 0.0
0.0
EAR COLORA
20.5
7.5
23.5
22.5
20.5
24.5
25.0
22.0
16.5 | JUL 06 ADO SPRINGS, C AUG 1992 11 24 SEP 04 16 28 IGS, CO (LAT 38 AUG 1992 12 121 1 24 1 5EP 04 1 15EP 04 1 16 | O (LAT 38 5
1335
1330
1405
1155
1110
1135
0 49 21N LON
225 0.
520 0.
605 8.
410 0.
320 0. | 6 22N LONG 0.22 0.18 34 0.46 0.26 0.36 G 104 53 179 38 105 14 118 6 72 05 135 54 111 | 92 104 44 26 570 560 108 590 600 605 | 15.5
W) 28.0 28.0 15.0 16.5 21.0 | | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | Σ : | DIS-
CHARGI
INST
CUBIC
FEE]
TIME PER
SECONI | CON- DUCT- ANCE | TEMPER- | |----------------|--------------|--|---|--------------------------------------|-----------------|--------------|---|-----------------|--------------| | 07105490 | CHEYEN | NE CREEK A | r evans a | VE AT COLOR | ADO SPRINGS, CO | (LAT 38 | 47 26N LONG | 104 51 49W | i) | | MAY 1992 | | | | | JUL 1992 | | | | | | 20
27 | 1515
1020 | 16
22 | 68
71 | 13.0
6.5 | 09
20 | 1415
1500 | | 83
113 | 15.0
13.5 | | JUN | 1400 | 1.0 | 60 | 11 0 | AUG | 1250 | 1.0 | 105 | 14 6 | | 03
10 | 1400
1515 | 12
9.3 | 69
74 | 11.0
12.5 | 12
21 | 1350
1600 | | 105
117 | 14.5
18.0 | | 18 | 1340 | 2.8 | 89 | 14.0 | 24 | 1625 | | 101 | 12.0 | | 26 | 1030 | 6.3 | 85 | 11.5 | SEP | | | | | | 30 | 1535 | 4.4 | 96 | 17.0 | 04 | 1520 | | 114 | 14.0 | | | | | | | 16
28 | 1435
1410 | | 120
112 | 15.5
12.0 | | | | | | | 20 | 1410 | 0.94 | 112 | 12.0 | | 07105500 | F | OUNTAIN CRI | EEK AT CO | LORADO SPRIM | NGS, CO (LAT 38 | 48 59N | LONG 104 49 | 20W) | | | OCT 1991 | | | | | MAY 1992 | | | | | | 03 | 1005 | 32 | 610 | 12.0 | 07 | 1150 | | 422 | 16.0 | | 29
NOV | 1205 | 22 | 760 | 0.5 | 27
JUN | 1150 | 109 | 358 | 9.0 | | 07 | 1325 | 67 | 645 | 7.5 | 10 | 1010 | 75 | 278 | 11.5 | | 20 | 1035 | 30 | 700 | 1.0 | 26 | 1415 | 56 | 450 | 21.0 | | DEC | 1100 | | 700 | | 29 | 1425 | 66 | 430 | 23.0 | | 13
JAN 1992 | 1105 | 32 | 700 | 0.5 | JUL
08 | 1135 | 38 | 510 | 18.0 | | 02 | 1000 | 9.9 | | 0.0 | 23 | 1525 | | 548 | 25.0 | | 23 | 1140 | 16 | | 1.5 | 31 | 1105 | 30 | 620 | 20.5 | | FEB | | | | | AUG | | | | | | 25
MAR | 1050 | 35 | 665 | 4.0 | 13
20 | 1235
1030 | | 485
615 | 20.5
19.0 | | 05 | 1505 | 73 | | 10.0 | 25 | 1220 | | 420 | 12.5 | | 10 | 1140 | 36 | 662 | 6.0 | 27 | 1240 | | 470 | 18.5 | | APR | 1045 | 7.0 | | | SEP | 1 400 | | 500 | 10.5 | | 07
15 | 1045
1140 | 79
165 | 268 | 9.0
12.0 | 02
15 | 1430
0955 | 52
45 | 520
450 | 18.5
15.0 | | 13 | 1140 | 103 | 200 | 12.0 | 24 | 0935 | | 730 | 12.0 | | | | | | | | | | , , , | | | 071059 | 900 | JIMMY CAN | AP CREEK A | AT FOUNTAIN, | CO (LAT 38 41 | 04N LON | NG 104 41 17W |) | | | OCT 1991 | | | | | APR 1992 | | | | | | 23 | 1315 | 2.8 | 2170 | 15.5 | 13 | 1615 | 1.2 | 2730 | 22.0 | | NOV
26 | 1250 | 2.2 | 2640 | 12.5 | MAY
13 | 1515 | 2.3 | 2330 | 22.5 | | DEC
17 | 0935 | 2.0 | 2550 | 3.0 | JUN
10 | 1035 | 2.6 | 2300 | 17.0 | | JAN 1992 | | | | | JUL | | | | | | 24
FEB | 1350 | 2.1 | 2490 | 10.0 | 10
AUG | 1210 | 1.8 | 2770 | 19.5 | | 27
MAR | 1510 | 2.0 | 2610 | 12.0 | 13
SEP | 1230 | 2.5 | 2260 | 19.5 | | 20 | 1315 | 1.9 | 2600 | 17.0 | 10 | 1100 | 1.1 | 2900 | 15.0 | | 07105945 | ROCK C | REEK ABOVE | FORT CAR | SON RESERVA | ATION, CO (LAT | 38 42 2 | 26N LONG 104 | 50 47W) | | | OCT 1991 | 1125 | 0.45 | 126 | 0.0 | APR 1992 | 1000 | , ,, | 65 | 0.0 | | 23
NOV | 1135 | 0.45 | 136 | 9.0 | 13
MAY | 1320 | 7.7 | 85 | 9.0 | | 26
DEC | 1345 | 0.95 | 133 | 2.5 | 13
JUN | 1230 | 3.2 | 106 | 12.0 | | 17
JAN 1992 | 1115 | 0.67 | 131 | 1.5 | 10
JUL | 1215 | 3.0 | 122 | 12.5 | | 24
FEB | 1210 | 0.39 | 133 | 0.5 | 09
AUG | 1530 | 0.73 | 143 | 19.0 | | 27 | 1315 | 0.48 | 132 | 5.0 | 13 | 1050 | 0.76 | 148 | 15.0 | | MAR
20 | 1015 | 3.1 | 114 | 2.0 | SEP
09 | 1225 | 5 1.1 | 152 | 14.0 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | |------------------|--------------|--|---|--------------------------------------|--------------------|--------------|--|---|--------------------------------------| | 07105950 | | ROCK CREEK | NEAR FO | RT CARSON, | CO (LAT 38 41 49) | long 1 | 04 49 39W) | | | | MAR 1992
20 | 1125 | 1.0 | 172 | 8.0 | JUN 1992
10 | 1335 | 0.06 | 221 | 13.0 | | APR
13 | 1440 | 6.0 | 104 | 12.0 | SEP
09 | 1400 | 0.26 | 219 | 14.0 | | MAY
13 | 1400 | 0.26 | 176 | 12.5 | | | | | | | 07108900 | : | ST. CHARLES | RIVER A | T VINELAND | , CO (LAT 38 14 44 | IN LONG | 104 29 09W) | | | | NOV 1991
12 | 1350 | 10 | 2360 | 10.0 | MAY 1992
18 | 1430 | 39 | 1050 | 25.5 | | JAN 1992
06 | 1205 | 20 | 1680 | 4.5 | 21
JUN | 1410 | 15 | 1490 | 24.5 | | FEB 20 | 1230 | 8.4 | 2180 | 8.0 | 10
JUL | 0935 | 115 | 617 | | | APR
07 | 1215 | 6.1 | 2340 | 16.5 | 15
AUG | 1415 | 16 | 1420 | 24.0 | | 16
24 | 0850
1145 | 84
35 | 635
1030 | 12.5
13.5 | 18
SEP | 1510 | 147 | 727 | 20.5 | | | | | | | 10 | 1330 | 35 | 1590 | 20.0 | | 07116500 | | HUERFANO | RIVER NE | AR BOONE, C | O (LAT 38 13 33N | LONG 104 | 15 40W) | | | | NOV 1991
12 | 1200 | 23 | 1190 | 11.0 | MAY 1992
18 | 1230 | 0.45 | 5500 | 31.5 | | DEC
17 | 1000 | | 3120 | 0.0 | JUN
08 | 1330 | 22 | 1680 | 24.0 | | JAN 1992
06 | 1405 | 9.4 | 3570 | 9.0 | 16
AUG | 1610 | | 3280 | 24.0 | | 24
FEB | 1130 | 11 | 2400 | 0.0 | 18
18 | 0730
1335 | 205 | 5250
965 | 15.5
21.5 | | 20
MAR | 1040 | 3.7 | 5110 | 5.0 | SEP
10 | 1540 | 0.58 | 4490 | 28.0 | | APR | 1105 | 6.2 | 4910 | 15.0 | | | | | | | 07
24 | 1045 | 3.8
2.8 | 4820
5720 | 16.5
14.5 | | | | | | | 28 | 1610 | ~- | 5570 | 28.0 | | | | | | | 07119500 | | APISHAPA | RIVER NE | AR FOWLER, | CO (LAT 38 05 28N | LONG 10 | 3 58 52W) | | | | DEC 1991
23 | 1615 | 4.0 | 2970 | 8.5 | MAY 1992
05 | 1550 | 5.1 | 1960 | 23.0 | | FEB 1992
25 | 1450 | 2.7 | 3020 | 9.0 | JUN
16 | 1320 | 17 | 1180 | 20.5 | | MAR
06
23 | 0800
1130 |
13 | 2940
1400 |
11.5 | JUL
05
SEP | 1405 | 26 | 1480 | 24.0 | | APR 17 | 1330 | 13 | 1230 | 18.0 | 02 | 1600 | 43 | 1160 | 21.0 | | | | | | | | | | | | | 07121500 | TI | MPAS CREEK | AT MOUTH | NEAR SWINE | (, CO (LAT 38 00 1 | ON LONG | 103 39 18W |) | | | OCT 1991
03 | 1240 | 37 | 2180 | 17.0 | APR 1992
16 | 1100 | 55 | 1700 | 16.0 | | NOV
07 | 1145 | 22 | 2879 | 9.0 | MAY
14 | 1225 | 45 | 1780 | 20.0 | | DEC 06 | 1100 | 18 | 3180 | 7.5 | JUN
11 | 1700 | 108 | 1350 | 22.5 | | JAN 1992
15 | 1640 | 12 | 3230 | 4.5 | JUL
16 | 1500 | 170 | 1050 | 23.0 | | FEB
20
MAR | 1145 | 12 | 3230 | 9.0 | AUG
13
SEP | 1230 | 45 | 2070 | 21.0 | | 06
13 | 0945
1435 |
27 | 2210
2 3 50 |
14.0 | 11 | 1035 | 89 | 1550 | 16.0 | | 07122400 | | | | | CO (LAT 37 58 56N | TONG 10 | 3 35 52W) | | | | OCT 1991 | • | CROOKED A | INCOTO NE | AR SHIMM, V | APR 1992 | 1000 100 | 3 33 3211, | | | | 03
NOV | 1440 | 4.3 | 3030 | 18.5 | 16
MAY | 1200 | 9.7 | 2160 | 16.0 | | 07
DEC | 1320 | 5.2 | 3020 | 12.5 | 14
JUN | 1415 | 10 | 1820 | 21.0 | | 06
JAN 1992 | 1230 | 5.0 | 2950 | 9.0 | 11
JUL | 1440 | 16 | 1680 | 21.0 | | 15
FEB | 1515 | 3.4 | 3210 | 6.5 | 16
AUG | 1330 | 16 | 1330 | 19.5 | | 20
MAR | 1315 | 2.6 | 3210 | 10.5 | 13
SEP | 1435 | 8.4 | 1840 | 23.0 | | 13 | 1155 | 4.9 | 2830 | 12.0 | 11 | 1325 | 11 | 2260 | 19.0 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE | TI | DIS-
CHARGE
INST.
CUBIC
FEET
ME PER
SECONE | CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURI
WATEI
(DEG C) | |----------------|------|--|---|--------------------------------------|--------------------|--------------|--|--------------------------------|--------------------------------------| | 0712420 | 0 | PURGATOI | RE RIVER | AT MADRID, | CO (LAT 37 07 46N | LONG | 104 38 20W) | | | | OCT 1991 | 1005 | 4.0 | 222 | | JUN 1992 | | 265 | 222 | 10.0 | | DEC | 1035 | 40 | 382 | 10.0 | JUL | 1400 | 265 | 230 | 12.0 | | 18
FEB 1992 | 1250 | 26 | 455 | 0.0 | 09
30 | 1130
1320 | 99
95 | 283
 | 18.0
22.0 | | 27
APR | 1410 | 18 | 449 | 11.0 | AUG
27 | 1535 | 117 | 340 | 21.0 | | 02
MAY | 1230 | 28 | 460 | 11.5 | SEP
18 | 1230 | 35 | 407 | 18.0 | | 14 | 1010 | 66 | 277 | 13.5 | | | | | | | 07124410 | PUR | GATOIRE RIV | ER BELOW | TRINIDAD 1 | LAKE, CO (LAT 37 0 | 8 37N | LONG 104 32 | 49W) | | | OCT 1991 | | | | | JUL 1992 | | | | | | 09
DEC | 1300 | 11 | 342 | 12.5 | 09
30 | 1445
1605 | 16
58 | 27 4
27 6 | 18.0
18.0 | | 18
APR 1992 | 1435 | 0.06 | 380 | 0.0 | SEP
18 | 1030 | 131 | 353 | 17.0 | | 02
MAY | 1430 | 6.4 | 425 | 8.0 | | | | | | | 14 | 1330 | 266 | 405 | 14.0 | | | | | | | 071330 | 000 | ARKANSA | S RIVER A | T LAMAR, C | O (LAT 38 06 24N L | ONG 10 |)2 37 04W) | | | | OCT 1991 | | | | | APR 1992 | | •• | | | | 02
NOV | 1020 | 29 | 3550 | 15.0 | 13
MAY | 1800 | 39 | 3080 | 20.0 | | 06
DEC | 1100 | 40 | 4160 | 8.5 | 13
JUN | 1140 | 58 | 2930 | 19.0 | | 10
JAN 1992 | 1635 | 27 | 4210 | 8.0 | 10
JUL | 1030 | 10 | 3510 | 18.5 | | 15
FEB | 1200 | 20 | 4500 | 0.5 | 15
AUG | 1120 | 433 | 1680 | 23.5 | | 19 | 1145 | 18 | 4450 | 7.0 | 18 | 1825 | 29 | 3090 | 22.0 | | MAR
18 | 1040 | 12 | 4450 | 7.0 | SEP 22 | 1830 | 6.8 | 4010 | 21.0 | | 07134180 | |
ARKANSAS R | IVER NEAF | R GRANADA, | CO (LAT 38 05 44N | LONG | 102 18 37W) | | | | OCT 1991 | | | | | APR 1992 | | | | | | 02
NOV | 0800 | 6.4 | 5100 | 12.0 | 13
MAY | 1600 | 5.0 | 5220 | 23.0 | | 06
DEC | 0830 | 88 | 3940 | 5.5 | 13
JUN | 0915 | 3.8 | 5010 | 15.0 | | 11
JAN 1992 | 0950 | 99 | 4190 | 4.0 | 10
JUL | 0820 | 4.8 | 4900 | 15.0 | | 15
FEB | 0850 | 80 | 4350 | 0.0 | 15
AUG | 0830 | 403 | 1790 | 24.0 | | 19 | 0855 | 73 | 4400 | 3.0 | 19 | 0900 | 52 | 3480 | 17.5 | | MAR
18 | 0835 | 60 | 4370 | 7.5 | SEP
23 | 0920 | 4.8 | 5250 | 15.0 | | 08217500 | F | IO GRANDE | AT WAGON | WHEEL GAP, | CO (LAT 37 46 01) | N LONG | 106 49 51W |) | | | OCT 1991 | | | | | APR 1992 | | | | | | 08
NOV | 1340 | 285 | 90 | 11.0 | 01
29 | 1320
1340 | 127
7 94 | 98
67 | 6.0
11.0 | | 13
DEC | 1400 | 112 | 115 | 3.5 | JUN
03 | | 1390 | 54 | 10.5 | | 18
JAN 1992 | 1305 | 113 | 115 | 0.0 | ль
09 | 1425 | 842 | 67 | 16.0 | | 29 | 1445 | 96 | 117 | 0.0 | AUG | | | | | | MAR
12 | 1345 | 116 | 112 | 0.0 | 18
SEP | 1520 | 294 | 83 | 19.0 | | | | | | | 30 | 1100 | 234 | 91 | 9.0 | # 384056104415601 - SC01606505CCB - FOUNTAIN NO. 3 LOCATION.--Lat 38°40'56", long 104°41'56" in NW¹/4SW¹/4SW¹/4 sec.5, T.16 s., R.65 W., El Paso County, Hydrologic Unit 11020003 AQUIFER .-- Fountain Creek Alluvial Aquifer. WELL CHARACTERISTICS.--Municipal well, diameter 16 in, depth 53 ft, screened 38 to 53 ft. DATUM.--Elevation of land surface is 5,540 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--March 1985 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26 | 0916 | 1020 | 7.0 | 13.0 | <0.01 | 1.4 | 0.01 | 0.02 | | FEB
21
MAY | 0805 | 984 | 7.2 | 12.5 | <0.01 | 1.2 | <0.01 | 0.01 | | 11
AUG | 0810 | 970 | 7.2 | E12.0 | <0.01 | 1.4 | 0.03 | 0.01 | | 24 | 1005 | 1040 | 7.3 | 13.0 | <0.01 | 1.7 | 0.05 | 0.01 | #### 384108104420701 - SC01606506DAA - FOUNTAIN NO. 2 LOCATION.--Lat 38°41'08", long 104°42'07", NE¹/4NE¹/4SE¹/4 sec.6, T.16 S., R.65 W., in El Paso County, Hydrologic Unit 11020003. AQUIFER .-- Fountain Creek Alluvial Aquifer. WELL CHARACTERISTICS .-- Municipal well, diameter 16 in, depth 57 ft, screened 42 to 57 ft. DATUM.--Elevation of land surface is 5,550 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--March 1985 to current year. | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |-----------|------|---|---|--------------------------------------|---|---|---|---| | NOV | | | | | | | | | | 26 | 0938 | 1170 | | 12.0 | <0.01 | 2.6 | <0.01 | 0.02 | | FEB | 0005 | 1000 | | | -0.03 | | | | | 21 | 0825 | 1220 | 7.1 | 11.5 | <0.01 | 3.0 | <0.01 | 0.02 | | MAY | 0835 | 1250 | 7.2 | 12.5 | <0.01 | 3.1 | 0.02 | 0.00 | | 11
AUG | 0833 | 1250 | 1.2 | 12.5 | <0.01 | 3.1 | 0.02 | 0.02 | | | 1020 | 3.000 | 2.2 | 30.5 | -0.03 | 2 2 | 0.00 | 0.00 | | 24 | 1030 | 1230 | 7.3 | 12.5 | <0.01 | 3.3 | 0.02 | 0.02 | # 384313104431801 - SC01506625AAD - WIDEFIELD NO. 14. LOCATION.--Lat 38°43'13", long 104°43'18", in SE¹/4NE¹/4NE¹/4 sec.25, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER .-- Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS.--Municipal well, diameter 18 in, depth 48 ft, screened 37 to 48 ft. DATUM.--Elevation of land surface is 5,620 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--January 1982 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26
FEB | 1100 | 1240 | 6.9 | 13.5 | <0.01 | 9.7 | <0.01 | 0.03 | | 19 | 1300 | 1330 | 7.0 | 13.5 | <0.01 | 9.9 | <0.01 | 0.03 | | MAY
11
AUG | 1320 | 1260 | 7.4 | 13.5 | <0.01 | 8.9 | 0.02 | 0.04 | | 25 | 1345 | 1350 | 7.3 | 13.5 | <0.01 | 11 | 0.02 | 0.03 | #### 384318104475301 - SC01506629AAB1 - GOLF COURSE NO. 19 LOCATION.--Lat 38°43'18", long 104°47'53", in NW¹/4NE¹/4NE¹/4 sec.29, T.15 S, R.66 W., El Paso County, Hydrologic Unit 11020003, on Fort Carson Military Reservation. AQUIFER .-- Piney Creek Alluvium. WELL CHARACTERISTICS.--Observation well, diameter 2 in, depth 13.9 ft, screened 9.5 to 13.5 ft. DATUM.--Elevation of land surface is 5,880 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--April to October 1981; September 1986 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | |-----------|------|---|---|---|--------------------------------------|---|---|---|--| | NOV
19 | 1400 | 3.15 | 2490 | 7.5 | 12.0 | <0.01 | 3.2 | <0.01 | 0.2 | # 384328104481101 - SC01506620CDD1 - GOLF COURSE NO. 14 LOCATION.--Lat $38^{\circ}43^{\circ}28^{\circ}$, long $104^{\circ}48^{\circ}11^{\circ}$, in $SE^{1}/4SE^{1}/4SW^{1}/4$ sec.20, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on Fort Carson Military Reservation. AQUIFER .-- Piney Creek Alluvium. WELL CHARACTERISTICS. -- Observation well, diameter 2 in, depth 12.2 ft, screened 8 to 12 ft. DATUM.--Elevation of land surface is 5,920 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--April 1981 to current year. | DATE | TIME | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | |-----------|------|---|---|---|--------------------------------------|---|---|---|---| | NOV
19 | 1330 | 7.79 | 4800 | 7.4 | 11.5 | 0.01 | 4.3 | 0.02 | 0.5 | #### 384331104473401 - SC01506621CCB - GOLF COURSE NO. 22 LOCATION.--Lat $38^{\circ}43^{\circ}31^{\circ}$, long $104^{\circ}47^{\circ}34^{\circ}$, in $Nw^{1}/4Sw^{1}/4$ sec.21, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003, on Fort Carson Military Reservation. AQUIFER .-- Piney Creek Alluvium. WELL CHARACTERISTICS .-- Observation well, diameter 2 in, depth 18.2 ft, screened 14 to 18 ft. DATUM.--Elevation of land surface is 5,850 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--September 1981 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992
 DATE | TIME | DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | |-----------|------|---|---|---|--------------------------------------|---|---|---|--| | NOV
19 | 1420 | 7.83 | 2550 | 7.6 | 13.0 | 0.04 | 4.2 | <0.01 | 0.2 | #### 384407104434801 - SC01506624BAD1 WIDEFIELD NO. 4. LOCATION.--Lat $38^{\circ}44^{\circ}07^{\circ}$, long $104^{\circ}43^{\circ}48^{\circ}$, in $SE^{1}/4NE^{1}/4$ sec.24, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER .-- Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS. -- Municipal well, diameter 16 in, depth 71 ft, screened 41 to 71 ft. DATUM.--Elevation of land surface is 5,680.7 ft above National Geodetic Vertical Datum of 1929. PERIOD OF RECORD. -- February 1981 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26 | 1035 | 641 | | 13.0 | <0.01 | 6.7 | <0.01 | 0.01 | | FEB
21 | 0915 | 650 | 7.1 | 12.5 | <0.01 | 6.5 | <0.01 | 0.02 | | MAY
11
AUG | 1120 | 647 | 7.3 | 13.0 | <0.01 | 6.4 | 0.01 | 0.02 | | 26 | 1500 | 634 | 7.1 | 13.0 | <0.01 | 6.8 | 0.02 | 0.01 | #### 384458104442601 - SC01506614AAD - SECURITY NO. 2. LOCATION.--Lat $38^{\circ}44^{\circ}58^{\circ}$, long $104^{\circ}44^{\circ}26^{\circ}$, in $SE^{1}/4NE^{1}/4$ sec.14, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER. -- Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS.--Municipal well, diameter 24 in, depth 78 ft, screened 43 to 78 ft. DATUM.--Elevation of land-surface is 5,717 ft above National Geodetic Vertical Datum of 1929. PERIOD OF RECORD. -- February 1981 to current year. | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26
FEB | 1210 | 477 | 6.9 | 13.0 | <0.01 | 8.0 | 0.01 | 0.02 | | 21 | 1125 | 503 | 7.1 | 13.5 | <0.01 | 7.8 | <0.01 | 0.02 | | MAY
11 | 0920 | 477 | 7.2 | 13.0 | <0.01 | 8.2 | 0.01 | 0.02 | | AUG
25 | 0800 | 476 | 7.2 | 13.0 | <0.01 | 8.2 | 0.02 | 0.01 | # 384535104450801 - SC01506611BCD2 VENETUCCI NO. 3. LOCATION.--Lat 38°45'35", long 104°45'08", in SE¹/4SW¹/4NW¹/4 sec.11, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER .-- Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS .-- Irrigation well, diameter 24 in, depth 80 ft, screening unknown. DATUM. -- Elevation of land surface is 5,750.0 ft above National Geodetic Vertical Datum of 1929. PERIOD OF RECORD. -- February 1981 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26
FEB | 1305 | 384 | 7.1 | 13.5 | <0.01 | 8.2 | <0.01 | 0.05 | | 19 | 1330 | 396 | 6.8 | 13.5 | <0.01 | 8.2 | <0.01 | 0.05 | | MAY
11
AUG | 1357 | 410 | 7.2 | 13.5 | <0.01 | 8.1 | 0.01 | 0.06 | | 21 | 1200 | 409 | 6.9 | 13.5 | <0.01 | 8.6 | 0.02 | 0.06 | # 384610104453501 - SC01506603DDB SECURITY NO. 14. LOCATION.--Lat $38^{\circ}46^{\circ}10^{\circ}$, long $104^{\circ}45^{\circ}35^{\circ}$, in $NW^{1}/4SE^{1}/4$ AQUIFER .-- Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS.--Municipal well, diameter 24 in, depth 80 ft, screened 39 to 80 ft. DATUM.--Elevation of land-surface is 5,779.2 ft above National Geodetic Vertical Datum of 1929. PERIOD OF RECORD. -- February 1981 to current year. | | | | PH | | NITRO- | NITRO- | NITRO- | PHOS- | |------|------|---------|---------|---------|---------|---------|---------|--------| | | | SPE- | WATER | | GEN, | GEN, | GEN, | PHORUS | | | | CIFIC | WHOLE | | NITRITE | NO2+NO3 | AMMONIA | ORTHO, | | | | CON- | FIELD | TEMPER- | DIS- | DIS- | DIS- | DIS- | | | | DUCT- | (STAND- | ATURE | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | TIME | ANCE | ARD | WATER | (MG/L | (MG/L | (MG/L | (MG/L | | | | (US/CM) | UNITS) | (DEG C) | AS N) | AS N) | AS N) | AS P) | | NOV | | | | | | | | | | 26 | 1241 | 621 | 7.2 | 13.5 | <0.01 | 7.3 | 0.01 | 0.05 | | FEB | | | | | | | | | | 21 | 1150 | 633 | 7.4 | 13.5 | <0.01 | 6.9 | <0.01 | 0.05 | | MAY | | | | | | | | | | 11 | 1000 | 638 | 7.5 | 13.0 | <0.01 | 6.7 | <0.01 | 0.05 | | AUG | | | | | | | | | | 25 | 0930 | 620 | 7.6 | 12.5 | <0.01 | 6.9 | 0.01 | 0.05 | | | | | | | | | | | # 384617104455901 - SC01506603CAD STRATMOOR HILLS NO. 4. LOCATION.--Lat 38°46'17", long 104°45'59", in SE¹/4NE¹/4SW¹/4 sec.3, T.15 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER.--Widefield Aquifer of Fountain Creek Alluvium. WELL CHARACTERISTICS.--Municipal well, diameter 16 in, depth 49 ft, screened 29 to 49 ft. DATUM. -- Elevation of land surface is 5,775.4 ft above National Geodetic Vertical Datum of 1929. PERIOD OF RECORD. -- February 1981 to current year. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) |
NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26
FEB | 1359 | 812 | 7.0 | 13.0 | <0.01 | 8.0 | 0.01 | 0.02 | | 21 | 1300 | 892 | 7.3 | 13.0 | <0.01 | 6.9 | <0.01 | 0.02 | | MAY
11
AUG | 1224 | 898 | 7.3 | 13.0 | <0.01 | 6.7 | 0.01 | 0.02 | | 24 | 1230 | | 7.2 | 13.0 | <0.01 | 6.3 | 0.02 | 0.02 | #### 384639104461401 - SC01506603BAC1 - MARS GAS LOCATION.--Lat 38°46'39", long 104°46'14", in SW1/4NE1/4NW1/4 sec.3, T.15 S., R.66 W., El Paso County, Hydrologic Unit 1102003 AQUIFER .-- Fountain Creek Alluvial Aquifer. WELL CHARACTERISTICS.--Commercial well, diameter 6 in, depth 85 ft, screened 50 to 85 ft. DATUM.--Elevation of land surface is 5,820 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--March 1985 to current year. | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |-----------|------|---|---|--------------------------------------|---|---|---|---| | NOV | | | | | | | | | | 26
FEB | 1429 | 1020 | 7.0 | 12.0 | <0.01 | 7.9 | <0.01 | 0.02 | | 19 | 1400 | 962 | 6.9 | 12.5 | <0.01 | 6.9 | <0.01 | <0.01 | | MAY
11 | 1425 | 999 | 7.2 | 12.5 | <0.01 | 8.8 | 0.02 | 0.02 | | AUG | 1423 | ,,, | 7.2 | 12.5 | \U.UI | 0.0 | 0.02 | 0.02 | | 25 | 1425 | 1040 | 7.2 | 13.0 | <0.01 | 10 | 0.02 | <0.01 | #### 384718104463701 - SC01406633DAA - BARNES WELL LOCATION.--Lat 38°47'18", long 104°46'37", in NE¹/4NE¹/4SE¹/4 sec.33. T.14 S., R.66 W., El Paso County, Hydrologic Unit 11020003. AQUIFER. -- Fountain Creek Alluvial Aquifer. WELL CHARACTERISTICS .-- Domestic well, diameter 6 in, depth 72 ft, screening unknown. DATUM.--Elevation of land surface is 5,830 ft above National Geodetic Vertical Datum of 1929, from topographic map. PERIOD OF RECORD.--March 1985 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH WATER WHOLE FIELD (STAND- ARD UNITS) | TEMPER-
ATURE
WATER
(DEG C) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | |------------------|------|---|---|--------------------------------------|---|---|---|---| | NOV
26
FEB | 1457 | 1380 | 7.0 | 12.5 | <0.01 | 15 | <0.01 | 0.02 | | 20 | 1336 | 1250 | 7.2 | 13.0 | <0.01 | 12 | <0.01 | 0.01 | | MAY
28
AUG | 1148 | 1340 | 7.3 | 13.0 | <0.01 | 12 | 0.01 | 0.02 | | 27 | 1020 | 1330 | 7.2 | 13.5 | <0.01 | 13 | 0.01 | 0.01 | # 385323104224001 - SC01306230ACC1 LOCATION.--Lat 38°53'23", long 104°22'40", in SW1/4SW1/4NE1/4 sec.30, T.13 S., R.62 W., El Paso County, Hydrologic Unit 11020004. AQUIFER .-- Black Squirrel Alluvial Aquifer. WELL CHARACTERISTICS.--Public-supply well, diameter 16 in, depth 176 ft, screened 116 to 176 ft. DATUM.--Elevation of land surface is 6,160 ft above National Geodetic Vertical Datum of 1929, from topographic map PERIOD OF RECORD.--February 1985 to current year. | | | | PH | | NITRO- | NITRO- | NITRO- | PHO2- | |------|------|---------|---------|---------|---------|---------|---------|--------| | | | SPE- | WATER | | GEN, | GEN, | GEN, | PHORUS | | | | CIFIC | WHOLE | | NITRITE | NO2+NO3 | AMMONIA | ORTHO, | | | | CON- | FIELD | TEMPER- | DIS- | DIS- | DIS- | DIS- | | | | DUCT- | (STAND- | ATURE | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | TIME | ANCE | ARD | WATER | (MG/L | (MG/L | (MG/L | (MG/L | | | | (US/CM) | UNITS) | (DEG C) | AS N) | AS N) | AS N) | AS P) | | NOV | | | | | | | | | | 22 | 1030 | 409 | 7.2 | 11.5 | <0.01 | 6.6 | <0.01 | 0.04 | | FEB | | | | | | | | | | 21 | 1030 | 404 | 7.2 | 12.0 | <0.01 | 7.4 | 0.02 | 0.04 | | MAY | | | | | | | | | | 15 | 1020 | 400 | 7.1 | 12.5 | <0.01 | 8.0 | 0.01 | 0.05 | | AUG | | | | | | | | | | 21 | 1030 | 3 9 3 | 7.2 | 13.0 | <0.01 | 7.6 | 0.01 | 0.04 | | | | | | | | | | | # INDEX ----- | | Page | | Page | |--|----------------------|--|---------------------| | | | Berthoud Pass ditch at Berthoud Pass, | | | Access to WATSTORE DATA | 22 | diversion by | 307 | | Accuracy of the records, explanation of | 18 | Big Dry Creek at mouth near Fort Lupton | 78,317 | | Acre-foot, definition of | 23 | at Westminster | 77,317 | | Adenosine triphosphate, definition of | 23 | Big Thompson River above Buckhorn Creek near | • | | Algae, definition of | 23 | Loveland, water-quality record | 9 9- 100 | | Algal-growth potential, definition of | 23 | above Loveland, water-quality record | 101-102 | | Alva B. Adams tunnel at east portal, near | | at Estes Park | 90 | | Estes Park | 307 | at I-25 near Loveland, water-quality | | | Annual 7-day minimum, definition of | 24 | record | 108-109 | | Apishapa River, near Fowler | 253,321 | at mouth of Canyon, near Drake | 98 | | Aquifer, definition of | 23 | at Loveland, surface-water record | 103 | | Arkansas River, above Pueblo, surface-water | | water-quality record | 104-105 | | record | 205 | below Loveland, water-quality record | 106-107 | | water-quality record | 206-207 | near Estes Park | 92 | | at Canon City | 173 | Biochemical oxygen demand (BOD), definition of | 23 | | at Catlin Dam near Fowler, surface-water | 25.4 | Biomass, definition of | 23 | | record | 254 | Blue-green algae, definition of | 26
140 | | water-quality record | 255
163 | Bonny Reservoir near Hale | 23 | | at Buena Vista, surface-water record | 162
163 | Bottom material, definition of | 88
88 | | water-quality record | 160 | Boulder Creek at mouth near Longmont | 87,318 | | at Graniteat Lamar | 285, 322 | near Orodell | 84 | | at Las Animas, surface-water record | 263, 322 | Bummers Gulch near El Vado | 83,318 | | | 262 | Busk-Ivanhoe Tunnel, diversion by | 308 | | water-quality recordat La Junta | 258 | bask ivation inter, arversion symmetry | 355 | | at Moffat Street, at Pueblo, surface-water | 250 | Cache la Poudre River, above Box Elder Creek | | | record | 209 | near Timnath, surface-water record | 129 | | water-quality record | 210-211 | water-quality record | 130-131 | | at Parkdale, surface-water record | 169 | at Fort Collins, surface-water record | 122 | | water-quality record | 170-171 | water-quality record | 123-126
| | at Portland, surface-water record | 175 | at mouth of Canyon, near Fort Collins | 119 | | water-quality record | 176-177 | at Shields Street, water-quality record | 120-121 | | at St Charles Mesa Diversion at Pueblo, | | below Fort Collins, water-quality record | 127-128 | | water-quality record | 208 | near Greeley | 132 | | below Empire Gulch near Malta, surface-water | | California Gulch at Malta, surface-water record | 149-150 | | record | 157 | water-quality record | 151 | | water-quality record | 158 | Camp Creek at Garden of the Gods | 213,319 | | below John Martin Reservoir, surface-water | | Carter Lake near Berthoud, contents of | 110 | | record | 284 | water-quality record | 111-112 | | water-quality record | 284 | Cells/volume, definition of | 23 | | near Avondale, surface-water record | 249 | Cfs-day, definition of | 24 | | water-quality record | 250 | Chacuaco Creek at Mouth near Timpas, surface- | | | near Coolidge, KS, surface-water record | 288 | water record | 275 | | water-quality record | 28 9- 290 | water-quality record | 276-278 | | near Granada | 286, 322 | Charles H. Boustead Tunnel, diversion by | 308 | | near Leadville, surface-water record | 147 | Chatfield Lake near Littleton, contents of | 51 | | water-quality record | 148 | Cheesman Lake near Deckers, contents of | 46 | | near Nathrop, surface-water record | 164 | Chemical oxygen demand (COD), definition of | 24 | | water-quality record | 164 | Chemical quality of streamflow | 11 | | near Nepesta | 252 | Cherry Creek at Denver | 67,316 | | near Wellsville | 165 | at Glendale | 66,316 | | Arkansas River basin, crest-stage partial-record | | below Cherry Creek Lake | 65,316 | | stations in | 314 | near Franktown | 62,316 | | surface-water records in | 141 | near Parker | 63,316 | | Artesian, definition of | 23 | Cherry Creek Lake near Denver, contents of | 64 | | Artificial substrate, definition of | 27 | Cheyenne Creek at Evans avenue at Colorado | 004 200 | | Ash mass, definition of | 23 | Springs | 224,320 | | | | Chlorophyll, definition of | 24 | | Destruction de Chatalan a C | 22 | Classification of Records, explanation of | 19 | | Bacteria, definition of | 23 | Clear Creek above Clear Creek Reservoir | 161 | | Badger Creek, lower station, | 160 | at Golden, surface-water record | 71 | | near Howard, surface-water record | 168 | water-quality record | 72-73 | | water-quality record | 168 | Clover Ditch Drain near Widefield | 235 | | upper station, near Howard, | 166 | Color unit, definition of | 24 | | surface-water record | 166 | Conejos River, below Platoro Reservoir | 300
304 | | water-quality record | 167,318 | near Lasauses | 301 | | Bear Creek above Bear Creek Lake | EE 216 | near Mogote | 24 | | near Morrisonabove Evergreen | 55,316
53,315 | Control, definition of | 24 | | above Evergreen | 53, 315 | | 24 | | | 54
56 | Control structure, definition of | 4 | | at mouth at Sheridan | | Cooperation | 220 | | near Colorado Springs | 223,319 | | 219,319 | | Beaver Creek above Highway 115 near Penrose | 180,319 | at Woodmen Road near Colorado Springs Crooked Arroyo near Swink | 257,321 | | Beaver Creek above upper Beaver Cemetary near | 178 | Cubic foot per second, definition of | 231,321 | | Penrose, surface-water record | 179 | Cubic feet per second per square mile, | 24 | | Water-quality record Bed load, definition of | 27 | definition of | 24 | | Bed load discharge, definition of | 27 | delinicidi of | 27 | | Bed material, definition of | 23 | Data Collection and Computation, explanation of | 15,22 | | The military delimitable of the control cont | 23 | correction and compactation, continuenton Office | , | 330 INDEX _____ | | Page | | Page | |--|--------------------------|---|---------------------| | Data presentation, explanation of | 15,21 | John Martin Reservoir at Caddoa, contents of | 283 | | Data table of daily mean values, explanation of | 17 | Kansas River basin, surface-water records in | 139 | | Definition of terms | 23-29 | Tabasahami Maaminamanta aimlanation of | 20 | | Discharge at partial-record stations | 26 | Laboratory Measurements, explanation of Lake Creek above Twin Lakes Reservoir | 159 | | and miscellaneous sites | 310-314 | Lakes and reservoirs: | | | Discharge, definition of | 24 | Bonny Reservoir | 140 | | Discontinued surface-water discharge or stage- | 20.26 | Carter Lake | 110-11 | | only stations | 32-36
37 | Chatfield Lake | 5:
4: | | Dissolved, definition of | 24 | Cherry Creek Lake | 6 | | Dissolved-solids concentration, definition of | 24 | Elevenmile Canyon Reservoir | 40 | | Downstream order system | 13 | Horsetooth Reservoir | 93-9 | | Drainage area, definition of | 24 | John Martin Reservoir | 283
2 9 9 | | Drainage basin, definition of | 24
23 | Platoro Reservoir | 184 | | big mass, definition of the first terms firs | 23 | Teller Reservoir | 182 | | East Fork Arkansas River at U.S. Highway 24 | | Trinidad Lake | 264 | | near Leadville, surface-water record | 143 | Turquoise Lake | 152 | | water-quality record | 144-146 | Land-surface datum, definition of | 25
14 | | contents of | 46 | Leadville Mine Drainage Tunnel at Leadville, | 1- | | Explanation of the Records | 13 | surface-water record | 143 | | | | water-quality record | 142 | | Fecal Coliform bacteria, definition of | 23 | Lockwood Canyon Creek near Thatcher, | 277 | | Fecal Streptococcal bacteria, definition of Fountain Creek above Little Fountain Creek, | 23 | surface-water recordwater-quality record | 273
274 | | below Fountain, water-quality record | 237 | Los Pinos River (Rio Grande basin) near Ortiz | 303 | | at Circle Drive below Colorado Springs | | | | | water-quality record | 229 | Map of Colorado, showing locations of crest-stage. | | | at Colorado Springs, surface-water record | 225 | partial-record stations | 3 | | water-quality record
at Pueblo, surface-water record | 226, 320
2 4 5 | Map of Colorado, showing locations of lakes,
surface-water and surface-water-quality | | | water-quality record | 246-247 | stations | 2 | | at Security, surface-water record | 230 | | | | water-quality record | 231-234 | Mean concentration, definition of | 2 | | below Janitell Road, surface-water record | 227 | Mean discharge, definition of | 24
25 | | water-quality recordnear Colorado Springs, surface-water record | 22 8
212 | Measuring point, definition of Metamorphic stage, definition of | 25 | | water-quality record | 212 | Methylene blue active substances, definition of | 25 | | near Fountain, surface-water record | 240 | Michigan River, near Cameron Pass | 41,315 | | water-quality record | 241 | Micrograms per gram, definition of | 25 | | near Pinon, surface-water record | 242 | Micrograms per liter, definition of | 25 | | Water-quality record | 243-244
174 | Middle Boulder Creek at Nederland | 82
26 | | Fourmile Creek, near Canon City at Orodell | 85,318 | Milligrams of oxygen, definition of | 26 | | Frontier ditch near Coolidge, KS | 287 | Milligrams per liter, definition of | 25 | | | | Monument Creek, above North Gate Boulevard, | | | Gage height, definition of | 24 | at USAF Academy, surface-water record | 216 | | Gaging station, definition of | 24 | water-quality recordat Bijou Street at Colorado Springs, | 217 | | diversion by | 307 | water-quality record | 222 | | Grape Creek near Westcliffe | 172 | at Palmer Lake, water-quality record | 214-215 | | Green algae, definition of | 26 | at Pikeview, surface-water record | 221 | | 77.16 | 450 | water-quality record | 221 | | Halfmoon Creek near Malta, surface-water record | 153
154-156 | National Geodetic Vertical Datum of 1929, | | | Water-quality record | 24 | definition of | 25 | | Harold D. Roberts tunnel at Grant, diversion by | 307 | National stream-quality accounting network, | | |
Homestake tunnel near Leadville, diversion by | 308 | (NASOAN), explanation of | 25 | | Hoosier Pass tunnel at Hoosier Pass, | 200 | National Trends Network, explanation of | 25 | | diversion by | 308 | Natural substrate, definition of
North Clear Creek below Continental Reservoir | 27
2 9 2 | | surface-water record | 25 9 | North Fork Cache la Poudre River at Livermore, | 276 | | water-quality record | 260 | surface-water record | 115 | | Horsetooth Reservoir near Fort Collins, | | water-quality record | 116-118 | | contents of | 93 | North Fork Republican River at Colorado- | 120 | | water-quality record | 94-97
251,321 | Nebraska State Line
North Fork South Platte River, below Geneva | 139 | | Hydrologic bench-mark network, explanation of | 231, 321 | Creek at Grant | 49 | | Hydrologic unit, definition of | 25 | North Platte River near Northgate | 42 | | | | North St Vrain Creek near Allens Park | 79, 317 | | Identifying Estimated Daily Discharge, | | al mount in the second | | | explanation of | 17 | Olympus Tunnel at Lake Estes, | 91 | | Instantaneous discharge, definition of Introduction | 2 4
1 | Water-quality recordOrganic mass, definition of | 23 | | | • | Organism, definition of | 25 | | Jimmy Camp Creek at Fountain | 236,320 | Organism count/area, definition of | 25 | | Joe Wright Creek, above Joe Wright Reservoir | 113,318 | Organism count/volume, definition of | 25 | | below Joe Wright Reservoir | 114,318 | Other Records available, explanation of | 18-19 | ----- | | Page | | Page | |--|------------------|--|-------------------| | Overview of water year 1992 | 5-12 | South Platte River at Henderson, | | | Parameter Code, definition of | 25 | surface-water record | 74 | | Partial-record station, definition of | 25 | water-quality record | 75-76 | | Particle size, classification of | 25 - 26 | at 64th Avenue at Commerce City | 69,317 | | Particle size, definition of | 25
26 | at Julesburg, surface-water record water-quality record | 136
137-138 | | Periphyton, definition of | 26 | at Union Avenue, at Englewood | 52, 315 | | Pesticide, definition of | 26 | below Cheesman Lake | 47 | | Phytoplankton, definition of | 26 | near Kersey | 133 | | Picocurie, definition of | 26 | near Lake George | 44 | | Plankton, definition of | 26 | near Weldona, surface-water record | 134 | | Platoro Reservoir at Platoro | 299 | water-quality record | 135
13 | | Platte River basin, crest-stage partial-record stations in | 310-314 | Special networks and programs | 27 | | Platte River basin, surface-water records in | 41 | Stage-discharge relation, definition of | 27 | | Plum Creek at Titan Road near Louviers | 50-315 | Station Identification Numbers, explanation of | 13 | | near Sedalia | 49, 315 | Station manuscript, explanation of | 16 | | Precipitation | 5 | Statistics of monthly mean data, explanation of | 17 | | Primary productivity, definition of | 26 | Streamflow definition of | 5
27 | | Publications on techniques of water-resources investigations | 38-39 | Streamflow, definition of | 27 | | Pueblo Reservoir near Pueblo, contents of | 184 | Summary statistics, explanation of | 17-18 | | water-quality records | 185-204 | Supplemental Water-Quality Data for | | | Purgatoire River, at Ninemile Dam, near Higbee | 280 | Surface-water stations | 315-322 | | at Madrid | 2 63, 322 | Surface area, definition of | 27
28 | | at Rock Crossing, near Timpas, surface- | 279 | Surficial bed material, definition of | 28
28 | | water recordwater—quality record | 279 | Suspended, definition of | 28 | | below Trinidad Lake | 265, 322 | Suspended Sediment, definition of | 27 | | near Las Animas, surface-water record | 281 | Suspended Sediment concentration, | | | water-quality record | 282 | definition of | 27 | | near Thatcher, surface-water record | 269 | Suspended Sediment discharge, definition of | 27
2 7 | | water-quality record | 270 | Suspended Sediment load, definition of Suspended total, definition of | 28 | | Quality of ground-water, El Paso County | 323-328 | System for numbering wells, springs, and miscellaneous sites. | 14 | | Radiochemical program, definition of | 26 | muscerraneous sites | 17 | | Records of Stage and Water Discharge, | 20 | Tarryall Creek below Rock Creek, near Jefferson | 45,315 | | definition of | 14 | Taxonomy, definition of | 28 | | explanation of | 14-18 | Taylor Arroyo below Rock Crossing, near | 071 | | Surface-Water Quality, definition of | 19 | Thatcher, surface-water record | 271
272 | | explanation of | 19-20
21-22 | water-quality record Teller Reservoir near Stone City | 182 | | explanation of | 21 -2 2 | Thermograph, definition of | 28 | | Recoverable from bottom material, definition of | 26 | Time-weighted average, explanation of | 28 | | Remark codes, explanation of | 21 | Timpas Creek at mouth, near Swink | 256, 321 | | Reservoirs in South Platte River basin | 46 | Tons per acre-foot, definition of | 28 | | Return period, definition of | 26 | Tons per day, definition of | 28
23 | | Rio Grande, above mouth of Trinchera Creek, near Lasauses | 298 | Total Coliform bacteria, definition of Total, definition of | 28 | | at Alamosa | 296 | Total discharge, definition of | 28 | | at Thirtymile Bridge, near Creede | 291 | Total recoverable, definition of | 28 | | at Wagon Wheel Gap | 293, 322 | Total organism count, definition of | 25 | | Rio Grande near Del Norte | 295 | Total sediment discharge, definition of | 27
27 | | near Lobatos, surface-water record
water-quality record | 305
306 | Total-sediment load, definition of
Transmountain diversions from Colorado River basin | 21 | | Rio Grande basin, surface-water records in | 291 | in Colorado | 307-309 | | Rock Creek, above Fort Carson Reservation | 238, 320 | no longer published | 309 | | near Fort Carson | 239, 321 | Trinidad Lake near Trinidad | 264 | | Runoff in inches, definition of | 27 | Tritium Network, definition of | 28 | | Ct. Charles Discount Washington | 240 221 | Turkey Creek, above Teller Reservoir, near | 181,319 | | St. Charles River at VinelandSt. Vrain Creek at Lyons | 248,321
80 | Stone City near Stone City | 183 | | at mouth, near Platteville | 89 | Turquoise Lake near Leadville | 152 | | below Longmont | 81,317 | 1 | | | Saguache Creek near Saguache | 297 | Van Bremer Arroyo near Model, surface-water | | | San Antonio River at Ortiz | 302 | record | 268 | | Sediment, definition of | 20,27 | water-quality record | 268
266 | | Selected references | 30-31 | near Tyrone, surface-water record | 267 | | Senac Creek at North Border Sludge area near Aurora | 70 | water-quality record | 201 | | 7-day 10-year low flow, definition of | 27 | Water temperature | 20 | | Sodium adsorption ratio, definition of | 27 | Water year, definition of | 29 | | Solute, definition of | 27 | WDR, definition of | 29 | | South Boulder Creek near Eldorado Springs | 86 | Weighted average, definition of | 210 310 | | South Fork Rio Grande at South Fork | 294 | West Monument Creek at U. S. Air Force Academy | 218, 319
23 | | South Platte River above Elevenmile Canyon Reservoir, near Hartsel | 43 | Wet mass, definition of | 29 | | at Denver | 68 | , | | | at Englewood, surface-water record | 57 | Zooplankton, definition of | 26 | | water-quality record | 58-61 | | | | | | | | # FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI) The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). | Multiply inch-pound units | Ву | To obtain SI units | |---------------------------------|------------------------|--| | | Length | | | inches (in) | 2.54x10 ¹ | millimeters (mm) | | | 2.54x10 ⁻² | meters (m) | | feet (ft) | 3.048x10 ⁻¹ | meters (m) | | miles (mi) | 1.609x10° | kilometers (km) | | | Area | | | acres | 4.047x10 ³ | square meters (m ²) | | | 4.047x10 ⁻¹ | square hectometers (hm²) | | | 4.047x10 ⁻³ | square kilometers (km ²) | | square miles (mi ²) | 2.590x10° | square kilometers (km²) | | | Volume | | | gallons (gal) | 3.785x10° | liters (L) | | | 3.785x10° | cubic decimeters (dm³) | | | 3.785x10 ⁻³ | cubic meters (m ³) | | million gallons | 3.785x10 ³ | cubic meters (m ³) | | | 3.785x10 ⁻³ | cubic hectometers (hm³) | | cubic feet (ft³) | 2.832x101 | cubic decimeters (dm³) | | | 2.832x10 ⁻² | cubic meters (m ³) | | cfs-days | 2.447x10 ³ | cubic meters (m ³) | | | 2.447x10 ⁻³ | cubic hectometers (hm³) | | acre-feet (acre-ft) | 1.233×10^{3} | cubic meters (m³) | | | 1.233×10^{-3} | cubic hectometers (hm³) | | | 1.233x10 ⁻⁶ | cubic kilometers (km³) | | | Flow | | | cubic feet per second (ft³/s) | 2.832x101 | liters per second (L/s) | | | 2.832x101 | cubic decimeters per second (dm ³ /s) | | | 2.832x10 ⁻² | cubic meters per second (m³/s) | | gallons per minute (gal/min) | 6.309x10 ⁻² | liters per second (L/s) | | | 6.309x10 ⁻² | cubic decimeters per second (dm ³ /s) | | | 6.309x10 ⁻⁵ | cubic meters per second (m³/s) | | million gallons per day | 4.381x101 | cubic decimeters per second (dm ³ /s) | | | 4.381x10 ⁻² | cubic meters per second (m³/s) | | | Mass | | | tons (short) | 9.072x10 ⁻¹ | megagrams (Mg) or metric tons | U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey, Mail Stop 415 Box 25046, Denver Federal Center Denver, CO 80225 U.S. MAIL OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE CORDS ENCR, ED & HM 700 FED BLDG 601 E 12 ST KANSAS CITY, MO 64106 02 00